SECTION 00-0020
PROJECT DIRECTORY

OWNER: Santa Fe County
102 Grant Avenue
Santa Fe, NM 87501
Contact: Joseph J. Martinez
505.992-3014

ARCHITECTS: NCA Architects, LLC
1306 Rio Grande Blvd. NW
Albuquerque, NM 87104
Contact: John Layman
505.255-6400

STRUCTURAL ENGINEER: Chavez Grieves Consulting Engineers, Inc.
4700 Lincoln Road, Suite 102
Albuquerque, NM 87109
Contact: George Bradley
(505) 344-4080

MECHANICAL ENGINEER: ArSed Engineering Group, LLC
4700 Lincoln Road, NE
Albuquerque, NM 87109
Contact: Pat Sedillo
505.761-3100

ELECTRICAL ENGINEER: AC Engineering Enterprises, LLC
120 Aliso Drive SE
Suite B
Albuquerque, NM 87108
Contact: Bud Telck
505.842-5787

END OF SECTION 00-0020
SECTION 00-0050
TABLE OF CONTENTS

INTRODUCTORY PAGES

DIVISION 0 BIDDING AND CONTRACT REQUIREMENTS

00-0020 PROJECT DIRECTORY
00-0050 TABLE OF CONTENTS
00-4300 SUBCONTRACTORS LISTING
00-6600 MINIMUM WAGE RATES
00-8510 DRAWINGS INDEX
00-8200 GEO TECHNICAL REPORT

SPECIFICATIONS

DIVISION 1 GENERAL REQUIREMENTS

01-1000 PROJECT SUMMARY
01-2100 ALLOWANCES
01-2300 ALTERNATES
01-2500 SUBSTITUTION PROCEDURES
01-2600 CONTRACT MODIFICATION PROCEDURES
01-2900 PAYMENT PROCEDURES
01-3100 PROJECT MANAGEMENT AND COORDINATION
01-3300 SUBMITTAL PROCEDURES
01-4000 QUALITY REQUIREMENTS
01-4200 REFERENCES
01-5000 TEMPORARY FACILITIES AND CONTROLS
01-6000 PRODUCT REQUIREMENTS
01-7300 EXECUTION
01-7329 CUTTING AND PATCHING
01-7419 CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL
01-7700 CLOSEOUT PROCEDURES
01-7823 OPERATION AND MAINTENANCE DATA
01-7839 PROJECT RECORD DOCUMENTS
01-7900 DEMONSTRATION AND TRAINING

DIVISION 2 EXISTING CONDITIONS

02-4119 SELECTIVE STRUCTURE DEMOLITION

DIVISION 3 SITE CONCRETE

03-1000 CONCRETE FORMING AND ACCESSORIES
03-2000 CONCRETE REINFORCEMENT
03-3000 CAST-IN-PLACE CONCRETE

DIVISION 4 NOT USED

DIVISION 5 METALS

05-4000 COLD FORMED METAL FRAMING
Division 6: Wood, Plastics, and Composites
- 06-1000 Rough Carpentry
- 06-1600 Sheathing
- 06-4023 Interior Architectural Woodwork

Division 7: Moisture Protection
- 07-2100 Thermal Insulation
- 07-2600 Under-Slab Vapor Barrier Retarder
- 07-4113 Metal Roof Panels
- 07-6200 Sheet Metal Flashing and Trim
- 07-7200 Roof Accessories
- 07-9200 Joint Sealants

Division 8: Openings
- 08-1113 Hollow Metal Doors and Frames
- 08-1416 Flush Wood Doors
- 08-3113 Access Doors and Frames
- 08-4113 Aluminum-Framed Entrances and Storefronts
- 08-5113 Aluminum Windows
- 08-7100 Finish Hardware
- 08-7100 Finish Hardware Door Index
- 08-8000 Glazing

Division 9: Finishes
- 09-2216 Non-Structural Metal Framing
- 09-2900 Gypsum Board
- 09-2920 Drywall Finishing
- 09-3000 Tiling
- 09-6513 Resilient Base and Accessories
- 09-6519 Luxury Vinyl Tile Resilient Flooring (LVT)
- 09-9113 Exterior Painting
- 09-9123 Interior Painting

Division 10: Specialties
- 10-1400 Signage
- 10-2800 Toilet, Bath, and Laundry Accessories
- 10-4413 Fire Extinguisher Cabinets
- 10-4416 Fire Extinguishers

Division 11: Not Used

Division 12: Not Used

Division 13
- 13-8500 Seismic Protection
DIVISION 14 NOT USED

DIVISION 21 NOT USED

DIVISION 22 PLUMBING

22 0523 GENERAL DUTY VALVES PLUMBING PIPING
22 0529 HANGERS AND SUPPORTS FOR PLUMBING PIPING
22 0553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
22 0700 PLUMBING INSULATION
22 1116 DOMESTIC WATER PIPING
22 1119 DOMESTIC WATER PIPING SPECIALTIES
22 1316 SANITARY WASTE AND VENT PIPING
22 1319 SANITARY WASTE AND PIPING SPECIALTIES
22 3400 FUEL FIRED, DOMESTIC-WATER HEATERS
22 4000 PLUMBING FIXTURES

DIVISION 23 HVAC

23 0000 BASIC MECHANICAL REQUIREMENTS
23 0513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
23 0553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
23 0593 TESTING, ADJUSTING, AND BALANCING FOR HVAC
23 0700 HVAC INSULATION
23 1126 FACILITY LIQUEFIED PETROLEUM GAS PIPING
23 3113 METAL DUCTS
23 3300 AIR DUCT ACCESSORIES
23 3423 HVAC POWER VENTILATORS
23 3713 DIFFUSERS, REGISTERS, AND GRILLES
23 6213 PACKAGED AIR COOLED DX AIR CONDITIONING UNITS
23 8239 UNIT HEATERS

DIVISION 26 ELECTRICAL (refer to sheet E-002)

DIVISION 27 COMMUNICATIONS (refer to sheet E-002)

DIVISION 28 ELECTRONIC SAFETY AND SECURITY (refer to sheet E-002)

DIVISION 31 EARTHWORK

31-2311 EARTHWORK FOR BUILDING CONSTRUCTION

DIVISION 32 SITE IMPROVEMENTS

32-1313 CONCRETE PAVING

END OF SECTION 00-0050
SECTION 00-8510
DRAWINGS INDEX

G-001 COVER SHEET

GENERAL INFORMATION
G-101 GENERAL INFORMATION
G-201 CODE PLAN AND CODE INFORMATION
G-211 A.D.A. INFORMATION

SITE SURVEY
V-101 TOPOGRAPHIC MAP - FOR REFERENCE USE ONLY
V-102 BOUNDARY SURVEY - FOR REFERENCE USE ONLY

STRUCTURAL
S-001 LEGENDS AND ABBREVIATIONS
S-002 GENERAL STRUCTURAL NOTES
S-003 GENERAL STRUCTURAL NOTES
S-101 FOUNDATION PLAN
S-111 ROOF FRAMING PLAN
S-112 MEZZANINE & CANOPY FRAMING PLAN
S-301 FOUNDATION SECTIONS AND DETAILS
S-311 ROOF FRAMING SECTIONS
S-312 FRAMING SECTIONS AND DETAILS
S-711 TYPICAL CONCRETE DETAILS
S-731 TYPICAL COLD-FORMED DETAILS

ARCHITECTURAL SITE
ASD-101 SITE DEMOLITION PLAN
AS-101 SITE PLAN
AS-501 SITE DETAILS

ARCHITECTURAL
AD-101 DEMOLITION FLOOR PLAN
A-101 FLOOR PLAN
A-111 ROOF PLAN
A-121 REFLECTED CEILING PLAN
A-201 EXTERIOR ELEVATIONS
A-202 EXTERIOR ELEVATIONS
A-301 BUILDING SECTIONS
A-302 BUILDING SECTIONS
A-311 WALL SECTIONS
A-312 WALL SECTIONS
A-401 ENLARGED PLAN AND INTERIOR ELEVATIONS
A-402 MEZZANINE FLOOR PLAN, SECTIONS AND INTERIOR ELEVATION
A-511 CEILING AND ROOF DETAILS
A-531 CASEWORK DETAILS
A-551 DOOR AND WINDOW DETAILS
A-601 PARTITION TYPES
A-611 ROOM FINISH SCHEDULE
A-621 DOOR AND FRAME TYPES/ DOOR AND WINDOW TYPES, SCHEDULES

PLUMBING
P-001 PLUMBING INFORMATION & CALCULATIONS
P-002 PLUMBING SCHEDULES
PD101 PLUMBING DEMOLITION PLAN
P-101 PLUMBING FLOOR PLAN WASTE & VENT
P-102 PLUMBING FLOOR PLAN WATER & GAS
P-201 PLUMBING WASTE & VENT RISER DIAGRAM
P-301 PLUMBING DETAILS
MECHANICAL
M-001 MECHANICAL SCHEDULES
M-101 MECHANICAL HVAC FLOOR PLAN
M-201 MECHANICAL DETAILS

ELECTRICAL
E-001 FIXTURE SCHEDULE, GENERAL NOTES & LEGEND
E-002 SHEET SPECIFICATIONS
ES-101 ELECTRICAL SITE PLAN
ED-101 DEMOLITION ELECTRICAL PLAN
EL-101 ELECTRICAL LIGHTING PLAN
EP-101 ELECTRICAL POWER PLAN

END OF SECTION 00-8510
GEOTECHNICAL EVALUATION REPORT

FIRE STATION ADDITIONS
Firehouse Lane
Madrid, New Mexico
WT Reference No. 3228JJ061

PREPARED FOR:
Santa Fe County
c/o NCA Architects
1306 Rio Grande Boulevard NW
Albuquerque, New Mexico City 87104
Attn: John Layman

July 24, 2018

Jeff M. Boyd, P.E.
Senior Geotechnical Engineer

Reviewed By: Bruce M. MacIlroy, P.E.
Technical Director
TABLE OF CONTENTS

1.0 PURPOSE ... 1

2.0 PROJECT DESCRIPTION.. 1

3.0 SCOPE OF SERVICES .. 2
 3.1 Field Exploration.. 2
 3.2 Laboratory Analysis ... 2
 3.3 Analyses and Report .. 2

4.0 SITE CONDITIONS .. 3
 4.1 Surface ... 3
 4.2 Subsurface .. 3

5.0 GEOTECHNICAL PROPERTIES & ANALYSIS ... 3
 5.1 Laboratory Tests ... 3
 5.2 Field Tests .. 3

6.0 RECOMMENDATIONS .. 4
 6.1 General ... 4
 6.3 Foundations ... 4
 6.4 Lateral Design Criteria ... 5
 6.5 Seismic Considerations ... 5
 6.6 Conventional Slab-on-Grade Support ... 6
 6.7 Drainage ... 6

7.0 EARTHWORK .. 7
 7.1 General ... 7
 7.2 Site Clearing ... 7
 7.3 Foundation Preparation .. 7
 7.4 Conventional Interior Slab Preparation .. 7
 7.5 Materials .. 8
 7.6 Placement and Compaction .. 8
 7.7 Compliance ... 9

8.0 LIMITATIONS ... 9

9.0 CLOSURE ... 10

BORING LOCATION DIAGRAM ... Plate 1

APPENDIX A
 Definition of Terminology .. A-1
 Method of Soil Classification .. A-2
 Boring Log Notes ... A-3
 Boring Logs .. A-4 thru A-6
APPENDIX B
Laboratory Tests .. B-1
1.0 PURPOSE

This report contains the results of our geotechnical evaluation for the proposed fire station additions, and was performed in general accordance with our contract. The purpose of our services is to provide information and recommendations regarding:

- Subsurface conditions
- Groundwater
- Foundation design parameters
- Lateral earth pressures
- Seismic considerations
- Slabs-on-grade
- Earthwork, including site preparation, fill placement, and suitability of existing soils for fill materials, and compaction
- Percolation rate

Results of the field exploration, field and laboratory tests are presented in the Appendices.

2.0 PROJECT DESCRIPTION

Project information supplied by NCA Architects and Planners on June 13, 2018 indicates that the proposed additions will consist of two single-story, slab-on-grade additions using steel frame construction. The maximum wall and column loads are assumed to be 3 kips per linear foot and 35 kips, respectively. We anticipate that the ground floor level will be match the floor level of the existing building. Should our assumptions not be correct, we should be notified immediately.
3.0 SCOPE OF SERVICES

3.1 Field Exploration

Two borings were drilled to depths ranging from 7.5 to 20.5 feet below existing grade in the proposed addition areas. In addition, one boring and percolation test were drilled to a depth of 3 feet in the proposed paved parking and drive areas. The borings were drilled at the approximate locations shown on the attached Boring Location Diagram. A field log was prepared for each boring. These logs contain visual classifications of the materials encountered during drilling as well as interpolation of the subsurface conditions between samples. Final logs, included in Appendix A, represent our interpretation of the field logs and may include modifications based on laboratory observations and tests of the field samples. The final logs describe the materials encountered, their thicknesses, and the locations where samples were obtained.

The Unified Soil Classification System was used to classify soils. The soil classification symbols appear on the boring logs and are briefly described in Appendix A. Local and regional geologic characteristics were used to estimate the seismic design criteria.

3.2 Laboratory Analysis

Laboratory analyses were performed on representative soil samples to aid in material classification and to estimate pertinent engineering properties of the on-site soils for preparation of this report. The following tests were performed in general accordance with applicable procedures, and the results are presented in Appendix B.

- #200 Sieve
- Liquid limit and plasticity index

3.3 Analyses and Report

Analyses were performed and this report was prepared for the exclusive purpose of providing geotechnical engineering and/or testing information and recommendations. The scope of services for this project does not include, either specifically or by implication, any environmental assessment of the Site or identification of contaminated or hazardous materials or conditions. If the owner is concerned about the potential for such contamination, other studies should be undertaken. We are available to discuss the scope of such studies with you.
This geotechnical engineering report includes a description of the project, a discussion of the field and laboratory testing programs, a discussion of the subsurface conditions, and design recommendations as required to satisfy the purpose previously described.

4.0 SITE CONDITIONS

4.1 Surface

At the time of our exploration, the Site was developed as the existing Madrid Fire Station. The ground surface surrounding the fire station was surfaced with gravel. A wash was located to the west Fire Station and flowed to the south.

4.2 Subsurface

As presented on the boring logs, surface soils to depths of 7.5 to 10 feet consist of medium dense Silty SAND and Silty Clayey SAND. Near surface soils are of low plasticity. The materials underlying the surface soils and extending to the full depth of exploration consisted of very dense Clayey SAND. Groundwater was not encountered in any of the borings at the time of exploration.

5.0 GEOTECHNICAL PROPERTIES & ANALYSIS

5.1 Laboratory Tests

Near-surface soils are of low plasticity. These soils are not expected to exhibit significant shrink/swell upon changes in moisture content.

5.2 Field Tests

Undisturbed samples for compression testing were not obtained due to the granular nature of the soils. On-site subsoils near shallow foundation level exhibited moderate resistance to penetration using test methods ASTM D1586 and ASTM D3550. These soils correlate to having a moderate bearing capacity in their present condition.

A percolation test was performed in test boring number 3. The percolation test was performed in general accordance with New Mexico Environment Department procedures. The stabilized percolation rate was determined to be 20 minutes per inch.
6.0 RECOMMENDATIONS

6.1 General

Recommendations contained in this report are based on our understanding of the project criteria described in Section 2.0, and the assumption that the soil and subsurface conditions are those disclosed by the borings. Others may change the plans, final elevations, number and type of structures, foundation loads, and floor levels during design or construction. Substantially different subsurface conditions from those described herein may be encountered or become known. Any changes in the project criteria or subsurface conditions shall be brought to our attention in writing.

6.3 Foundations

The proposed addition can be supported by conventional shallow spread footing type foundations bearing on undisturbed native soil and/or properly compacted engineered fill. The following tabulation may be utilized to proportion the foundations:

<table>
<thead>
<tr>
<th>Footing Depth Below Finished Grade (ft.)</th>
<th>Allowable Bearing Capacity (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2,000</td>
</tr>
<tr>
<td>2.5</td>
<td>2,500</td>
</tr>
</tbody>
</table>

1 Finished grade is the lowest adjacent grade for perimeter footings and floor level for interior footings.
2 Allowable bearing capacities assume fulfillment of EARTHWORK recommendations.
3 Minimum depth for frost protection for exterior footings or footings in unheated spaces.

Recommended minimum widths of column and wall footings are 24 inches and 16 inches, respectively.

When new foundations are adjacent to the existing structure, the new foundations should be at least as deep as the existing foundations or the deeper foundations should be designed for increased loading. Support of the existing foundations would be required if adjacent new foundations will be constructed lower than the existing footings.

We recommend that the proposed addition be separated structurally from the existing structure to minimize the possibility of cracking and displacement between the two structures.
We anticipate that differential movement of the proposed addition, supported as recommended, should be \(\frac{3}{4} \) of one inch or less. Additional foundation movements could occur if water from any source infiltrates the foundation soils. Therefore, proper drainage should be provided in the final design and during construction.

All footings, stem walls, and masonry walls should be reinforced to reduce the potential for distress caused by differential foundation movements. The use of joints at openings or other discontinuities in masonry walls is recommended.

We recommend that the geotechnical engineer or his representative observe the footing excavations before reinforcing steel and concrete are placed. This observation is to assess whether the soils exposed are similar to those anticipated for support of the footings. Any soft, loose or unacceptable soils should be undercut to suitable materials and backfilled with approved fill materials or lean concrete. Soil backfill should be properly compacted.

6.4 Lateral Design Criteria

Lateral loads may be resisted by concrete interface friction and by passive resistance. For shallow foundations bearing on properly compacted fill at this site, we recommend the following lateral resistance criteria:

- **Coefficient of Friction** .. 0.3
- **Passive Pressure** .. 250 psf/ft

The frictional resistance and the passive pressure may be combined without reduction in determining the total lateral resistance.

Fill against footings and stem walls should be compacted to densities specified in **EARTHWORK**. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors. Over-compaction may cause excessive lateral earth pressures that could result in wall movements.

6.5 Seismic Considerations

For structural designs based upon the 2012/2015 International Building Code, the following criteria will apply. The soil site class is C. \(S_s \), the spectral acceleration for short periods, is 0.453g. \(S_1 \), the spectral acceleration for a 1-second period, is 0.138g. \(F_a \) and \(F_v \), are 1.2 and 1.662, respectively.
6.6 **Conventional Slab-on-Grade Support**

Interior slabs-on-grade can be supported on properly placed and compacted fill or approved natural soils. The slab subgrade should be prepared by the procedures outlined in this report. A four-inch layer of base course is desirable beneath all slabs to help prevent capillary rise and a damp slab. Final determination of the use of base course should be left to the slab designer. The recommended modulus of subgrade reaction (k) is 200 pounds per cubic inch.

All concrete placement and curing operations should follow the American Concrete Institute manual recommendations. Improper curing techniques and/or high slump (high water-cement ratio) could cause excessive shrinkage, cracking or curling. Concrete slabs should be allowed to cure adequately before placing vinyl or other moisture sensitive floor covering.

6.7 **Drainage**

The major cause of soil problems in this vicinity is moisture increase in soils below structures. Therefore, it is extremely important that positive drainage be provided during construction and maintained throughout the life of the proposed additions. Infiltration of water into utility or foundation excavations must be prevented during construction. Planters or other surface features that could retain water adjacent to the structure should not be constructed. It is also important that proper planning and control of any landscape and irrigation practices be performed.

In areas where sidewalks or flatwork do not immediately adjoin the structure, protective slopes should be provided with an outfall of five percent for at least 10 feet from perimeter walls. Scuppers and drainpipes should be designed to provide drainage away from the structure for a minimum of 10 feet. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to minimize the possibility of moisture infiltration.
7.0 EARTHWORK

7.1 General

The conclusions contained in this report for the proposed construction are contingent upon compliance with recommendations presented in this section. Any excavating, trenching, or disturbance that occurs after completion of the earthwork must be backfilled, compacted and tested in accordance with the recommendations contained herein. It is not reasonable to rely upon our conclusions and recommendations if any future unobserved and untested trenching, earthwork activities or backfilling occurs.

Although fills or underground facilities such as septic tanks, cesspools, basements, utilities, and dry wells were not observed, such features might be encountered during construction. These features should be demolished in accordance with the recommendations of the geotechnical engineer. Any loose or disturbed soils resulting from demolition should be removed or recompacted as engineered fill and any excavations should be backfilled in accordance with recommendations presented herein.

7.2 Site Clearing

Strip and remove any existing vegetation, organic topsoils, debris, and any other deleterious materials from the addition areas. The building area is defined as that area within the building footprint plus five feet beyond the perimeter of the footprint. All exposed surfaces should be free of mounds and depressions that could prevent uniform compaction.

7.3 Foundation Preparation

Specialized treatment of existing soils within foundation areas is not required. Footings should bear upon undisturbed native soils or engineered fill. Foundation excavations should be clean and free of any loose soil or debris.

7.4 Conventional Interior Slab Preparation

Prior to the placement of fill or aggregate base course, the exposed soil should be scarified a minimum depth of 10 inches, moisture conditioned and recompacted as recommended herein.
7.5 **Materials**

Clean on-site native soils with low-expansive potentials or imported materials may be used as fill material for the following:

- Foundation areas
- Interior slab areas
- Backfill

Imported soils should conform to the following:

- Gradation (ASTM C136):

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent Finer by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>100</td>
</tr>
<tr>
<td>4"</td>
<td>85-100</td>
</tr>
<tr>
<td>¾"</td>
<td>70-100</td>
</tr>
<tr>
<td>No. 4 Sieve</td>
<td>50-100</td>
</tr>
<tr>
<td>No. 200 Sieve</td>
<td>30 (max)</td>
</tr>
</tbody>
</table>

- Maximum soluble sulfates (%) 0.10
- Maximum Plasticity Index (PI) 5

Base course should conform to NMDOT specifications.

7.6 **Placement and Compaction**

a. Place and compact fill in horizontal lifts, using equipment and procedures that will produce recommended water contents and densities throughout the lift.

b. Uncompacted fill lifts should not exceed 10 inches.

c. Frozen soil should not be used as fill and no fill should be placed over frozen ground.

d. Materials should be compacted to the following:

<table>
<thead>
<tr>
<th>Minimum Percent</th>
<th>Material Compaction (ASTM D1557)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site soil, reworked and fill</td>
<td>95</td>
</tr>
<tr>
<td>Imported soil</td>
<td>95</td>
</tr>
<tr>
<td>Aggregate base course below slabs-on-grade</td>
<td>95</td>
</tr>
<tr>
<td>Nonstructural backfill</td>
<td>90</td>
</tr>
</tbody>
</table>
On-site and imported soils should be compacted within a water content range of two percent below to three percent above optimum.

7.7 Compliance

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the EARTHWORK recommendations. To assess compliance, observation and testing should be performed under the direction of a WT geotechnical engineer. Please contact us to provide these observation and testing services.

8.0 LIMITATIONS

This report has been prepared assuming the project criteria described in Section 2.0. If changes in the project criteria occur, or if different subsurface conditions are encountered or become known, the conclusions and recommendations presented herein shall become invalid. In any such event, contact WT to assess the effect that such variations may have on our conclusions and recommendations. If WT is not retained for the construction observation and testing services to determine compliance with this report, our professional responsibility is accordingly limited. The recommendations presented are based entirely upon data derived from a limited number of samples obtained from widely spaced borings. The attached logs are indicators of subsurface conditions only at the specific locations and times noted. This report assumes the uniformity of the geology and soil structure between borings, however variations can and often do exist. Whenever any deviation, difference or change is encountered or becomes known, WT should be contacted.

This report is for the exclusive benefit of our client alone. There are no intended third-party beneficiaries of our contract with the client or this report, and nothing contained in the contract or this report shall create any express or implied contractual or any other relationship with, or claim or cause of action for, any third party against WT.

This report is valid until the earlier of one year from the date of issuance, a change in circumstances, or discovered variations. After expiration, no person or entity shall have any right to rely on this report without the express written authorization of WT.
9.0 CLOSURE

We prepared this report as an aid to the designers of the proposed project. The comments, statements, recommendations and conclusions set forth in this report reflect the opinions of the authors. These opinions are based upon data obtained at the location of the borings, and from laboratory tests. Work on your project was performed in accordance with generally accepted standards and practices utilized by professionals providing similar services in this locality. No warranty, express or implied, is made.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Soil Bearing Capacity</td>
<td>The recommended maximum contact stress developed at the interface of the foundation element and the supporting material.</td>
</tr>
<tr>
<td>Backfill</td>
<td>A specified material placed and compacted in a confined area.</td>
</tr>
<tr>
<td>Base Course</td>
<td>A layer of specified aggregate material placed on a subgrade or subbase.</td>
</tr>
<tr>
<td>Base Course Grade</td>
<td>Top of base course.</td>
</tr>
<tr>
<td>Bench</td>
<td>A horizontal surface in a sloped deposit.</td>
</tr>
<tr>
<td>Caisson/Drilled Shaft</td>
<td>A concrete foundation element cast in a circular excavation which may have an enlarged base (or belled caisson).</td>
</tr>
<tr>
<td>Concrete Slabs-On-Grade</td>
<td>A concrete surface layer cast directly upon base course, subbase or subgrade.</td>
</tr>
<tr>
<td>Crushed Rock Base Course</td>
<td>A base course composed of crushed rock of a specified gradation.</td>
</tr>
<tr>
<td>Differential Settlement</td>
<td>Unequal settlement between or within foundation elements of a structure.</td>
</tr>
<tr>
<td>Engineered Fill</td>
<td>Specified soil or aggregate material placed and compacted to specified density and/or moisture conditions under observations of a representative of a soil engineer.</td>
</tr>
<tr>
<td>Existing Fill</td>
<td>Materials deposited through the action of man prior to exploration of the site.</td>
</tr>
<tr>
<td>Existing Grade</td>
<td>The ground surface at the time of field exploration.</td>
</tr>
<tr>
<td>Expansive Potential</td>
<td>The potential of a soil to expand (increase in volume) due to absorption of moisture.</td>
</tr>
<tr>
<td>Fill</td>
<td>Materials deposited by the actions of man.</td>
</tr>
<tr>
<td>Finished Grade</td>
<td>The final grade created as a part of the project.</td>
</tr>
<tr>
<td>Gravel Base Course</td>
<td>A base course composed of naturally occurring gravel with a specified gradation.</td>
</tr>
<tr>
<td>Heave</td>
<td>Upward movement.</td>
</tr>
<tr>
<td>Native Grade</td>
<td>The naturally occurring ground surface.</td>
</tr>
<tr>
<td>Native Soil</td>
<td>Naturally occurring on-site soil.</td>
</tr>
<tr>
<td>Rock</td>
<td>A natural aggregate of mineral grains connected by strong and permanent cohesive forces. Usually requires drilling, wedging, blasting or other methods of extraordinary force for excavation.</td>
</tr>
<tr>
<td>Sand and Gravel Base Course</td>
<td>A base course of sand and gravel of a specified gradation.</td>
</tr>
<tr>
<td>Sand Base Course</td>
<td>A base course composed primarily of sand of a specified gradation.</td>
</tr>
<tr>
<td>Scarify</td>
<td>To mechanically loosen soil or break down existing soil structure.</td>
</tr>
<tr>
<td>Settlement</td>
<td>Downward movement.</td>
</tr>
<tr>
<td>Soil</td>
<td>Any unconsolidated material composed of discrete solid particles, derived from the physical and/or chemical disintegration of vegetable or mineral matter, which can be separated by gentle mechanical means such as agitation in water.</td>
</tr>
<tr>
<td>Strip</td>
<td>To remove from present location.</td>
</tr>
<tr>
<td>Subbase</td>
<td>A layer of specified material placed to form a layer between the subgrade and base course.</td>
</tr>
<tr>
<td>Subbase Grade</td>
<td>Top of subbase.</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Prepared native soil surface.</td>
</tr>
</tbody>
</table>
Coarse-Grained Soils

<table>
<thead>
<tr>
<th>GROUP SYMBOLS</th>
<th>DESCRIPTION</th>
<th>MAJOR DIVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>WELL-GRATED GRAVEL OR WELL-GRATED GRAVEL WITH SAND, LESS THAN 5% FINES</td>
<td>Gravels</td>
</tr>
<tr>
<td>GP</td>
<td>POORLY-GRATED GRAVEL OR POORLY-GRATED GRAVEL WITH SAND, LESS THAN 5% FINES</td>
<td>Gravels</td>
</tr>
<tr>
<td>GM</td>
<td>SILTY GRAVEL OR SILTY GRAVEL WITH SAND, MORE THAN 12% FINES</td>
<td>Gravels</td>
</tr>
<tr>
<td>GC</td>
<td>CLAYEY GRAVEL OR CLAYEY GRAVEL WITH SAND, MORE THAN 12% FINES</td>
<td>Gravels</td>
</tr>
<tr>
<td>SW</td>
<td>WELL-GRATED SAND OR WELL-GRATED SAND WITH GRAVEL, LESS THAN 5% FINES</td>
<td>Sands</td>
</tr>
<tr>
<td>SP</td>
<td>POORLY-GRATED SAND OR POORLY-GRATED SAND WITH GRAVEL, LESS THAN 5% FINES</td>
<td>Sands</td>
</tr>
<tr>
<td>SM</td>
<td>SILTY SAND OR SILTY SAND WITH GRAVEL, MORE THAN 12% FINES</td>
<td>Sands</td>
</tr>
<tr>
<td>SC</td>
<td>CLAYEY SAND OR CLAYEY SAND WITH GRAVEL, MORE THAN 12% FINES</td>
<td>Sands</td>
</tr>
</tbody>
</table>

NOTE: Coarse-grained soils receive dual symbols if they contain 5% to 12% fines (e.g., SW-SM, GP-GC).

Fine-Grained Soils

<table>
<thead>
<tr>
<th>GROUP SYMBOLS</th>
<th>DESCRIPTION</th>
<th>MAJOR DIVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>SILT, SILT WITH SAND OR GRAVEL, SANDY SILT, OR GRAVELLY SILT</td>
<td>Silty soils</td>
</tr>
<tr>
<td>CL</td>
<td>LEAN CLAY OF LOW TO MEDIUM PLASTICITY, SANDY CLAY, OR GRAVELLY CLAY</td>
<td>Silty soils</td>
</tr>
<tr>
<td>OL</td>
<td>ORGANIC SILT OR ORGANIC CLAY OF LOW TO MEDIUM PLASTICITY</td>
<td>Silty soils</td>
</tr>
<tr>
<td>MH</td>
<td>ELASTIC SILT, SANDY ELASTIC SILT, OR GRAVELLY ELASTIC SILT</td>
<td>Silty soils</td>
</tr>
<tr>
<td>CH</td>
<td>FAT CLAY OF HIGH PLASTICITY, SANDY FAT CLAY, OR GRAVELLY FAT CLAY</td>
<td>Silty soils</td>
</tr>
<tr>
<td>OH</td>
<td>ORGANIC SILT OR ORGANIC CLAY OF HIGH PLASTICITY</td>
<td>Silty soils</td>
</tr>
<tr>
<td>PT</td>
<td>PEAT AND OTHER HIGHLY ORGANIC SOILS</td>
<td>Organic soils</td>
</tr>
</tbody>
</table>

NOTE: Fine-grained soils may receive dual classification based upon plasticity characteristics (e.g. CL-ML).

Soil Sizes

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SIZE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>Above 12 in.</td>
</tr>
<tr>
<td>Cobbles</td>
<td>3 in. – 12 in.</td>
</tr>
<tr>
<td>Gravel Coarse</td>
<td>No. 4 – 3 in.</td>
</tr>
<tr>
<td>Gravel Fine</td>
<td>½ in. – 3 in.</td>
</tr>
<tr>
<td>Gravel No. 4 – ⅛ in.</td>
<td>No. 4 – ⅛ in.</td>
</tr>
<tr>
<td>Sand Coarse</td>
<td>No. 200 – No. 4</td>
</tr>
<tr>
<td>Sand No. 10 – 4</td>
<td>No. 10 – No. 4</td>
</tr>
<tr>
<td>Sand Medium</td>
<td>No. 40 – No. 10</td>
</tr>
<tr>
<td>Sand Fine</td>
<td>No. 200 – No. 40</td>
</tr>
<tr>
<td>Gravel Finely</td>
<td>Below No. 200</td>
</tr>
</tbody>
</table>

NOTE: Only sizes smaller than three inches are used to classify soils.

Consistency

<table>
<thead>
<tr>
<th>CLAYS & SILTS</th>
<th>BLOWS PER FOOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>0 – 2</td>
</tr>
<tr>
<td>Soft</td>
<td>3 – 4</td>
</tr>
<tr>
<td>Firm</td>
<td>5 – 8</td>
</tr>
<tr>
<td>Stiff</td>
<td>9 – 15</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>16 – 30</td>
</tr>
<tr>
<td>Hard</td>
<td>Over 30</td>
</tr>
</tbody>
</table>

Relative Density

<table>
<thead>
<tr>
<th>Sands & Gravels</th>
<th>BLOWS PER FOOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0 – 4</td>
</tr>
<tr>
<td>Loose</td>
<td>5 – 10</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>11 – 30</td>
</tr>
<tr>
<td>Dense</td>
<td>31 – 50</td>
</tr>
<tr>
<td>Very Dense</td>
<td>Over 50</td>
</tr>
</tbody>
</table>

NOTE: Number of blows using 140-pound hammer falling 30 inches to drive a 2-inch-OD (1¾-inch ID) split-barrel sampler (ASTM D1586).

Placidity of Fine Grained Soils

<table>
<thead>
<tr>
<th>PLASTICITY INDEX</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Non-Plastic</td>
</tr>
<tr>
<td>1 – 7</td>
<td>Low</td>
</tr>
<tr>
<td>8 – 20</td>
<td>Medium</td>
</tr>
<tr>
<td>Over 20</td>
<td>High</td>
</tr>
</tbody>
</table>

Definition of Water Content

<table>
<thead>
<tr>
<th>Water Content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>Slightly Damp</td>
<td></td>
</tr>
<tr>
<td>Damp</td>
<td></td>
</tr>
<tr>
<td>Moist</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>Satated</td>
<td></td>
</tr>
</tbody>
</table>

Method of Classification

- **Plate:** A-2
The number shown in "BORING NO." refers to the approximate location of the same number indicated on the "Boring Location Diagram" as positioned in the field by pacing or measurement from property lines and/or existing features, or through the use of Global Positioning System (GPS) devices. The accuracy of GPS devices is somewhat variable.

"DRILLING TYPE" refers to the exploratory equipment used in the boring wherein HSA = hollow stem auger, and the dimension presented is the outside diameter of the HSA used.

"N" in "BLOW COUNTS" refers to a 2-inch outside diameter split-barrel sampler driven into the ground with a 140 pound drop-hammer dropped 30 inches repeatedly until a penetration of 18 inches is achieved or until refusal. The number of blows, or "blow count", of the hammer is recorded for each of three 6-inch increments totaling 18 inches. The number of blows required for advancing the sampler for the last 12 inches (2nd and 3rd increments) is defined as the Standard Penetration Test (SPT) "N"-Value. Refusal to penetration is considered more than 50 blows per 6 inches. (Ref. ASTM D1586).

"R" in "BLOW COUNTS" refers to a 3-inch outside diameter ring-lined split barrel sampler driven into the ground with a 140 pound drop-hammer dropped 30 inches repeatedly until a penetration of 12 inch is achieved or until refusal. The number of blows required to advance the sampler 12 inches is defined as the "R" blow count. The "R" blow count requires an engineered conversion to an equivalent SPT N-Value. Refusal to penetration is considered more than 50 blows per foot. (Ref. ASTM D3550).

"CS" in "BLOWS/FT." refers to a 2½-in. outside diameter California style split-barrel sampler, lined with brass sleeves, driven into the ground with a 140-pound hammer dropped 30 inches repeatedly until a penetration of 18 inches is achieved or until refusal. The number of blows of the hammer is recorded for each of the three 6-inch increments totaling 18 inches. The number of blows required for advancing the sampler for the last 12 inches (2nd and 3rd increments) is defined as the "CS" blow count. The "CS" blow count requires an engineered conversion to an equivalent SPT N-Value. Refusal to penetration is considered more than 50 blows for a 6-inch increment. (Ref. ASTM D 3550)

"SAMPLE TYPE" refers to the form of sample recovery, in which N = Split-barrel sample, R = Ring-lined sample, "CS" = California style split-barrel sample, G = Grab sample, B = Bucket sample, C = Core sample (ex. diamond bit rock coring).

"DRIED DENSITY (LBS/CU FT)" refers to the laboratory-determined dry density in pounds per cubic foot. The symbol "NR" indicates that no sample was recovered.

"WATER (MOISTURE) CONTENT" (% of Dry Wt.) refers to the laboratory-determined water content in percent using the standard test method ASTM D2216.

"USCS" refers to the "Unified Soil Classification System" Group Symbol for the soil type as defined by ASTM D2487 and D2488. The soils were classified visually in the field, and where appropriate, classifications were modified by visual examination of samples in the laboratory and/or by appropriate tests.

These notes and boring logs are intended for use in conjunction with the purposes of our services defined in the text. Boring log data should not be construed as part of the construction plans nor as defining construction conditions.

Boring logs depict our interpretations of subsurface conditions at the locations and on the date(s) noted. Variations in subsurface conditions and characteristics may occur between borings. Groundwater levels may fluctuate due to seasonal variations and other factors.

The stratification lines shown on the boring logs represent our interpretation of the approximate boundary between soil or rock types based upon visual field classification at the boring location. The transition between materials is approximate and may be more or less gradual than indicated.
Soil Description

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>USCS Graphic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silty Clayey SAND; with gravel, dark brown, medium dense, moist</td>
<td>SM-SC</td>
<td>Groundwater Not Encountered</td>
</tr>
<tr>
<td>Clayey SAND; very dense, brown, damp, moderate cementation</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>dark grey/black</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of Boring at 20.5 feet

Soil Data

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Moisture Content</th>
<th>Density (lbs/cu ft)</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Not Determined</td>
<td>Not Determined</td>
<td>NR</td>
</tr>
<tr>
<td>10-15</td>
<td>Not Determined</td>
<td>Not Determined</td>
<td>N</td>
</tr>
<tr>
<td>15-20</td>
<td>Not Determined</td>
<td>Not Determined</td>
<td>G</td>
</tr>
<tr>
<td>20-25</td>
<td>Not Determined</td>
<td>Not Determined</td>
<td>N</td>
</tr>
</tbody>
</table>

Standard Penetration Test

- **Sample**: Standard penetration test
- **Depth**: 20.5 feet
- **Blow Counts**: 18
- **Sample**: Ring sample

Additional Information

- **Location**: See Location Diagram
- **FIELD ENGINEER**: K. Newberry
- **EQUIPMENT TYPE**: CME-75
- **DRILLING TYPE**: 7"HSA
- **PROJECT**: 3228JJ061
- **JOB NO.**: FIRE STATION ADDITIONS
- **PLATE**: A-4

NOTES: Groundwater Not Encountered
<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>SOIL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Silty SAND; with gravel, brown, dense, damp</td>
</tr>
<tr>
<td>5.5</td>
<td>cobbles</td>
</tr>
<tr>
<td>6-7</td>
<td>very dense</td>
</tr>
<tr>
<td>7.5</td>
<td>Auger Refusal at 7.5 feet</td>
</tr>
</tbody>
</table>

NOTES: Groundwater Not Encountered
<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>USCS</th>
<th>GRAPHIC</th>
<th>SOIL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SC-</td>
<td>SM</td>
<td>Silty Clayey SAND; brown to dark brown, dense, damp, gravel</td>
</tr>
</tbody>
</table>

Bottom of Boring at 3 feet

NOTES: Groundwater Not Encountered
<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Depth (ft.)</th>
<th>USCS Class.</th>
<th>Initial Dry Density (pcf)</th>
<th>Initial Water Content (%)</th>
<th>Compression Properties</th>
<th>Expansion Properties</th>
<th>Plasticity</th>
<th>Percent Passing #200</th>
<th>Soluble Sulfate (ppm)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surcharge (ksf)</td>
<td>Total Compression (%)</td>
<td>Surcharge (ksf)</td>
<td>Expansion (%)</td>
<td>Liquid Limit</td>
<td>Plasticity Index</td>
</tr>
<tr>
<td>1</td>
<td>5-6.5</td>
<td>SM</td>
<td>23</td>
<td>3</td>
<td>25</td>
<td>23</td>
<td>3</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-5</td>
<td>SM-SC</td>
<td>22</td>
<td>5</td>
<td>31</td>
<td>22</td>
<td>5</td>
<td>3</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Note: Initial Dry Density and Initial Water Content are in-situ values unless otherwise noted.

NP = Non-Plastic

Remarks
1. Compacted density (approx. 95% of ASTM D1557 max. density at moisture content slightly below optimum.)
2. Submerged to approximate saturation.
4. Sample disturbance observed.
SECTION 01-1000
SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Access to site.
 4. Work restrictions.
 5 Specification and drawing conventions.

B. Related Section:
 1. Division 01 Section "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

1.3 PROJECT INFORMATION
A. Project Identification: Santa Fe County
 Madrid Fire Station
 Additions and Renovations

1. Project Location: Madrid, New Mexico
B. Owner: Santa Fe County
 1. Owner's Representative: Joseph J. Martinez - 505-992-3014
C. Architect: NCA Architects, PA, 1306 Rio Grande Blvd. NW,
 Albuquerque, New Mexico 87104

1.4 WORK COVERED BY CONTRACT DOCUMENTS
A. The Work of the Project is defined by the Contract Documents and consists of the following:
This project includes Training Room Addition of approximately 550 sf, renovations to existing Office/Conference Room and Toilets and renovations for an Exercise Room at west end of Bay 4. Additive alternate includes addition of approximately 154 sf to west end of Bay 1. Construction of additions will include standard spread footings and stem walls, concrete slab on grade, wood timber and 2x roof structure, standing seam metal roof and TPO roof system, interior architectural millwork, bearing and non-bearing metal studs, gypsum sheathing and gypsum board with scheduled finishes, exterior finish system (stucco), aluminum and hollow door and frames, solid core wood doors, floor/ceiling/wall finishes and mechanical/plumbing/electrical systems. New septic system and “seapage” pit and concrete parking areas is included in exterior work.

1.5 ACCESS TO SITE

A. General: Contractor shall have limited use of Project site for construction operations as indicated by requirements of this Section.

B. Use of Site: Use of the site will be addressed in the Pre-Construction Conference.

1.6 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.

1. Comply with limitations on use of public streets and other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work in the existing building to normal business working hours of 8:00 a.m. to 5:00 p.m., Monday through Friday, except as otherwise indicated.

C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:

1. Notify Architect and Owner not less than two days in advance of proposed utility interruptions.

D. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.

1. Notify Architect and Owner not less than two days in advance of proposed disruptive operations.

E. Controlled Substances: Use of alcohol and other controlled substances on the Project site is not permitted.

1.7 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on the Drawings are described in detail in the Specifications. One or more of the following are used on the Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.

2. Abbreviations: Materials and products are identified by abbreviations as scheduled on Drawings.

1.8 MISCELLANEOUS PROVISIONS

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-1000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements governing allowances.
 1. Certain items are specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual materials and equipment to a later date when direction will be provided to the Contractor. If necessary, additional requirements will be issued by Change Order.

B. Types of allowances include the following:
 1. Testing and inspecting allowances.

1.3 SELECTION AND PURCHASE
A. At the earliest practical date after award of the Contract, advise Architect of the date when final selection and purchase of each product or system described by an allowance must be completed to avoid delaying the Work.
B. At Architect's request, obtain proposals for each allowance for use in making final selections. Include recommendations that are relevant to performing the Work.
C. Purchase products and systems selected by Architect from the designated supplier.

1.4 SUBMITTALS
A. Submit proposals for purchase of products or systems included in allowances, in the form specified for Change Orders.
B. Submit invoices or delivery slips to show actual quantities of materials delivered to the site for use in fulfillment of each allowance.
C. Submit time sheets and other documentation to show labor time and cost for installation of allowance items that include installation as part of the allowance.
D. Coordinate and process submittals for allowance items in same manner as for other portions of the Work.
1.5 COORDINATION

A. Coordinate allowance items with other portions of the Work. Furnish templates as required to coordinate installation.

1.6 TESTING AND INSPECTING ALLOWANCES

A. Testing and inspecting allowances include the cost of engaging testing agencies, actual tests and inspections, and reporting results.

B. The allowance does not include incidental labor required to assist the testing agency or costs for retesting if previous tests and inspections result in failure. The cost for incidental labor to assist the testing agency shall be included in the Contract Sum.

C. Costs of services not required by the Contract Documents are not included in the allowance.

D. At Project closeout, credit unused amounts remaining in the testing and inspecting allowance to Owner by Change Order.

E. Special Testing scheduled in the Construction Drawings are not to be included in the Testing and Inspecting Allowances. Special Testing is to be performed by the Owner.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine products covered by an allowance promptly on delivery for damage or defects. Return damaged or defective products to manufacturer for replacement.

3.2 PREPARATION

A. Coordinate materials and their installation for each allowance with related materials and installations to ensure that each allowance item is completely integrated and interfaced with related work.

3.3 SCHEDULE OF ALLOWANCES

A. Allowance No. 1: Testing and Inspecting Allowance: Include a Testing and Special Inspections Allowance of $20,000.00 for use according to Owner’s instructions.

END OF SECTION 01-2100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS
A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the Bidding Requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

A. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
B. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.4 PROCEDURES
A. Coordination: Modify or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

A. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated modifications to alternates.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF DEDUCTIVE ALTERNATES
A. Additive Alternate #1: Construction of new concrete drive pad for truck bays as indicated on the drawings.
B. Additive Alternate #2: Construction of addition to Bay #1 as indicated on the drawings.
C. Additive Alternate #3: Construction of outdoor patio and awning at Exercise Room area as indicated on drawings.
D. Additive Alternate #4: Repair, prep and color coat at all exterior walls of the existing building as indicated on drawings.

END OF SECTION 01-2300
SECTION 01-2500
SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Sections:
 1. Division 01 Section "Alternates" for products selected under an alternate.
 2. Division 01 Section "Product Requirements" for requirements for submitting comparable
 product submittals for products by listed manufacturers.
 3. Divisions 02 through 33 Sections for specific requirements and limitations for
 substitutions.

1.3 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from
 those required by the Contract Documents and proposed by Contractor.

 1. Substitutions for Cause: Changes proposed by Contractor that are required due to
 changed Project conditions, such as unavailability of product, regulatory changes, or
 unavailability of required warranty terms.

1.4 SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product
 or fabrication or installation method to be replaced. Include Specification Section number and
 title and Drawing numbers and titles.

 1. Substitution Request Form: Use CSI Form 13.1A or Request Form approved by
 Architect.
 2. Documentation: Show compliance with requirements for substitutions and the following,
 as applicable:

 a. Statement indicating why specified product or fabrication or installation cannot be
 provided, if applicable.
 b. Coordination information, including a list of changes or modifications needed to
 other parts of the Work and to construction performed by Owner and separate
 contractors that will be necessary to accommodate proposed substitution.
c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable specification section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.

e. Samples, where applicable or requested.

f. Certificates and qualification data, where applicable or requested.

g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.

h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.

i. Research reports evidencing compliance with building code in effect for Project, from 2009 International Building Code.

j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.

k. Cost information, including a proposal of change, if any, in the Contract Sum.

l. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.

m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within (7) seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within (15) fifteen days of receipt of request, or (7) seven days of receipt of additional information or documentation, whichever is later.

b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Modify or adjust affected work as necessary to integrate work of the approved substitutions.
PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately upon discovery of need for change, but not later than (15) fifteen days prior to time required for preparation and review of related submittals.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:

 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Substitution request is fully documented and properly submitted.
 c. Requested substitution will not adversely affect Contractor's construction schedule.
 d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 e. Requested substitution is compatible with other portions of the Work.
 f. Requested substitution has been coordinated with other portions of the Work.
 g. Requested substitution provides specified warranty.
 h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-2500
SECTION 01-2600
CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for handling and processing
Contract modifications.
B. Related Sections:
 1. Division 01 Section "Product Requirements" for administrative procedures for handling
requests for substitutions made after Contract award.

1.3 MINOR CHANGES IN THE WORK
A. Architect will issue supplemental instructions authorizing minor changes in the Work, not
involving adjustment to the Contract Sum or the Contract Time, AIA Document G710,
Architect's Supplemental Instructions.

1.4 CHANGE ORDER PROPOSAL REQUESTS
A. Owner-Initiated Proposal Requests: The architect will issue a detailed description of proposed
changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If
necessary, the description will include supplemental or revised Drawings and Specifications.
 1. Proposal Requests issued by Architect are not instructions either to stop work in progress
or to execute the proposed change.
 2. Within 10 days, after receipt of Proposal Request, submit a quotation estimating cost
adjustments to the Contract Sum and the Contract Time necessary to execute the
change.
 a. Include a list of quantities of products required or eliminated and unit costs, with
total amount of purchases and credits to be made. If requested, furnish survey
data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of
trade discounts.
 c. Include costs of labor and supervision directly attributable to the change.
B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.

1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
4. Include costs of labor and supervision directly attributable to the change.
5. Comply with requirements in Division 01 Section "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.

1.5 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

1.6 CHANGE ORDER PROCEDURES

C. Upon the Owners approval of a Proposal Request, the Architect will issue a Change Order for signatures of the Owner and Contractor.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-2600
SECTION 01-2900
PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Sections:

1. Division 01 Section "Submittal Procedures" for administrative requirements governing the preparation and submittal of the Contractor's Construction Schedule and Submittal Schedule.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.

1. Correlate line items in the schedule of values with other required administrative forms and schedules, including the following:

a. Application for Payment forms with continuation sheets.
b. Submittal schedule.
c. Items required to be indicated as separate activities in Contractor's construction schedule.

2. Submit the schedule of values to Architect at earliest possible date but no later than seven (7) days before the date scheduled for submittal of initial Applications for Payment.

B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.

1. Identification: Include the following Project identification on the schedule of values:
a. Project name and location.
b. Name of Architect.
c. Architect's project number.
d. Contractor's name and address.
e. Date of submittal.

2. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:

a. Related Specification Section or Division.
b. Description of the work.
c. Name of subcontractor.
d. Name of manufacturer or fabricator.
e. Name of supplier.
f. Change Orders (numbers) that affect value.
g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.

3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Break principal subcontract amounts down into several line items.

4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.

5. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

6. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.

a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the schedule of values or distributed as general overhead expense, at Contractor's option.

7. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.

1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
C. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.

1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

E. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.

1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment, for stored materials.
2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.

F. Transmittal: Submit three (3) signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt within 24 hours. One copy shall include waivers of lien and similar attachments if required.

1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application, in a manner acceptable to the Architect.

G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.

1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
2. When an application shows completion of an item, submit conditional final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Waiver Delays: Submit each Application for Payment with the Contractor's waiver of mechanics lien for the period of construction covered by the application.
 a. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
5. Waiver Forms: Submit waivers of lien on forms, executed in a manner acceptable to Owner.

H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors. List of principal suppliers and fabricators.
2. Schedule of values.
3. Contractor's construction schedule (preliminary if not final).
4. Submittal schedule (preliminary if not final).
5. List of Contractor's staff assignments.
9. Certificates of insurance and insurance policies.
11. Data needed to acquire Owner's insurance.

I. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

J. Final Payment Application: Submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:

1. Completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
5. AIA Document G707, "Consent of Surety to Final Payment."
6. Evidence that claims have been settled.
7. Removal of surplus materials, rubbish and similar elements.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-2900
SECTION 01-3100
PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project
including, but not limited to, the following:

1. General project coordination procedures.
2. Administrative and supervisory personnel.
3. Coordination drawings.
4. Requests for Information (RFIs).
5. Project meetings.

B. Each contractor shall participate in coordination requirements. Certain areas of responsibility
are assigned to a specific contractor.

C. Related Sections:

1. Division 01 Section "Construction Progress Documentation" for preparing and submitting
Contractor's construction schedule.
2. Division 01 Section "Execution" for procedures for coordinating general installation and
field-engineering services, including establishment of benchmarks and control points.
3. Division 01 Section "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Contractor seeking information from Architect during construction.

1.4 COORDINATION

A. Coordination: Coordinate construction operations included in different Sections of the
Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate
construction operations, included in different Sections, that depend on each other for proper
installation, connection, and operation.

B. Coordination: Each contractor shall coordinate its construction operations with those of other
contractors and entities to ensure efficient and orderly installation of each part of the Work.
Each contractor shall coordinate its operations with operations, included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components with other contractors to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

C. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.

1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of Contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Pre-installation conferences.
6. Startup and adjustment of systems.
7. Project closeout activities.

E. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.

1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. Refer to other Sections for disposition of salvaged materials that are designated as Owner's property.

1.5 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings in accordance with requirements in individual Sections, where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:

a. Use applicable Drawings as a basis for preparation of coordination drawings. Prepare sections, elevations, and details as needed to describe relationship of various systems and components.
b. Coordinate the addition of trade-specific information to the coordination drawings by multiple contractors in a sequence that best provides for coordination of the information and resolution of conflicts between installed components before submitting for review.

c. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.

d. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.

e. Indicate required installation sequences.

f. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

2. Sheet Size: At least 8-1/2 by 11 inches but no larger than 30 by 40 inches.

3. Number of Copies: Submit six opaque copies for each submittal. Architect will return four copies.

 a. Submit six copies where Coordination Drawings are required for operation and maintenance manuals. Architect will retain two copies; remainder will be returned. Markup and retain one returned copy as Project Record Drawing.

1.6 KEY PERSONNEL

 A. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and email addresses. Provide names, addresses, and telephone numbers of individuals assigned as standbys in the absence of individuals assigned to Project.

 1. Post copies of list in project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

1.7 REQUESTS FOR INFORMATION (RFIs)

 A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

 1. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.

 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

 B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

 1. Project name.

 2. Project number.

 3. Date.

 4. Name of Contractor.
5. Name of Architect.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.

C. RFI Forms: AIA Document G716 or software-generated form with substantially the same content as indicated above, acceptable to Architect.

D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.

1. The following RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for coordination information already indicated in the Contract Documents.
 d. Requests for adjustments in the Contract Time or the Contract Sum.
 e. Requests for interpretation of Architect's actions on submittals.
 f. Incomplete RFIs or inaccurately prepared RFIs.

2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.
3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.

E. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

F. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log at biweekly progress meetings.

1. Project name.
2. Name and address of Contractor.
3. Name and address of Architect.
4. RFI number including RFIs that were dropped and not submitted.
5. RFI description.
6. Date the RFI was submitted.
7. Date Architect's response was received.
8. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.

1.8 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site, unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.

B. Pre-construction Conference: Schedule and conduct a pre-construction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.

1. Conduct the conference to review responsibilities and personnel assignments.
2. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Discuss items of significance that could affect progress, including the following:
 a. Tentative construction schedule.
 b. Critical work sequencing and long-lead items.
 c. Designation of key personnel and their duties.
 d. Lines of communications.
 e. Procedures for processing field decisions and Change Orders.
 f. Procedures for RFIs.
 g. Procedures for testing and inspecting.
 h. Procedures for processing Applications for Payment.
 i. Distribution of the Contract Documents.
 j. Submittal procedures.
 k. Preparation of record documents.
 l. Use of the premises and existing building
 m. Work restrictions.
 n. Working hours.
 o. Owner's occupancy requirements.
 p. Responsibility for temporary facilities and controls.
 q. Procedures for moisture and mold control.
 r. Procedures for disruptions and shutdowns.
 s. Construction waste management and recycling.
 t. Parking availability.
 u. Office, work, and storage areas.
v. Equipment deliveries and priorities.
w. First aid.
x. Security.
y. Progress cleaning.
z. Working hours.

4. Minutes: Record and distribute meeting minutes.

C. Pre-installation Conferences: Conduct a pre-installation conference at Project site before each construction activity that requires coordination with other construction.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:

 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility problems.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer's written recommendations.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
 s. Regulations of authorities having jurisdiction.
 t. Testing and inspecting requirements.
 u. Installation procedures.
 v. Coordination with other work.
 w. Required performance results.
 x. Protection of adjacent work.
 y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Conduct progress meetings at biweekly intervals.
1. Coordinate dates of meetings with preparation of payment requests.

2. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

 a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

 1) Review schedule for next period.

 b. Review present and future needs of each entity present, including the following:

 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Progress cleaning.
 10) Quality and work standards.
 11) Status of correction of deficient items.
 12) Field observations.
 13) Status of RFIs.
 14) Status of proposal requests.
 15) Pending changes.
 16) Status of Change Orders.
 17) Pending claims and disputes.
 18) Documentation of information for payment requests.

4. Minutes: General Contractor is responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.

 a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

E. Coordination Meetings: Conduct Project coordination meetings at regular intervals. Project coordination meetings are in addition to specific meetings held for other purposes, such as progress meetings and pre-installation conferences.

1. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these
meetings. All participants at the meetings shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of the previous coordination meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

 a. Combined Contractor's Construction Schedule: Review progress since the last coordination meeting. Determine whether each contract is on time, ahead of schedule, or behind schedule, in relation to combined Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

 b. Schedule Updating: Revise combined Contractor's construction schedule after each coordination meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with report of each meeting.

 c. Review present and future needs of each contractor present, including the following:

 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Work hours.
 10) Hazards and risks.
 11) Progress cleaning.
 12) Quality and work standards.
 13) Change Orders.

3. Reporting: Record meeting results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-3100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
 B. Related Sections:
 1. Division 01 Section "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
 2. Division 01 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 3. Division 01 Section "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 4. Division 01 Section "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.3 DEFINITIONS
 A. Action Submittals: Written and graphic information and physical samples that require Architects responsive action. Action submittals are those submittals indicated in individual Specification Sections as action submittals.
 B. Informational Submittals: Written and graphic information and physical samples that do not require Architects responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as informational submittals.

1.4 SUBMITTAL SCHEDULE:
 A. Prepare a schedule of submittals, arranged in chronological order by dates required by construction schedule.
1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.

2. Format: Arrange the following information in a tabular format:
 a. Scheduled date for first submittal.
 b. Specification Section number and title.
 c. Submittal category: (Shop Drawings, Product Data, or Samples).
 d. Name of subcontractor.
 e. Description of the Work covered.
 f. Scheduled date for Architect's final release or approval.

B. Distribution: Following response to the initial submittal, print and distribute copies to the Architect, Owner, subcontractor's and other parties required to comply with submittal Dates indicated. Post copies in the project meeting room and field office.

 1. When revisions are made, distribute to the same parties and post in the same location. Delete from distribution when they have completed their assigned portion of the work and are no longer involved in the construction activities.

C. Schedule Updating: Revise the schedule after each meeting or activity where revisions Have been recognized or made. Issue the updated schedule concurrently with the report at each meeting.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.

 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.

 a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

B. Processing Time: Allow time for submittal review, including time for re-submittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including re-submittals.

 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
2. **Intermediate Review:** If intermediate submittal is necessary, process it in the same manner as initial submittal.

3. **Re-submittal Review:** Allow 15 days for review of each re-submittal.

C. **Identification and Information:** Place a permanent label or title block on each paper copy submittal item for identification.

 1. Indicate name of firm or entity that prepared each submittal on label or title block.

 2. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Architect.

 3. Include the following information for processing and recording action taken:

 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name and address of Contractor.
 e. Name and address of subcontractor.
 f. Name and address of supplier.
 g. Name and address of manufacturer.
 h. Number and title of appropriate specification section.
 i. Drawing number and detail references, as appropriate.
 j. Number and title of appropriate Specification Section.
 k. Drawing number and detail references, as appropriate.

D. **Options:** Identify options requiring selection by the Architect.

E. **Deviations:** Identify deviations from the Contract Documents on submittals.

F. **Additional Paper Copies:** Unless additional copies are required for final submittal, and unless Architect observes noncompliance with provisions in the Contract Documents, initial submittal may serve as final submittal.

G. **Transmittal:** Assemble each submittal individually and appropriately for transmittal and handling. Transmit each submittal using a transmittal form. Architect will not accept submittals received from sources other than Contractor.

1. **Transmittal Form:** Provide locations on form for the following information:

 a. Project name.
 b. Date.
 c. Destination (To:).
 d. Source (From:).
 e. Names of subcontractor, manufacturer, and supplier.
 f. Category and type of submittal.
 g. Specification Section number and title.
 h. Indication of full or partial submittal.
 i. Drawing number and detail references, as appropriate.
 j. Transmittal number, numbered consecutively.
SUBMITTAL PROCEDURE

SECTION 01-3300-4

k. Submittal and transmittal distribution record.
l. Remarks.
m. Signature of transmitter.

2. On an attached separate sheet, prepared on Contractor’s letterhead, record relevant information, requests for data, revisions other than those requested by Architect on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.

H. Re-submittals: Make re-submittals in same form and number of copies as initial submittal.

1. Note date and content of previous submittal.
2. Note date and content of revision in label or title block and clearly indicate extent of revision.
3. Resubmit submittals until they are marked with approval notation from Architect’s action stamp.

I. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

J. Use for Construction: Use only final submittals that are marked with approval notation from Architect’s action stamp.

PART 2 - PRODUCT DATA

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.

2. Mark each copy of each submittal to show which products and options are applicable.

3. Include the following information, as applicable:

 a. Manufacturer’s catalog cuts.
 b. Manufacturer’s product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
g. Notation of coordination requirements.
h. Availability and delivery time information.

4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.

5. Submit Product Data before or concurrent with Samples.

6. Submit Product Data in the following format:
 a. Three paper copies of Product Data, unless otherwise indicated. Architect will return two copies.

C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Dimensions
 b. Identification of products and materials included by sheet and detail number.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.
 h. Do not use shop drawings without an appropriate final stamp indicating action taken.

2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches but no larger than 30 by 42 inches.

3. Submit Shop Drawings in the following format:
 a. Three opaque (bond) copies of each submittal. Architect will return two copies.

D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.

1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.

2. Identification: Attach label on unexposed side of Samples that includes the following:
a. Generic description of Sample.
b. Product name and name of manufacturer.
c. Sample source.
d. Number and title of applicable Specification Section.

3. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.

a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

4. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.

a. Number of Samples: Submit three full sets of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's full product line. Architect will return one submittal with options selected.

E. Contractor's Construction Schedule: Comply with requirements specified in Division 01 Section "Construction Progress Documentation."

F. Application for Payment: Comply with requirements specified in Division 01 Section "Payment Procedures."

G. Schedule of Values: Comply with requirements specified in Division 01 Section "Payment Procedures."

H. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.

2. Number and title of related Specification Section(s) covered by subcontract.

3. Drawing number and detail references, as appropriate, covered by subcontract.

4. Submit subcontract list in the following format:

a. Number of Copies: Three paper copies of subcontractor list, unless otherwise indicated. Architect will return two copies.

I. Coordination Drawings: Comply with requirements specified in Division 01 Section "Project Management and Coordination."
J. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.

L. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

M. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

N. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

O. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

P. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

Q. Product Test Reports: Submit written reports indicating current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

R. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:

1. Name of evaluation organization.
2. Date of evaluation.
3. Time period when report is in effect.
4. Product and manufacturers' names.
5. Description of product.
6. Test procedures and results.
7. Limitations of use.

S. Schedule of Tests and Inspections: Comply with requirements specified in Division 01 Section "Quality Requirements."
T. Pre-construction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

U. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

V. Field Test Reports: Submit reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

W. Maintenance Data: Comply with requirements specified in Division 01 Section "Operation and Maintenance Data."

X. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

B. Project Closeout and Maintenance/Material Submittals: Refer to requirements in Division 01 Section "Closeout Procedures."
3.2 ARCHITECT’S ACTION

A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.

B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or modifications required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate.

C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

D. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect.

E. Incomplete submittals are not acceptable, will be considered non-responsive, and will be returned without review.

F. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 01-3300
SECTION 01-4000
QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.

2. Specified tests, inspections, and related actions do not limit Contractor’s other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.

3. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this section.

C. Related Sections:

1. Divisions 02 through 33 Sections for specific test and inspection requirements.

1.3 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.
C. Pre-construction Testing: Tests and inspections performed specifically for the Project before products and materials are incorporated into the Work to verify performance or compliance with specified criteria.

D. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.

E. Source Quality-Control Testing: Tests and inspections that are performed at the source, i.e., plant, mill, factory, or shop.

F. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

G. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

H. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade or trades.

I. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONTRACTOR'S QUALITY-CONTROL PLAN

A. Testing and Inspection:

1. Contractor-performed tests and inspections including subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections.

2. Special inspections required by authorities having jurisdiction.

3. Owner-performed tests and inspections indicated in the Contract Documents.

B. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.
1.5 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:

1. Date of issue.

2. Project title and number.

3. Name, address, and telephone number of testing agency.

4. Dates and locations of samples and tests or inspections.

5. Names of individuals making tests and inspections.

6. Description of the Work and test and inspection method.

8. Complete test or inspection data.

9. Test and inspection results and an interpretation of test results.

10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.

11. Comments or professional opinion on whether tested or inspected Work complies with the contract document requirements.

12. Name and signature of laboratory inspector.

13. Recommendations on retesting and re-inspecting.

B. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.6 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or products that are similar to those indicated for this Project in material, design, and extent.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An independent agency with the experience and capability to conduct testing and inspecting as specified in individual Sections; and where required by authorities having jurisdiction, that is acceptable to authorities.

H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.7 QUALITY CONTROL

A. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.

1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.

2. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.

 a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.

3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.

4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
5. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.

6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

B. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 01 Section "Submittal Procedures."

C. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in pre-installation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

D. Retesting/Re-inspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and re-inspecting, for construction that replaced Work that failed to comply with the Contract Documents.

E. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:

1. Access to the Work.

2. Incidental labor and facilities necessary to facilitate tests and inspections.

3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.

4. Facilities for storage and field curing of test samples.

5. Delivery of samples to testing agencies.

6. Preliminary design mix proposed for use for material mixes that require control by testing agency.

7. Security and protection for samples and for testing and inspecting equipment at Project site.

F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.
1.8 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: Owner will engage a qualified testing agency to conduct special tests and inspections required by authorities having jurisdiction. And as required by Chapter 17 of the 2003 International Building Code.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.

2. Description of the Work tested or inspected.

3. Date test or inspection results were transmitted to Architect.

4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and modifications as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Division 01 Section "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 01-4000
SECTION 014200

REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.

C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."

D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."

E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.

F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.

H. "Provide": Furnish and install, complete and ready for the intended use.

I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.
1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Thomson Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the U.S."

B. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
<th>Phone</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Aluminum Association, Inc. (The)</td>
<td>(703) 358-2960</td>
<td>www.aluminum.org</td>
</tr>
<tr>
<td>AAADM</td>
<td>American Association of Automatic Door Manufacturers</td>
<td>(216) 241-7333</td>
<td>www.aaadm.com</td>
</tr>
<tr>
<td>AABC</td>
<td>Associated Air Balance Council</td>
<td>(202) 737-0202</td>
<td>www.aabchq.com</td>
</tr>
<tr>
<td>AAMA</td>
<td>American Architectural Manufacturers Association</td>
<td>(847) 303-5664</td>
<td>www.aamanet.org</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
<td>(202) 624-5800</td>
<td>www.transportation.org</td>
</tr>
<tr>
<td>AATCC</td>
<td>American Association of Textile Chemists and Colorists</td>
<td>(919) 549-8141</td>
<td>www.aatcc.org</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAA</td>
<td>Air Barrier Association of America</td>
<td>www.airbarrier.org</td>
</tr>
<tr>
<td>ABMA</td>
<td>American Bearing Manufacturers Association</td>
<td>www.abma-dc.org</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
<td>www.concrete.org</td>
</tr>
<tr>
<td>ACPA</td>
<td>American Concrete Pipe Association</td>
<td>www.concrete-pipe.org</td>
</tr>
<tr>
<td>AEIC</td>
<td>Association of Edison Illuminating Companies, Inc. (The)</td>
<td>www.aeic.org</td>
</tr>
<tr>
<td>AF&PA</td>
<td>American Forest & Paper Association</td>
<td>www.afandpa.org</td>
</tr>
<tr>
<td>AGA</td>
<td>American Gas Association</td>
<td>www.aga.org</td>
</tr>
<tr>
<td>AGC</td>
<td>Associated General Contractors of America (The)</td>
<td>www.acg.org</td>
</tr>
<tr>
<td>AHA</td>
<td>American Hardboard Association</td>
<td>(Now part of CPA)</td>
</tr>
<tr>
<td>AHAM</td>
<td>Association of Home Appliance Manufacturers</td>
<td>www.aham.org</td>
</tr>
<tr>
<td>AI</td>
<td>Asphalt Institute</td>
<td>www.asphaltinstitute.org</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects (The)</td>
<td>www.aia.org</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
<td>www.aisc.org</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
<td>www.steel.org</td>
</tr>
<tr>
<td>AITC</td>
<td>American Institute of Timber Construction</td>
<td>www.aic-gulam.org</td>
</tr>
<tr>
<td>ALCA</td>
<td>Associated Landscape Contractors of America (Now PLANET - Professional Landcare Network)</td>
<td></td>
</tr>
<tr>
<td>ALSC</td>
<td>American Lumber Standard Committee, Incorporated</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Website</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
<td>www.an si.org</td>
</tr>
<tr>
<td>AOSA</td>
<td>Association of Official Seed Analysts, Inc.</td>
<td>www.aosaseed.com</td>
</tr>
<tr>
<td>APA</td>
<td>Architectural Precast Association</td>
<td>www.archprecast.org</td>
</tr>
<tr>
<td>APA</td>
<td>APA - The Engineered Wood Association</td>
<td>www.apawood.org</td>
</tr>
<tr>
<td>APA EWS</td>
<td>APA - The Engineered Wood Association; Engineered Wood Systems</td>
<td>(See APA - The Engineered Wood Association)</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
<td>www.api.org</td>
</tr>
<tr>
<td>ARI</td>
<td>Air-Conditioning & Refrigeration Institute</td>
<td>www.ari.org</td>
</tr>
<tr>
<td>ARMA</td>
<td>Asphalt Roofing Manufacturers Association</td>
<td>www.asphaltroofing.org</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
<td>www.asce.org</td>
</tr>
<tr>
<td>ASCE/SEI</td>
<td>American Society of Civil Engineers/Structural Engineering Institute</td>
<td>(See ASCE)</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air-Conditioning Engineers</td>
<td>www.ashrae.org</td>
</tr>
<tr>
<td>ASME</td>
<td>ASME International</td>
<td>(American Society of Mechanical Engineers International)</td>
</tr>
<tr>
<td></td>
<td>(American Society of Mechanical Engineers International)</td>
<td>www.asme.org</td>
</tr>
<tr>
<td>ASSE</td>
<td>American Society of Sanitary Engineering</td>
<td>www.asse-plumbing.org</td>
</tr>
<tr>
<td>ASTM</td>
<td>ASTM International</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Description</td>
<td>Contact Information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>AWCI</td>
<td>Association of the Wall and Ceiling Industry</td>
<td>(703) 534-8300, www.awci.org</td>
</tr>
<tr>
<td>AWCMA</td>
<td>American Window Covering Manufacturers Association (Now WCMA)</td>
<td></td>
</tr>
<tr>
<td>AWPA</td>
<td>American Wood Protection Association (Formerly: American Wood Preservers' Association)</td>
<td>(205) 733-4077, www.awpa.com</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
<td>(800) 926-7337, (303) 794-7711, www.awwa.org</td>
</tr>
<tr>
<td>BHMA</td>
<td>Builders Hardware Manufacturers Association</td>
<td>(212) 297-2122, www.buildershardware.com</td>
</tr>
<tr>
<td>BIA</td>
<td>Brick Industry Association (The)</td>
<td>(703) 620-0010, www.bia.org</td>
</tr>
<tr>
<td>BISSC</td>
<td>Baking Industry Sanitation Standards Committee</td>
<td>(866) 342-4772, www.bissc.org</td>
</tr>
<tr>
<td>BWF</td>
<td>Badminton World Federation (Formerly: IBF - International Badminton Federation)</td>
<td>6-03-9283 7155, www.internationalbadminton.org</td>
</tr>
<tr>
<td>CCC</td>
<td>Carpet Cushion Council</td>
<td>(610) 527-3880, www.carpetcushion.org</td>
</tr>
<tr>
<td>CDA</td>
<td>Copper Development Association</td>
<td>(800) 232-3282, (212) 251-7200, www.copper.org</td>
</tr>
<tr>
<td>Reference</td>
<td>Association/Institute</td>
<td>Phone Numbers</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CEA</td>
<td>Canadian Electricity Association</td>
<td>(613) 230-9263</td>
</tr>
<tr>
<td>CEA</td>
<td>Consumer Electronics Association</td>
<td>(866) 858-1555</td>
</tr>
<tr>
<td>CFFA</td>
<td>Chemical Fabrics & Film Association, Inc.</td>
<td>(216) 241-7333</td>
</tr>
<tr>
<td>CGA</td>
<td>Compressed Gas Association</td>
<td>(703) 788-2700</td>
</tr>
<tr>
<td>CIMA</td>
<td>Cellulose Insulation Manufacturers Association</td>
<td>(888) 881-2462</td>
</tr>
<tr>
<td>CISCA</td>
<td>Ceilings & Interior Systems Construction Association</td>
<td>(630) 584-1919</td>
</tr>
<tr>
<td>CISPI</td>
<td>Cast Iron Soil Pipe Institute</td>
<td>(423) 892-0137</td>
</tr>
<tr>
<td>CLFMI</td>
<td>Chain Link Fence Manufacturers Institute</td>
<td>(301) 596-2583</td>
</tr>
<tr>
<td>CRRC</td>
<td>Cool Roof Rating Council</td>
<td>(866) 465-2523</td>
</tr>
<tr>
<td>CPA</td>
<td>Composite Panel Association</td>
<td>(301) 670-0604</td>
</tr>
<tr>
<td>CPPA</td>
<td>Corrugated Polyethylene Pipe Association</td>
<td>(800) 510-2772</td>
</tr>
<tr>
<td>CRI</td>
<td>Carpet and Rug Institute (The)</td>
<td>(800) 882-8846</td>
</tr>
<tr>
<td>CRSI</td>
<td>Concrete Reinforcing Steel Institute</td>
<td>(847) 517-1200</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
<td>(800) 463-6727</td>
</tr>
<tr>
<td>CSA</td>
<td>CSA International</td>
<td>(866) 797-4272</td>
</tr>
<tr>
<td>CSI</td>
<td>Cast Stone Institute</td>
<td>(717) 272-3744</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Phone/Contact Information</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>CSI</td>
<td>Construction Specifications Institute (The)</td>
<td>(800) 689-2900 (703) 684-0300</td>
</tr>
<tr>
<td></td>
<td>www.csinet.org</td>
<td></td>
</tr>
<tr>
<td>CSSB</td>
<td>Cedar Shake & Shingle Bureau</td>
<td>(604) 820-7700</td>
</tr>
<tr>
<td></td>
<td>www.cedarbureau.org</td>
<td></td>
</tr>
<tr>
<td>CTI</td>
<td>Cooling Technology Institute</td>
<td>(281) 583-4087</td>
</tr>
<tr>
<td></td>
<td>(Formerly: Cooling Tower Institute)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.cti.org</td>
<td></td>
</tr>
<tr>
<td>DHI</td>
<td>Door and Hardware Institute</td>
<td>(703) 222-2010</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Alliance</td>
<td>(703) 907-7500</td>
</tr>
<tr>
<td>EIMA</td>
<td>EIFS Industry Members Association</td>
<td>(800) 294-3462 (770) 968-7945</td>
</tr>
<tr>
<td></td>
<td>www.eima.com</td>
<td></td>
</tr>
<tr>
<td>EJCDC</td>
<td>Engineers Joint Contract Documents Committee</td>
<td>(703) 295-5000</td>
</tr>
<tr>
<td>EJMA</td>
<td>Expansion Joint Manufacturers Association, Inc.</td>
<td>(914) 332-0040</td>
</tr>
<tr>
<td></td>
<td>www.ejma.org</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>ESD Association (Electrostatic Discharge Association)</td>
<td>(315) 339-6937</td>
</tr>
<tr>
<td></td>
<td>www.esda.org</td>
<td></td>
</tr>
<tr>
<td>ETL SEMCO</td>
<td>Intertek ETL SEMCO (Formerly: ITS - Intertek Testing Service NA)</td>
<td>(800) 967-5352</td>
</tr>
<tr>
<td></td>
<td>www.intertek.com</td>
<td></td>
</tr>
<tr>
<td>FIBA</td>
<td>Federation Internationale de Basketball (The International Basketball Federation)</td>
<td>41 22 545 00 00</td>
</tr>
<tr>
<td></td>
<td>www.fiba.com</td>
<td></td>
</tr>
<tr>
<td>FIVB</td>
<td>Federation Internationale de Volleyball (The International Volleyball Federation)</td>
<td>41 21 345 35 35</td>
</tr>
<tr>
<td></td>
<td>www.fivb.ch</td>
<td></td>
</tr>
<tr>
<td>FM Approvals</td>
<td>FM Approvals LLC</td>
<td>(781) 762-4300</td>
</tr>
<tr>
<td></td>
<td>www.fmglobal.com</td>
<td></td>
</tr>
<tr>
<td>FM Global</td>
<td>FM Global (Formerly: FMG - FM Global)</td>
<td>(401) 275-3000</td>
</tr>
<tr>
<td></td>
<td>www.fmglobal.com</td>
<td></td>
</tr>
<tr>
<td>FMRC</td>
<td>Factory Mutual Research</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

FRSA
Florida Roofing, Sheet Metal & Air Conditioning Contractors Association, Inc.
www.floridaroof.com
(407) 671-3772

FSA
Fluid Sealing Association
www.fluidsealing.com
(610) 971-4850

FSC
Forest Stewardship Council
www.fsc.org
49 228 367 66 0

GA
Gypsum Association
www.gypsum.org
(202) 289-5440

GANA
Glass Association of North America
www.glasswebsite.com
(785) 271-0208

GRI
(Part of GSI)

GS
Green Seal
www.greenseal.org
(202) 872-6400

GSI
Geosynthetic Institute
www.geosynthetic-institute.org
(610) 522-8440

HI
Hydraulic Institute
www.pumps.org
(973) 267-9700

HI
Hydronics Institute
www.gamanet.org
(908) 464-8200

HMMA
Hollow Metal Manufacturers Association
(Part of NAAMM)

HPVA
Hardwood Plywood & Veneer Association
www.hpva.org
(703) 435-2900

HPW
H. P. White Laboratory, Inc.
www.hpwhite.com
(410) 838-6550

IAS
International Approval Services
(Now CSA International)

IBF
International Badminton Federation
(Now BWF)

ICEA
Insulated Cable Engineers Association, Inc.
www.icea.net
(770) 830-0369
<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICRI</td>
<td>International Concrete Repair Institute, Inc.</td>
<td>(847) 827-0830</td>
</tr>
<tr>
<td></td>
<td>www.icri.org</td>
<td></td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
<td>41 22 919 02 11</td>
</tr>
<tr>
<td></td>
<td>www.iec.ch</td>
<td></td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, Inc. (The)</td>
<td>(212) 419-7900</td>
</tr>
<tr>
<td></td>
<td>www.ieee.org</td>
<td></td>
</tr>
<tr>
<td>IESNA</td>
<td>Illuminating Engineering Society of North America</td>
<td>(212) 248-5000</td>
</tr>
<tr>
<td></td>
<td>www.iesna.org</td>
<td></td>
</tr>
<tr>
<td>IEST</td>
<td>Institute of Environmental Sciences and Technology</td>
<td>(847) 255-1561</td>
</tr>
<tr>
<td></td>
<td>www.iest.org</td>
<td></td>
</tr>
<tr>
<td>IGCC</td>
<td>Insulating Glass Certification Council</td>
<td>(315) 646-2234</td>
</tr>
<tr>
<td></td>
<td>www.igcc.org</td>
<td></td>
</tr>
<tr>
<td>IGMA</td>
<td>Insulating Glass Manufacturers Alliance</td>
<td>(613) 233-1510</td>
</tr>
<tr>
<td></td>
<td>www.igmaonline.org</td>
<td></td>
</tr>
<tr>
<td>ILI</td>
<td>Indiana Limestone Institute of America, Inc.</td>
<td>(812) 275-4426</td>
</tr>
<tr>
<td></td>
<td>www.iliai.com</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
<td>41 22 749 01 11</td>
</tr>
<tr>
<td></td>
<td>www.iso.ch</td>
<td>Available from ANSI</td>
</tr>
<tr>
<td></td>
<td>www.ansi.org</td>
<td>(202) 293-8020</td>
</tr>
<tr>
<td>ISSFA</td>
<td>International Solid Surface Fabricators Association</td>
<td>(877) 464-7732</td>
</tr>
<tr>
<td></td>
<td>www.issfa.net</td>
<td>(702) 567-8150</td>
</tr>
<tr>
<td>ITS</td>
<td>Intertek Testing Service NA</td>
<td>(Now ETL SEMCO)</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
<td>41 22 730 51 11</td>
</tr>
<tr>
<td></td>
<td>www.itu.int/home</td>
<td></td>
</tr>
<tr>
<td>KCMA</td>
<td>Kitchen Cabinet Manufacturers Association</td>
<td>(703) 264-1690</td>
</tr>
<tr>
<td></td>
<td>www.kcma.org</td>
<td></td>
</tr>
<tr>
<td>LMA</td>
<td>Laminating Materials Association</td>
<td>(Now part of CPA)</td>
</tr>
<tr>
<td>LPI</td>
<td>Lightning Protection Institute</td>
<td>(800) 488-6864</td>
</tr>
<tr>
<td></td>
<td>www.lightning.org</td>
<td></td>
</tr>
</tbody>
</table>
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

MBMA Metal Building Manufacturers Association (216) 241-7333
 www.mbma.com

MFMA Maple Flooring Manufacturers Association, Inc. (888) 480-9138
 www.maplefloor.org

MFMA Metal Framing Manufacturers Association, Inc. (312) 644-6610
 www.metalframingmfg.org

MH Material Handling
 (Now MHIA)

MHIA Material Handling Industry of America (800) 345-1815
 www.mhia.org
 (704) 676-1190

MIA Marble Institute of America (440) 250-9222
 www.marble-institute.com

MPI Master Painters Institute (888) 674-8937
 www.paintinfo.com
 (604) 298-7578

MSS Manufacturers Standardization Society of The Valve and
 Fittings Industry Inc. (703) 281-6613
 www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers
 (630) 942-6591
 www.naamm.org

NACE NACE International
 (National Association of Corrosion Engineers International)
 (800) 797-6623
 (281) 228-6200
 www.nace.org

NADCA National Air Duct Cleaners Association (202) 737-2926
 www.nadca.com

NAGWS National Association for Girls and Women in Sport (800) 213-7193,
 ext. 453
 www.aahperd.org/nagws/

NAIMA North American Insulation Manufacturers Association (703) 684-0084
 www.naima.org

NBGQA National Building Granite Quarries Association, Inc. (800) 557-2848
 www.nbgqa.com

NCAA National Collegiate Athletic Association (The) (317) 917-6222
 www.ncaa.org

NCMA National Concrete Masonry Association (703) 713-1900
<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCPI</td>
<td>www.ncpi.org</td>
<td>(262) 248-9094</td>
</tr>
<tr>
<td>NCTA</td>
<td>www.ncta.com</td>
<td>(202) 775-2300</td>
</tr>
<tr>
<td>NEBB</td>
<td>www.nebb.org</td>
<td>(301) 977-3698</td>
</tr>
<tr>
<td>NECA</td>
<td>www.necanet.org</td>
<td>(301) 657-3110</td>
</tr>
<tr>
<td>NeLMA</td>
<td>www.nelma.org</td>
<td>(207) 829-6901</td>
</tr>
<tr>
<td>NEMA</td>
<td>www.nema.org</td>
<td>(703) 841-3200</td>
</tr>
<tr>
<td>NETA</td>
<td>www.netaworld.org</td>
<td>(888) 300-6382 (269) 488-6382</td>
</tr>
<tr>
<td>NFHS</td>
<td>www.nfhs.org</td>
<td>(317) 972-6900</td>
</tr>
<tr>
<td>NFPA</td>
<td>www.nfpa.org</td>
<td>(800) 344-3555 (617) 770-3000</td>
</tr>
<tr>
<td>NFRC</td>
<td>www.nfrc.org</td>
<td>(301) 589-1776</td>
</tr>
<tr>
<td>NGA</td>
<td>www.glass.org</td>
<td>(866) 342-5642 (703) 442-4890</td>
</tr>
<tr>
<td>NHLA</td>
<td>www.natlhardwood.org</td>
<td>(800) 933-0318 (901) 377-1818</td>
</tr>
<tr>
<td>NLGA</td>
<td>www.nlga.org</td>
<td>(604) 524-2393</td>
</tr>
<tr>
<td>NOFMA</td>
<td>www.nofma.com</td>
<td>(901) 526-5016</td>
</tr>
<tr>
<td>NOMMA</td>
<td>www.nomma.org</td>
<td>(888) 516-8585</td>
</tr>
</tbody>
</table>
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

NRCA National Roofing Contractors Association (800) 323-9545
 www.nrca.net (847) 299-9070

NRMCA National Ready Mixed Concrete Association (888) 846-7622
 www.nrmca.org (301) 587-1400

NSF NSF International (800) 673-6275
 (National Sanitation Foundation International)
 www.nsf.org (734) 769-8010

NSSGA National Stone, Sand & Gravel Association (800) 342-1415
 www.nssga.org (703) 525-8788

NTMA National Terrazzo & Mosaic Association, Inc. (The) (800) 323-9736
 www.ntma.com (540) 751-0930

NTRMA National Tile Roofing Manufacturers Association (Now TRI)
 (Now TRIA)

NWWDA National Wood Window and Door Association (800) 395-2522
 (Now WDMA)

OPL Omega Point Laboratories, Inc. (703) 736-9666
 (Now ITS)

PCI Precast/Prestressed Concrete Institute (800) 332-7322
 www.pci.org (314) 514-7322

PDCA Painting & Decorating Contractors of America (800) 589-8956
 www.pdca.com (978) 557-0720

PDI Plumbing & Drainage Institute (800) 589-8956
 www.pdionline.org (978) 557-0720

PGI PVC Geomembrane Institute (217) 333-3929
 http://pgi-tp.ce.uiuc.edu

PLANET Professional Landcare Network (800) 395-2522
 (Formerly: ACLA - Associated Landscapers of America)
 www.landcarenetwork.org (703) 736-9666

PTI Post-Tensioning Institute (602) 870-7540
 www.post-tensioning.org

RCSC Research Council on Structural Connections (800) 323-9545
 www.boltcouncil.org
REFERENCES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCI</td>
<td>Resilient Floor Covering Institute</td>
<td>(301) 340-8580</td>
<td>www.rfci.com</td>
</tr>
<tr>
<td>RIS</td>
<td>Redwood Inspection Service</td>
<td>(888) 225-7339</td>
<td>www.redwoodinspection.com</td>
</tr>
<tr>
<td>SAE</td>
<td>SAE International</td>
<td>(877) 606-7323</td>
<td>www.sae.org</td>
</tr>
<tr>
<td>SDI</td>
<td>Steel Deck Institute</td>
<td>(847) 458-4647</td>
<td>www.sdi.org</td>
</tr>
<tr>
<td>SDI</td>
<td>Steel Door Institute</td>
<td>(440) 899-0010</td>
<td>www.steeldoor.org</td>
</tr>
<tr>
<td>SEFA</td>
<td>Scientific Equipment and Furniture Association</td>
<td>(877) 294-5424</td>
<td>www.sefalabs.com</td>
</tr>
<tr>
<td>SEI/ASCE</td>
<td>Structural Engineering Institute/American Society of Civil Engineers (See ASCE)</td>
<td>(516) 294-5424</td>
<td></td>
</tr>
<tr>
<td>SGCC</td>
<td>Safety Glazing Certification Council</td>
<td>(315) 646-2234</td>
<td>www.sgcc.org</td>
</tr>
<tr>
<td>SIA</td>
<td>Security Industry Association</td>
<td>(866) 817-8888</td>
<td>www.siaonline.org</td>
</tr>
<tr>
<td>SIGMA</td>
<td>Sealed Insulating Glass Manufacturers Association (Now IGMA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJI</td>
<td>Steel Joist Institute</td>
<td>(843) 626-1995</td>
<td>www.steeljoist.org</td>
</tr>
<tr>
<td>SMA</td>
<td>Screen Manufacturers Association</td>
<td>(561) 533-0991</td>
<td>www.smacentral.org</td>
</tr>
<tr>
<td>SMACNA</td>
<td>Sheet Metal and Air Conditioning Contractors' National Association</td>
<td>(703) 803-2980</td>
<td>www.smacna.org</td>
</tr>
<tr>
<td>SMPTE</td>
<td>Society of Motion Picture and Television Engineers</td>
<td>(914) 761-1100</td>
<td>www.smpte.org</td>
</tr>
<tr>
<td>SPFA</td>
<td>Spray Polyurethane Foam Alliance</td>
<td>(800) 523-6154</td>
<td>(Formerly: SPI/SPFD - The Society of the Plastics Industry, Inc.; Spray Polyurethane Foam Division) www.sprayfoam.org</td>
</tr>
<tr>
<td>Acronym</td>
<td>Name of Organization</td>
<td>Subtitle</td>
<td>Phone Number(s)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SPIB</td>
<td>Southern Pine Inspection Bureau (The)</td>
<td></td>
<td>(850) 434-2611</td>
</tr>
<tr>
<td>SPRI</td>
<td>Single Ply Roofing Industry</td>
<td></td>
<td>(781) 647-7026</td>
</tr>
<tr>
<td>SSINA</td>
<td>Specialty Steel Industry of North America</td>
<td></td>
<td>(800) 982-0355</td>
</tr>
<tr>
<td>SSPC</td>
<td>SSPC: The Society for Protective Coatings</td>
<td></td>
<td>(877) 281-7772</td>
</tr>
<tr>
<td>STI</td>
<td>Steel Tank Institute</td>
<td></td>
<td>(847) 438-8265</td>
</tr>
<tr>
<td>SWI</td>
<td>Steel Window Institute</td>
<td></td>
<td>(216) 241-7333</td>
</tr>
<tr>
<td>SWRI</td>
<td>Sealant, Waterproofing, & Restoration Institute</td>
<td></td>
<td>(816) 472-7974</td>
</tr>
<tr>
<td>TCA</td>
<td>Tile Council of America, Inc.</td>
<td></td>
<td>(864) 646-8453</td>
</tr>
<tr>
<td>TCNA</td>
<td>Tile Council of North America, Inc.</td>
<td></td>
<td>(703) 907-7700</td>
</tr>
<tr>
<td>TIA/EIA</td>
<td>Telecommunications Industry Association/Electronic Industries Alliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS</td>
<td>The Masonry Society</td>
<td></td>
<td>(303) 939-9700</td>
</tr>
<tr>
<td>TPI</td>
<td>Truss Plate Institute, Inc.</td>
<td></td>
<td>(703) 683-1010</td>
</tr>
<tr>
<td>TPI</td>
<td>Turfgrass Producers International</td>
<td></td>
<td>(800) 405-8873</td>
</tr>
<tr>
<td>TRI</td>
<td>Tile Roofing Institute</td>
<td></td>
<td>(312) 670-4177</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories Inc.</td>
<td></td>
<td>(877) 854-3577</td>
</tr>
<tr>
<td>UNI</td>
<td>Uni-Bell PVC Pipe Association</td>
<td></td>
<td>(972) 243-3902</td>
</tr>
</tbody>
</table>
C. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.
<table>
<thead>
<tr>
<th>Organization</th>
<th>Description</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPMO</td>
<td>International Association of Plumbing and Mechanical Officials</td>
<td>(909) 472-4100</td>
<td>www.iapmo.org</td>
</tr>
<tr>
<td>ICC</td>
<td>International Code Council</td>
<td>(888) 422-7233</td>
<td>www.iccsafe.org</td>
</tr>
<tr>
<td>UBC</td>
<td>Uniform Building Code</td>
<td>(562) 699-0543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See ICC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Description</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Army Corps of Engineers</td>
<td>(202) 761-0011</td>
<td>www.usace.army.mil</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Commerce</td>
<td>(202) 482-2000</td>
<td>www.commerce.gov</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
<td>(215) 697-6257</td>
<td>http://dodssp.daps.dla.mil</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
<td>(202) 586-9220</td>
<td>www.energy.gov</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
<td>(202) 272-0167</td>
<td>www.epa.gov</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
<td>(866) 835-5322</td>
<td>www.faa.gov</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
<td>(888) 225-5322</td>
<td>www.fcc.gov</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
<td>(888) 463-6332</td>
<td>www.fda.gov</td>
</tr>
<tr>
<td>GSA</td>
<td>General Services Administration</td>
<td>(800) 488-3111</td>
<td>www.gsa.gov</td>
</tr>
<tr>
<td>HUD</td>
<td>Department of Housing and Urban Development</td>
<td>(202) 708-1112</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

www.hud.gov

LBL Lawrence Berkeley National Laboratory
www.lbl.gov

NCHR National Cooperative Highway Research Program
(See TRB)

NIST National Institute of Standards and Technology
www.nist.gov

OSHA Occupational Safety & Health Administration
www.osha.gov

PBS Public Buildings Service
(See GSA)

PHS Office of Public Health and Science
www.osphs.dhhs.gov/ophs

RUS Rural Utilities Service
(See USDA)

SD State Department
www.state.gov

TRB Transportation Research Board
http://gulliver.trb.org

USDA Department of Agriculture
www.usda.gov

USPS Postal Service
www.usps.com

E. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

ADAAG Americans with Disabilities Act (ADA)
(800) 872-2253
Architectural Barriers Act (ABA)
(202) 272-0080
Accessibility Guidelines for Buildings and Facilities
Available from U.S. Access Board
www.access-board.gov

CFR Code of Federal Regulations
(866) 512-1800
www.gpoaccess.gov/cfr/index.html

DOD Department of Defense Military Specifications and Standards (215) 697-2664
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil

DSCC Defense Supply Center Columbus
(See FS)

FED-STD Federal Standard
(See FS)

FS Federal Specification
(See FS)
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil

Available from Defense Standardization Program
www.dps.dla.mil

Available from General Services Administration (202) 619-8925
www.gsa.gov

Available from National Institute of Building Sciences
www.wbdg.org/ccb

FTMS Federal Test Method Standard
(See FS)

MIL (See MILSPEC)

MIL-STD (See MILSPEC)

MILSPEC Military Specification and Standards (215) 697-2664
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil

UFAS Uniform Federal Accessibility Standards
(800) 872-2253
Available from Access Board
(202) 272-0080
www.access-board.gov

F. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

CBH State of California, Department of Consumer Affairs Bureau of
(800) 952-5210
F Home Furnishings and Thermal Insulation
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

www.dca.ca.gov/bhfti (916) 574-2041

CCR California Code of Regulations (916) 323-6815
www.calregs.com

CPU California Public Utilities Commission (415) 703-2782
www.cpuc.ca.gov

TFS Texas Forest Service (979) 458-6650
Forest Resource Development
http://txforestservice.tamu.edu

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-4200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This section includes requirements for construction facilities and temporary controls, including temporary utilities, support facilities, and security and protection.

B. Temporary utilities include, but are not limited to, the following:
 1. Water service and distribution.
 2. Temporary electric power and lighting.
 3. Temporary heat.
 4. Ventilation.
 5. Telephone service.
 6. Sanitary facilities, including drinking water.

C. Support facilities include, but are not limited to, the following:
 1. Field offices and storage sheds.
 2. Temporary enclosures.
 3. Temporary project identification signs.
 4. Waste disposal services.
 5. Construction aids and miscellaneous services and facilities.

D. Security and protection facilities include, but are not limited to the following:
 1. Temporary fire protection.
 2. Barricades, warning signs and lights.
 3. Environmental protection.
1.3 SUBMITTALS

A. Temporary Utilities: Submit reports of tests, inspections, meter readings, and similar procedures performed on temporary utilities.

1.4 QUALITY ASSURANCE

A. Regulations: Comply with industry standards and applicable laws and regulations of authorities having jurisdiction including but not limited to the following:

1. Building code requirements.
2. Health and safety regulations.
3. Utility company regulations.
4. Police, fire department and rescue rules.
5. Environmental protection regulations.

1. Temporary Electrical Service: Comply with NEMA, NECA, and UL standards and regulations for temporary electrical service.
2. Electrical Service: Install service in compliance with NFPA 70 "National Electrical Code."

C. Inspections: Arrange for authorities having jurisdiction to inspect and test each temporary utility before use. Obtain required certification and permits.

1.5 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner’s acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized steel, chain-link fabric fencing; minimum 6 feet high with galvanized steel pipe posts; minimum 2-3/8-inch- OD line posts and 2-7/8-inch- OD corner and pull posts with galvanized barbed-wire top strand.
B. Portable Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized steel, chain-link fabric fencing; minimum 6 feet high with galvanized steel pipe posts; minimum 2-3/8-inch-OD line posts and 2-7/8-inch-OD corner and pull posts, with 1-5/8-inch-OD top and bottom rails. Provide galvanized steel bases for supporting posts.

C. Polyethylene Sheet: Reinforced, fire-resistive sheet, 10 mils minimum thickness, with flame-spread rating of 15 or less per ASTM E 84.

D. Dust Control Adhesive-Surface Walk-off Mats: Provide mats minimum 36 by 60 inches.

E. Insulation: Unfaced mineral-fiber blanket, manufactured from glass, slag wool, or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively.

2.2 TEMPORARY FACILITIES

A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.

B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Architect, and construction personnel office activities and to accommodate project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:

1. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.

2. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F.

3. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.

C. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.

1. Store combustible materials apart from building.

2.3 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control.

1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.

2. Heating Units: Listed and labeled for type of fuel being consumed, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

1. Locate facilities to limit site disturbance as specified in Division 01 Section “Summary.”

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

A. General: Install temporary service or connect to existing service.

1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

B. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.

C. Water Service: Connect to Owner’s existing water service facilities. Clean and maintain water service facilities in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.

D. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

1. Toilets: Use of Owner’s existing toilet facilities will not be permitted.

E. Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.

F. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.

1. Prior to commencing work, isolate the HVAC system in area where work is to be performed in accordance with approved coordination drawings.

 a. Disconnect supply and return ductwork in work area from HVAC systems servicing occupied areas.

 b. Maintain negative air pressure within work area using HEPA-equipped air filtration units, starting with commencement of temporary partition construction, and continuing until removal of temporary partitions is complete.
2. Maintain dust partitions during the Work. Use vacuum collection attachments on dust-producing equipment. Isolate limited work within occupied areas using portable dust containment devices.

3. Perform daily construction cleanup and final cleanup using approved, HEPA-filter-equipped vacuum equipment.

G. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.

1. Provide dehumidification systems when required to reduce substrate moisture levels to level required to allow installation or application of finishes.

H. Electric Power Service: Connect to Owner's existing electric power service. Maintain equipment in a condition acceptable to Owner.

I. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.

J. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.

K. Telephone Service: Provide temporary telephone service.

3.3 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:

1. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Traffic Controls: Comply with requirements of authorities having jurisdiction.

1. Protect existing site improvements to remain including curbs, pavement, and utilities.
2. Maintain access for fire-fighting equipment and access to fire hydrants.

C. Parking: Parking areas will be designated at the pre-construction conference.

D. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.

1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties nor endanger permanent Work or temporary facilities.

2. Remove snow and ice as required to minimize accumulations.

E. Project Signs: Provide Project signs as required. Unauthorized signs are not permitted.
1. Identification Signs: Provide Project identification signs.

2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 a. Provide temporary, directional signs for construction personnel and visitors.

3. Maintain and touchup signs so they are legible at all times.

F. Waste Disposal Facilities: Comply with requirements specified in Division 01 Section “Construction Waste Management and Disposal.”

G. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with Division 01 Section “Execution” for progress cleaning requirements.

H. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 1. Truck cranes and similar devices used for hoisting materials are considered “tools and equipment” and not temporary facilities.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
 1. Comply with work restrictions specified in Division 01 Section “Summary.”

B. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.

C. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.

D. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Obtain extended warranty for Owner. Perform control operations lawfully, using environmentally safe materials.

E. Site Enclosure Fence: Before construction operations begin, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates.
 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations as indicated on Drawings.
2. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Furnish one set of keys to Owner.

F. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each work day.

G. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

H. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

I. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weather tight enclosure for building exterior.

1. Where heating or cooling is needed and permanent enclosure is not complete, insulate temporary enclosures.

1. Prohibit smoking in construction areas.

2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.

3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

3.5 MOISTURE AND MOLD CONTROL

A. Contractor’s Moisture-Protection Plan: Avoid trapping water in finished work. Document visible signs of mold that may appear during construction.

B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:

1. Protect porous materials from water damage.

2. Protect stored and installed material from flowing or standing water.

3. Keep porous and organic materials from coming into prolonged contact with concrete.
4. Remove standing water from decks.
5. Keep deck openings covered or dammed.

C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:

1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
2. Keep interior spaces reasonably clean and protected from water damage.
3. Periodically collect and remove waste containing cellulose or other organic matter.
4. Discard or replace water-damaged material.
5. Do not install material that is wet.
6. Discard, replace or clean stored or installed material that begins to grow mold.
7. Perform work in a sequence that allows any wet materials adequate time to dry before enclosing the material in drywall or other interior finishes.

D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:

1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
2. Use permanent HVAC system to control humidity.
3. Comply with manufacturer’s written instructions for temperature, relative humidity, and exposure to water limits.
 a. Hygroscopic materials that may support mold growth, including wood and gypsum-based products, that become wet during the course of construction and remain wet for 48 hours are considered defective.
 b. Measure moisture content of materials that have been exposed to moisture during construction operations or after installation. Record daily readings over a forty-eight hour period. Identify materials containing moisture levels higher than allowed. Report findings in writing to Architect.
 c. Remove materials that can not be completely restored to their manufactured moisture level within 48 hours.

3.6 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
B. Maintenance: Maintain facilities in good operating condition until removal.

1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

C. Operate Project-identification-sign lighting daily from dusk until 12:00 midnight.

D. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

E. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.

2. Remove temporary roads and paved areas not intended for or acceptable for integration into permanent construction. Where area is intended for landscape development, remove soil and aggregate fill that do not comply with requirements for fill or subsoil. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks at temporary entrances, as required by authorities having jurisdiction.

3. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section “Closeout Procedures.”

END OF SECTION 01-5000
SECTION 01-6000
PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Sections:
 1. Division 01 Section "Alternates" for products selected under an alternate.
 2. Division 01 Section "Substitution Procedures" for requests for substitutions.

1.3 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS

A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.

2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

 a. Form of Approval: As specified in Division 01 Section "Submittal Procedures."
 b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.

B. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 01 Section "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Architect will determine which products shall be used.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weather tight enclosure above ground, with ventilation adequate to prevent condensation.
4. Store foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
6. Protect stored products from damage and liquids from freezing.
7. Provide a secure location and enclosure at Project site for storage of materials and equipment by Owner's construction forces. Coordinate location with Owner.

1.7 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
3. Refer to Divisions 02 through 49. Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time: Comply with requirements in Division 01 Section "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
4. Where products are accompanied by the term "as selected," Architect will make selection.
6. **Or Equal:** For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:

1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
3. Evidence that proposed product provides specified warranty.
4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-6000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Progress cleaning.
6. Starting and adjusting.
7. Protection of installed construction.
8. Correction of the Work.

B. Related Sections:

1. Division 01 Section "Submittal Procedures" for submitting surveys.
2. Division 01 Section "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.

B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For land surveyor.

B. Certificates: Submit certificate signed by land surveyor certifying that location and elevation of improvements comply with requirements.
1. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate how long services and systems will be disrupted.

C. Certified Surveys: Submit two copies signed by land surveyor.

D. Final Property Survey: Submit 10 copies showing the Work performed and record survey data.

1.5 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from the Architect before proceeding. Shore, brace, and support structural element during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 a. Primary operational systems and equipment.
 b. Fire separation assemblies.
 c. Air or smoke barriers.
 d. Fire-suppression systems.
 e. Mechanical systems piping and ducts.
 f. Control systems.
 g. Communication systems.
 h. Conveying systems.
 i. Electrical wiring systems.
 j. Operating systems of special construction.

3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 a. Water, moisture, or vapor barriers.
 b. Membranes and flashings.
 c. Exterior curtain-wall construction.
 d. Equipment supports.
 e. Piping, ductwork, vessels, and equipment.
 f. Noise- and vibration-control elements and systems.
4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

C. Manufacturer’s Installation Instructions: Obtain and maintain on-site manufacturer’s written recommendations and instructions for installation of products and equipment.

1.6 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 MATERIALS

A. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to the Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
1. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 a. Description of the Work.
 b. List of detrimental conditions, including substrates.
 c. List of unacceptable installation tolerances.
 d. Recommended corrections.

2. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
3. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
4. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
5. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of the Contractor, submit a request for information to Architect according to requirements in Division 01 Section "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.

B. General: Engage a land surveyor to lay out the Work using accepted surveying practices.
 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
 2. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
 3. Inform installers of lines and levels to which they must comply.
 4. Check the location, level and plumb, of every major element as the Work progresses.
5. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
6. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

A. Identification: Owner will identify existing benchmarks, control points, and property corners.

B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect before proceeding.
2. Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points.

C. Benchmarks: Establish and maintain a minimum of five permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.
2. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work.
3. Remove temporary reference points when no longer needed. Restore marked construction to its original condition.

D. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

E. Final Property Survey: Engage a land surveyor to prepare a final property survey showing significant features (real property) for Project. Include on the survey a certification, signed by land surveyor, that principal metes, bounds, lines, and levels of Project are accurately positioned as shown on the survey.
1. Show boundary lines, monuments, streets, site improvements and utilities, existing improvements and significant vegetation, adjoining properties, acreage, grade contours, and the distance and bearing from a site corner to a legal point.

2. Recording: At Substantial Completion, have the final property survey recorded by or with authorities having jurisdiction as the official "property survey."

3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.

1. Make vertical work plumb and make horizontal work level.

2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.

3. Conceal pipes, ducts, and wiring in finished areas, unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

F. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

G. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.

1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.

2. Allow for building movement, including thermal expansion and contraction.

3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

H. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

I. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.
3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Temporary Support: Provide temporary support of work to be cut.

C. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

D. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching in accordance with requirements of Division 01 Section "Summary."

E. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

F. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
3. Concrete: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
4. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations.
5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
6. Proceed with patching after construction operations requiring cutting are complete.

G. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.
3. **Floors and Walls:** Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

 a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.

4. **Ceilings:** Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. **Exterior Building Enclosure:** Patch components in a manner that restores enclosure to a weathertight condition.

H. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

 a. Utilize containers intended for holding waste materials of type to be stored.

 4. Coordinate progress cleaning for joint-use areas where more than one installer has worked.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

 1. Remove liquid spills promptly.
 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Division 01 Section "Construction Waste Management and Disposal."

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Manufacturer's Field Service: Comply with qualification requirements in Division 01 Section "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

3.10 CORRECTION OF THE WORK

A. Repair or remove and replace defective construction. Restore damaged substrates and finishes.

1. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment.
B. Restore permanent facilities used during construction to their specified condition.

C. Remove and replace damaged surfaces that are exposed to view if surfaces cannot be repaired without visible evidence of repair.

D. Repair components that do not operate properly. Remove and replace operating components that cannot be repaired.

E. Remove and replace chipped, scratched, and broken glass or reflective surfaces.

END OF SECTION 01-7300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes procedural requirements for cutting and patching.
 B. Related Sections include the following:

 1. Divisions 02 through 33 Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work.

1.3 DEFINITIONS
 A. Cutting: Removal of in-place construction necessary to permit installation or performance of other Work.
 B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work.

1.4 QUALITY ASSURANCE
 A. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.
 B. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operating elements include the following:

 1. Primary operational systems and equipment.
 2. Air or smoke barriers.
 3. Mechanical systems piping and ducts.
 4. Control systems.
 5. Communication systems.
 6. Electrical wiring systems.
 C. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Miscellaneous elements include the following:
1. Water, moisture, or vapor barriers.
2. Membranes and flashings.
3. Exterior curtain-wall construction.
4. Equipment supports.
5. Piping, ductwork, vessels, and equipment.

D. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

1.5 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during cutting and patching operations, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed.

1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with in-place finishes or primers.
2. Proceed with installation only after unsafe or unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Temporary Support: Provide temporary support of Work to be cut.
B. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

C. Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.

D. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

3.3 PERFORMANCE

A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.

3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations.

5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

6. Proceed with patching after construction operations requiring cutting are complete.

C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation.

2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.

a. Clean piping, conduit, and similar features before applying paint or other finishing materials.

b. Restore damaged pipe covering to its original condition.
3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

 a. Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.

4. Ceilings: Patch, repair, or re-hang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weather tight condition.

D. Cleaning: Clean areas and spaces where cutting and patching are performed. Completely remove paint, mortar, oils, putty, and similar materials.

END OF SECTION 01-7329
SECTION 01-7419
CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for the following:
 1. Disposing of non-hazardous demolition and construction waste.

B. Related Sections include the following:
 1. Division 01 Section "Temporary Facilities and Controls" for environmental-protection measures during construction.
 2. Division 31 Section "Earth Moving" for disposition of waste resulting from site clearing and removal of above- and below-grade improvements.

1.3 DEFINITIONS

A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.

B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.

C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

PART 2 - EXECUTION

2.1 IMPLEMENTATION

1. Comply with Division 01 Section "Temporary Facilities and Controls" for operation, termination, and removal requirements.

2. Store materials away from construction site. Do not store within drip line of remaining trees.

3. Remove construction waste off Owner's property and transport to appropriate receiver or processor.
B. Hazardous Waste: Store in secure areas and comply with the following:
 1. Hazardous waste shall be separated, stored and disposed of in accordance with local and EPA
 regulations and additional criteria listed below:
 a. Disposal of fluorescent tubes to open containers is not permitted.
 b. Unused fertilizer shall not be co-mingled with construction waste.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as
 appropriate for the Work occurring at Project site.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum
 interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Comply with Division 01 Section "Temporary Facilities and Controls" for controlling dust and dirt,
 environmental protection, and noise control.

2.2 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste
 materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities
 having jurisdiction.
 1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate
 on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn waste materials.

C. Disposal: Transport waste materials and dispose of at designated spoil areas on Owner's property.

END OF SECTION 01-7419
SECTION 01-7700
CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including,
but not limited to, the following:

1. Substantial Completion procedures.
2. Final completion procedures.
3. Warranties.
4. Final cleaning.

B. Related Sections:

1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance
manual requirements.
2. Division 01 Section "Project Record Documents" for submitting Record Drawings, Record
Specifications, and Record Product Data.
3. Divisions 02 through 33 Sections for specific closeout and special cleaning requirements
for the Work in those Sections.

1.3 SUBSTANTIAL COMPLETION

A. Preliminary Procedures: Before requesting inspection for determining date of Substantial
Completion, complete the following. List items below that are incomplete with request.

1. Prepare a list of items to be completed and corrected (punch list), the value of items on
the list, and reasons why the Work is not complete.
2. Advise Owner of pending insurance changeover requirements.
3. Submit specific warranties, workmanship bonds, maintenance service agreements, final
certifications, and similar documents.
4. Obtain and submit releases permitting Owner unrestricted use of the Work and access to
services and utilities. Include occupancy permits, operating certificates, and similar
releases.
5. Prepare and submit Project Record Documents, operation and maintenance manuals,
final completion construction photographic documentation, damage or settlement
surveys, property surveys, and similar final record information.
6. Deliver tools, spare parts, extra materials, and similar items to location designated by
Owner. Label with manufacturer's name and model number where applicable.
7. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's
personnel of changeover in security provisions.
8. Complete startup testing of systems.
10. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
11. Advise Owner of changeover in heat and other utilities.
12. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.
13. Complete final cleaning requirements, including touchup painting.
14. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

B. Inspection: Submit a written request for inspection for Substantial Completion. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.

1.4 FINAL COMPLETION

A. Preliminary Procedures: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment according to Division 01 Section "Payment Procedures."
2. Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report and warranty.
5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.

B. Inspection: Submit a written request for final inspection for acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.5 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
1. Organize list of spaces in sequential order starting with exterior areas first and proceeding with the interior.

2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.

3. Include the following information at the top of each page:
 a. Project name.
 b. Date.
 c. Name of Architect.
 d. Name of Contractor.
 e. Page number.

4. Submit list of incomplete items in the following format:
 a. PDF electronic file.
 b. Three paper copies of list, unless otherwise indicated. Architect will return two copies.

1.6 WARRANTIES

A. Submittal Time: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated.

B. Partial Occupancy: Submit properly executed warranties within 15 days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.

C. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.

1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.

2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.

3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.

4. Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide table of contents at beginning of document.

D. Provide additional copies of each warranty to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer’s written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
 i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; shampoo if visible soil or stains remain.
 j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
 k. Remove labels that are not permanent.
 l. Touch up and otherwise repair and restore marred, exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored or that already show evidence of repair or restoration.
1) Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates.

m. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.

n. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

o. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

p. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.

q. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter upon inspection.

r. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency. Replace burned-out bulbs, and those noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

s. Leave Project clean and ready for occupancy.

C. Pest Control: Engage an experienced, licensed exterminator to make a final inspection and rid Project of rodents, insects, and other pests. Prepare a report.

D. Construction Waste Disposal: Comply with waste disposal requirements in Division 01 Section "Temporary Facilities and Controls." and Division 01 Section "Construction Waste Management and Disposal."

END OF SECTION 01-7700
SECTION 01-7823
OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Maintenance manuals for the care and maintenance of products, materials, finishes, systems and equipment.

B. Related Sections include the following:

1. Division 01 Section "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
2. Division 01 Section "Closeout Procedures" for submitting operation and maintenance manuals.
3. Division 01 Section "Project Record Documents" for preparing Record Drawings for operation and maintenance manuals.
4. Divisions 02 through 33 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

C. SUBMITTALS

D. Submittal: Submit one copy of each manual in final form at least 15 days before final inspection. Architect will return submittal with comments within 15 days after final inspection.

1. Correct or modify each manual to comply with Architect's comments. Submit 3 copies of each corrected manual within 15 days of receipt of Architect's comments.
1.4 COORDINATION

A. Where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Organization: Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 MANUALS, GENERAL

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name, address, and telephone number of Contractor.
6. Name and address of Architect.
7. Cross-reference to related systems in other operation and maintenance manuals.
C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.

 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.

 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.

 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

1. System, subsystem, and equipment descriptions.
2. Performance and design criteria if Contractor is delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUAL

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.
D. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard printed maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training videotape, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers’ forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers’ maintenance documentation and local sources of maintenance materials and related services.

G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner’s operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner’s operating personnel.

E. Manufacturers’ Data: Where manuals contain manufacturers’ standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

1. Prepare supplementary text if manufacturers’ standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers’ printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
1. Do not use original Project Record Documents as part of operation and maintenance manuals.
2. Comply with requirements of newly prepared Record Drawings in Division 01 Section "Project Record Documents."

G. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 01-7823
SECTION 01-7839
PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for Project Record Documents, including the following:

1. Record Drawings.

B. Related Sections include the following:

1. Division 01 Section "Closeout Procedures" for general closeout procedures.
2. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
3. Divisions 02 through 33 Sections for specific requirements for Project Record Documents of the Work in those Sections.

1.3 SUBMITTALS

A. Record Drawings: Comply with the following:

1. Number of Copies: Submit one set of marked-up Record Prints.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one set of blue or black-line white prints of the Contract Drawings and Shop Drawings.

1. Preparation: Mark Record Prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints.

 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Accurately record information in an understandable drawing technique.
c. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations.

2. Content: Types of items requiring marking include, but are not limited to, the following:
 a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Depths of foundations below first floor.
 d. Locations and depths of underground utilities.
 e. Revisions to routing of piping and conduits.
 f. Revisions to electrical circuitry.
 g. Actual equipment locations.
 h. Duct size and routing.
 i. Locations of concealed internal utilities.
 j. Changes made by Change Order or Construction Change Directive.
 k. Changes made following Architect's written orders.
 l. Details not on the original Contract Drawings.
 m. Field records for variable and concealed conditions.
 n. Record information on the Work that is shown only schematically.

3. Mark the Contract Drawings showing actual physical conditions, completely and accurately.
4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
5. Mark important additional information that was either shown schematically or omitted from original Drawings.
6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Newly Prepared Record Drawings: Prepare new Drawings instead of preparing Record Drawings where Architect determines that neither the original Contract Drawings nor Shop Drawings are suitable to show actual installation.

C. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize Record Prints and newly prepared Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project.

B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Architect’s reference during normal working hours.

END OF SECTION 01-7839
SECTION 01-7900
DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes administrative and procedural requirements for instructing Owner's
 personnel, including the following:
 1. Demonstration of operation of systems, subsystems, and equipment.
 2. Training in operation and maintenance of systems, subsystems, and equipment.
 3. Demonstration and training videotapes.
 B. Related Sections include the following:
 1. Division 01 Section "Project Management and Coordination" for requirements for pre-
 instruction conferences.
 2. Divisions 02 through 33 Sections for specific requirements for demonstration and training
 for products in those Sections.
 C. Allowances: Furnish demonstration and training instruction time under the Demonstration and
 Training Allowance as specified in Division 01 Section "Allowances."
 D. Unit Price for Instruction Time: Length of instruction time will be measured by actual time spent
 performing demonstration and training in required location. No payment will be made for time
 spent assembling educational materials, setting up, or cleaning up.

1.3 SUBMITTALS
 A. Instruction Program: Submit two copies of outline of instructional program for demonstration
 and training, including a schedule of proposed dates, times, length of instruction time, and
 instructors' names for each training module. Include learning objective and outline for each
 training module.
 1. At completion of training, submit two complete training manual(s) for Owner's use.
 B. Qualification Data: For instructor.
 C. Attendance Record: For each training module, submit list of participants and length of
 instruction time.
D. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.

E. Demonstration and Training Videotapes: Submit two copies within seven days of end of each training module.

1. Identification: On each copy, provide an applied label with the following information:
 a. Name of Project.
 b. Name and address of photographer.
 c. Name of Architect.
 d. Name of Contractor.
 e. Date videotape was recorded.
 f. Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.

2. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

1.4 QUALITY ASSURANCE

A. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.

B. Pre-instruction Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to demonstration and training including, but not limited to, the following:

 1. Inspect and discuss locations and other facilities required for instruction.
 2. Review and finalize instruction schedule and verify availability of educational materials, instructors' personnel, audiovisual equipment, and facilities needed to avoid delays.
 3. Review required content of instruction.
 4. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.

1.5 COORDINATION

A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations.

B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.
PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:

1. Motorized Gates.
2. Fire-protection systems, including fire alarm and fire-extinguishing systems.
3. Intrusion detection systems.
4. Heat generation, including boilers, pumps, and water distribution piping.
5. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
6. HVAC systems, including air-handling equipment, air distribution systems, and terminal equipment and devices.
7. HVAC instrumentation and controls.
8. Electrical service and distribution, including transformers, switchboards, panel boards, uninterruptible power supplies and motor controls.
9. Packaged engine generators, including transfer switches.
10. Lighting equipment and controls.
11. Communication systems, including intercommunication, surveillance, clocks and programming, voice and data and television equipment.

B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project Record Documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
c. Shutdown instructions for each type of emergency.
d. Operating instructions for conditions outside of normal operating limits.
e. Sequences for electric or electronic systems.
f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
 l. Required sequences for electric or electronic systems.
 m. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Alignments.
 b. Checking adjustments.
 c. Noise and vibration adjustments.
 d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
 e. Review of spare parts needed for operation and maintenance.
PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual.

B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

1. Architect will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
2. Owner will furnish an instructor to describe Owner's operational philosophy.
3. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

1. Schedule training with Owner with at least seven days' advance notice.

D. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral or written demonstration performance-based test.

E. Cleanup: Collect used and leftover educational materials and give to owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEOTAPES

A. General: Engage a qualified commercial photographer to record demonstration and training videotapes. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.

1. At beginning of each training module, record each chart containing learning objective and lesson outline.

B. Videotape Format: Provide high-quality VHS color videotape in full-size cassettes.

C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
D. Narration: Describe scenes on videotape by audio narration by microphone while videotape is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

E. Transcript: Provide a typewritten transcript of the narration. Display images and running time captured from videotape opposite the corresponding narration segment.

END OF SECTION 01-7900
SECTION 02-4119
SELECTIVE STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Demolition and removal of selected site elements.
 3. Salvage of existing items to be reused or recycled.

B. Related Requirements:
 1. Section 011000 "Summary" for restrictions on the use of the premises, Owner-occupancy requirements, and phasing requirements.

1.3 DEFINITIONS
A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner.
C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition waste becomes property of Contractor.
B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.
1.5 PREINSTALLATION MEETINGS

A. Pre-demolition Conference: Conduct conference at Project site.

1. Inspect and discuss condition of construction to be selectively demolished.
2. Review structural load limitations of existing structure.
3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

A. Proposed Protection Measures: Submit report, including drawings, that indicates the measures proposed for protecting individuals and property for dust control and for noise control. Indicate proposed locations and construction of barriers.

B. Schedule of Selective Demolition Activities: Indicate the following:

1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
2. Interruption of utility services. Indicate how long utility services will be interrupted.
3. Coordination for shutoff, capping, and continuation of utility services.
4. Use of elevator and stairs.
5. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.

C. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.

D. Pre-demolition Photographs or Video: Submit before Work begins.

E. Warranties: Documentation indicated that existing warranties are still in effect after completion of selective demolition.

1.7 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

B. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.

1.8 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work. It is known that lead based paint is evident on sheet rock walls in area of work.
 1. Hazardous lead based paint shall be removed and disposed of as required.
 2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
 3. Owner will provide material safety data sheets for suspected hazardous materials that are known to be present in buildings and structures to be selectively demolished because of building operations or processes performed there.

E. Storage or sale of removed items or materials on-site is not permitted.

F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 1. Maintain fire-protection facilities in service during selective demolition operations.

1.9 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties. Notify warrantor before proceeding. Existing warranties include the following:

B. Notify warrantor on completion of selective demolition, and obtain documentation verifying that existing system has been inspected and warranty remains in effect. Submit documentation at Project closeout.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.

C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

E. Engage a professional engineer to perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

1. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

F. Survey of Existing Conditions: Record existing conditions by use of measured drawings and preconstruction photographs.

1. Inventory and record the condition of items to be removed and salvaged. Provide photographs of conditions that might be misconstrued as damage caused by salvage operations.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

1. Comply with requirements for existing services/systems interruptions specified in Section 011000 "Summary."

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.

1. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.

2. Disconnect, demolish, and remove plumbing, and HVAC systems, equipment, and components indicated to be removed.

a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.

b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.

c. Equipment to Be Removed: Disconnect and cap services and remove equipment.

d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.

e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.

3.3 PREPARATION

A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Comply with requirements for access and protection specified in Section 015000 “Temporary Facilities and Controls.”

B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 4. Cover and protect furniture, furnishings, and equipment that have not been removed.
 5. Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Section 015000 “Temporary Facilities and Controls.”

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.

5. Maintain adequate ventilation when using cutting torches.

6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.

7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.

8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

9. Dispose of demolished items and materials promptly.

B. Reuse of Building Elements: Project has been designed to result in end-of-Project rates for reuse of building elements as follows. Do not demolish building elements beyond what is indicated on Drawings without Architect's approval.

C. Removed and Salvaged Items:

1. Clean salvaged items.
2. Pack or crate items after cleaning. Identify contents of containers.
3. Store items in a secure area until delivery to Owner.
4. Transport items to Owner's storage area [on-site] [off-site] [designated by Owner] [indicated on Drawings].
5. Protect items from damage during transport and storage.

D. Removed and Reinstalled Items:

1. Clean and repair items to functional condition adequate for intended reuse.
2. Pack or crate items after cleaning and repairing. Identify contents of containers.
3. Protect items from damage during transport and storage.
4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition [and cleaned] and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in small sections. Using power-driven saw, cut concrete to a depth of at least 3/4 inch (19 mm) at junctures with construction to remain. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete. Neatly trim openings to dimensions indicated.

B. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.

C. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.
D. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

E. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings.

F. Roofing: Remove no more existing roofing than what can be covered in one day by new roofing and so that building interior remains watertight and weathertight.

1. Remove existing roof membrane, flashings, copings, and roof accessories.
2. Remove existing roofing system down to substrate.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."

B. Burning: Do not burn demolished materials.

C. Burning: Burning of demolished materials will be permitted [only at designated areas on Owner's property,] provided required permits are obtained. Provide full-time monitoring for burning materials until fires are extinguished.

D. Disposal: Transport demolished materials and dispose of at designated spoil areas on Owner's property.

E. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 02-4119
SECTION 03 10 00

CONCRETE FORMING AND ACCESSORIES

PART 1 - GENERAL

1.1 WORK INCLUDED

A. This section includes formwork for cast-in-place concrete, including water stops, and installation of embedded items.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Concrete Reinforcement - Section 03 20 00
B. Cast-In-Place Concrete - Section 03 30 00
C. Under-Slab Vapor Retarder – Section 07 26 00

1.3 QUALITY ASSURANCE

A. Comply with the American Concrete Institute Standard, ACI 347-04, Recommended Practice for Concrete Formwork.

1.4 REFERENCE STANDARDS

A. American Society for Testing and Materials (ASTM)

1. ASTM D 226-09 Specification for Asphalt - Saturated Organic Felt used in Roofing and Waterproofing

2. ASTM D 1751-04 Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)

PART 2 - PRODUCTS

2.1 MATERIALS

A. Forms for Exposed Finish Concrete: Plywood complying with Voluntary Product Standard PS 1-07 "B-B (Concrete Form) Plywood", Class I, Exterior Grade or better or metal, metal-framed plywood or other acceptable panel-type materials. Plywood shall be mill-oiled and edge-sealed, with each piece bearing legible inspection trademark. Furnish in largest practicable sizes to minimize number of joints. Provide form material with sufficient thickness to withstand pressure of newly placed concrete without bow or deflection.
B. Forms for Unexposed Finish Concrete: Use plywood, lumber, metal or other acceptable material. Provide lumber dressed on at least 2 edges and one side for tight fit.

C. Form Coatings: Commercial formulation that will not bond with, stain, or adversely affect concrete surfaces, and will not impair subsequent treatments of concrete surfaces.

D. Chamfer Strips: ¾ inch by ¾ inch wood, PVC, or rubber.

E. Preformed Construction Joint: 24-gage steel, galvanized, shaped to form a continuous tongue and groove key.

F. Preformed Control Joint: Rigid plastic or metal strip with removable top section.

G. Expansion Joint Material: Asphalt saturated fiberboard, ½ inch thick, meeting the requirements of ASTM D 1751.

H. Felt: Asphalt-saturated organic felt, weighing 30 pounds per 100 square feet, meeting the requirements of ASTM D 226.

I. Water stops: PVC, meeting the requirements of CRD-C572. Provide 6 inches wide dumbbell shape water stop with 3/16-inch minimum web thickness and 3/8 inch minimum end bulb diameter.

OR

J. Water stops: Volclay RX manufactured by Colloid Environmental Technologies Co. (CETCO).

K. Recycled Content: Minimum 5 percent post-consumer content, or minimum 20 percent pre-consumer recycled content at contractor’s option.

PART 3 - EXECUTION

3.1 COORDINATION

A. Coordinate the installation of joint materials and moisture barriers with placement of forms and reinforcing steel. Set screeds accurately. Embedded items shall be accurately aligned and adequately supported. Verify installation of mechanical, plumbing, and electrical items to be embedded in concrete. Correct any unsatisfactory condition before proceeding further.

3.2 PREPARATION

A. Form Coating: Coat contact surfaces of forms with a form coating compound before reinforcement is placed. Thin form-coating compounds with thinning agent and apply as specified in manufacturer’s instructions. Do not allow excess form-coating material to accumulate in forms or to come into contact with concrete surfaces against which fresh concrete will be placed.
3.3 INSTALLATION

A. Formwork: Formwork shall support vertical and lateral loads that are applied until such loads can be supported by concrete structure. Formwork shall be readily removable without impact, shock or damage to cast-in-place concrete surfaces and adjacent materials. Construct forms to sizes, shapes, lines and dimensions shown. Perform surveys to obtain accurate alignment. Provide for recesses, chamfers, blocking, anchorages, inserts, and other features required in work. Select materials to obtain required finishes. Butt joints solidly and provide backup at joints to prevent leakage of cement paste.

B. Chamfer Strips: Provide at exposed corners and edges.

C. Form Ties: Use factory fabricated, adjustable-length, removable or snap-off metal form ties, designed to prevent form deflection and to prevent spalling concrete surfaces upon removal.

D. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, or other debris before concrete is placed. Retighten forms and bracing after concrete placement as required to eliminate mortar leaks and maintain proper alignment.

3.4 INSTALLATION OF EMBEDDED ITEMS

A. General: Set anchorage devices and other embedded items accurately. Use setting drawings, diagrams, templates and printed instructions provided by supplier. Secure embedded items such that they are not displaced during placement of concrete.

B. Water stops: Install according to manufacturers printed instructions. Splice water stop sections using square cut butt joints and fuse sections together with indirect heat from preheated splicing iron. Use of direct flame is prohibited.

1. Place water stops in all concrete construction joints in basement walls around the building perimeter that are exposed to soil, weather, or moisture, and in any other construction joints that have the potential to allow water infiltration into the building.

3.5 JOINTS

A. Construction Joints in Elevated Slabs and Beams: Construction joints in Elevated Slabs, Beams, Grade Beams, and other flexural members shall only be made as shown in the contract drawings or as approved by the Engineer of Record. Joints shall be constructed in accordance with ACI 318 Section 6.4 with provisions made for the transfer of shear and other forces. Reinforcement shall be continuous through these joints unless noted otherwise.

B. Construction Joints in Walls, Foundations, and Slabs on Grade: Provide keyways at least 1 ½ inches deep in vertical construction joints in walls and construction
joints in slabs on grade and foundations. Discontinue every other horizontal bar through slab on grade construction joints unless noted otherwise.

C. Preformed Construction Joint for Slabs on Grade: Secure with galvanized steel stakes, 1/8 inch thick by 1-1/8 inches wide with ½ inch deep rib and tapered point. Splice adjoining joints with 24 gage steel, galvanized splice plates.

D. Isolation Joints in Slabs on Grade: Construct isolation joints in interior slabs using 30 lb. felt. Provide isolation joints at points of contact between slabs on grade and vertical surfaces, such as column pedestals, foundation walls, grade beams and elsewhere as indicated. Construct isolation joints on exterior slabs abutting vertical surfaces with ½ inch thick expansion joint material.

E. Control Joints in Slabs-on-Grade:

1. Preformed Strip: Insert premolded rigid plastic, or metal strip into fresh concrete. Cut groove for strip using 10-foot long straight edge cutting tool. Depths of strip shall be one fourth of slab thickness. Press strip into groove such that top of strip is level with the concrete surface. Pull off removable top section, if any, prior to troweling.

2. Saw Cut: Contractor may saw cut control joints instead of using preformed strips. Saw cut joints shall be 1/8 inch wide. Saw cut depth should equal 1/4 of slab depth. Cut joints after concrete has hardened sufficiently to prevent raveling; usually 4 to 12 hours after slab has been cast and finished. Use diamond or silicone-carbide blades.

F. Control Joints in Walls: Create weakened planes in cantilevered retaining walls at 25 feet on center. Use preformed strips, placed vertically, full height in each face of wall. Depth of strips shall be one inch.

3.6 REMOVAL OF FORMWORK

A. General: Prevent excessive deflection, distortion, and damage to concrete when forms are stripped. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

B. Formwork and supports at sides of concrete shall remain in place for 24 hours after concrete placement. This period represents cumulative number of hours, not necessarily consecutive, during which the temperature of the air surrounding the concrete is above 50 degrees F. Formwork and shoring which support the weight of concrete shall not be removed until concrete has attained its specified compressive strength.

C. Ensure safety of the structure. Do not superimpose any load on concrete until forms are removed and concrete is cured.

3.7 RE-USE OF FORMS

A. General: Clean and repair surfaces of forms to be re-used in work. Split, frayed, delaminated, or otherwise damaged form facing material will not be acceptable.
for exposed surfaces. Apply new form coating compound as specified for new formwork.

When forms are intended for successive concrete placement, thoroughly clean surfaces and remove fins and latence. Align and secure joints to avoid offsets. Do not use "patched" forms for exposed concrete surfaces.

END OF SECTION 03 10 00
PART 1 - GENERAL

1.1 WORK INCLUDED

A. This section includes fabrication and installation of deformed bar and welded wire fabric reinforcing steel.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Concrete Forming and Accessories - Section 03 10 00.
B. Cast In Place Concrete - Section 03 30 00.

1.3 QUALITY ASSURANCE

A. Reference Standards:

1. American Concrete Institute (ACI)
 a. ACI 301-05 Specifications for Structural Concrete for Buildings
 b. ACI 315-99 Details and Detailing of Concrete Reinforcement
 c. ACI 318-05 Building Code Requirements for Structural Concrete

 a. ASTM A 82/ A82M-07 Standard Specification for Steel Wire, plain, for Concrete Reinforcement
 b. ASTM A 185/ A185M-07 Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete
 c. ASTM A 615/ A 615M-09b Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

1.4 SUBMITTALS
A. Shop Drawings: Submit shop drawings for reinforcing steel. Comply with ACI 315 requirements showing layout, bar schedules, stirrup spacing, diagrams of bent bars, and arrangement of reinforcing steel. Shop Drawings shall not be made by reproduction of the Contract Drawings.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Reinforcing Bars: ASTM A 615, Grade 60. Stirrups and ties may be Grade 40.
C. Steel Wire: ASTM A 82, 16 gage.
D. Supports for Reinforcing Steel: Wire bar type and precast concrete block type meeting the requirements of CRSI Manual of Standard Practice.

2.2 FABRICATION

A. Fabricate reinforcing steel in accordance with fabricating tolerances in ACI 315.
B. Do not fabricate reinforcing steel until shop drawings are approved.

PART 3 - EXECUTION

3.1 PLACING BAR SUPPORTS

A. General: Provide bar supports meeting the requirements of CRSI Specification for Placing Bar Supports.
B. Slabs-on-grade: Use supports with sand plates or precast concrete blocks or horizontal runners where base material will not support chair legs.

3.2 PLACING REINFORCING STEEL

A. General: Comply with CRSI Code of Standard Practice for "Placing Reinforcing Bars".
B. Clean reinforcing steel of loose rust and mill scale, earth, ice, and other materials, which reduce or destroy bond with concrete.
C. Accurately position, support and secure reinforcing steel against displacement by formwork, construction, or concrete placement operations. Place reinforcing steel to obtain minimum coverages. Arrange, space and securely tie bars and bar supports to hold reinforcing steel in position during concrete placement operations. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.
Concrete Cover:
Concrete cast against and permanently exposed to earth 3 inches
Concrete exposed to earth or weather:
Bars larger than No. 5 2 inches
Bars No. 5 or smaller 1 ½ inches

D. Rebar Splices: Locate at points of minimum stress or as shown on contract drawings. Unless noted otherwise, provide lap splices 30 bar diameters (18 inches minimum) in length.

E. Welded Wire Fabric Splices: Lap one complete wire spacing.

F. Corner Reinforcing: Provide corner bars of same size and spacing as horizontal reinforcing steel. Lap with horizontal reinforcing 30 bar diameters or 18 inches minimum length.

G. Reinforcing at Construction/Control Joints: Continue reinforcing steel through construction joints unless noted otherwise. Discontinue reinforcing steel 2 inches from preformed construction joints in slabs-on-grade. Cut alternate longitudinal bars at weakened plane control joints in walls.

END OF SECTION 03 20 00
SECTION 03 30 00

CAST IN PLACE CONCRETE

PART 1 - GENERAL

1.1 WORK INCLUDED

A. This section covers cast-in-place concrete including finishing, surface repair and curing.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Concrete Forming and Accessories - Section 03 10 00

B. Concrete Reinforcement - Section 03 20 00

C. Under Slab Vapor Retarder – Section 07 26 00

1.3 QUALITY ASSURANCE

A. Reference Standards: Meet the requirements of the following codes, specifications and standards.

1. American Concrete Institute (ACI) Publications;
 a. ACI 301-05 Specifications for Structural Concrete for Buildings
 c. ACI 318-05 Building Code Requirements for Structural Concrete.

2. ASTM International (ASTM);
 a. ASTM C 31/ C31M-10 Standard Practice for Making and Curing Concrete Test Specimens in the Field
 b. ASTM C 33/ C33M-11a Standard Specification for Concrete Aggregates
 c. ASTM C 39/ C39M-11a Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
 d. ASTM C 94/ C 94M-11b Standard Specification for Ready-Mixed Concrete
e. ASTM C 131-06

f. ASTM C 136-06
 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates

g. ASTM C 143/ C 143M-10a
 Standard Test Method for Slump of Hydraulic Cement Concrete

h. ASTM C 150/ C150M-11
 Standard Specification for Portland Cement

i. ASTM C 171-07
 Standard Specification for Sheet Materials for Curing Concrete

j. ASTM C 172/ C172M-10
 Standard Practice for Sampling Freshly Mixed Concrete

k. ASTM C 173/ C 173M-10b
 Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method

l. ASTM C 231/ C231M-10
 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

m. ASTM C 260/ C260M-10a
 Standard Specification for Air Entraining Admixtures for Concrete

n. ASTM C 309-11
 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete

o. ASTM C 330/ 330M-09
 Standard Specification for Lightweight Aggregates for Structural Concrete

p. ASTM C 494/ C 494M-11
 Standard Specification for Chemical Admixtures for Concrete

q. ASTM C 567-05a
 Standard Test Method for Determining Density of Structural Lightweight Concrete

r. ASTM C 618-08a
 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

s. ASTM D 4318-10
 Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
B. Environmental Requirements: Manufacturer and Contractor shall conform to Federal, State, and Local V.O.C. (Volatile Organic Compound) Regulations in area where Project is located. Notify A/E in writing if variations to Specifications herein are required.

1. V.O.C. content shall be a maximum 250 (55) gm/liter, unless more stringent codes or laws apply.

1.4 SUBMITTALS

A. Product Data: Submit manufacturer's product data with application and installation instructions for proprietary materials and admixtures.

B. Concrete Mix Design:

1. Submit mix design in accordance with ACI-301, Section 4.

2. Submit with mix design results of laboratory tests performed within previous 12 months indicating aggregates from the proposed source comply with the requirements of ASTM C 33 or C 330 as applicable.

3. Submit the proposed area of use for each mix design submitted (footings, stemwalls, slabs, walls, columns, etc.).

C. Granular Base Course: Submit gradation, plasticity index, and wear information.

D. Test Reports: Submit copies of test reports for concrete compressive strength, air content, temperature and slump. Submit copies of granular base course test reports.

E. LEED Submittal
1. **Credit MR4:1; Recycled Content:** Indicate recycled content; indicate percentage of pre-consumer and post-consumer recycled content per unit of product.

2. **Credit MR5.1; Local/Regional Materials**
 a. Indicate location of manufacturing facility; indicate distance between manufacturing facility and project site.
 b. Indicate location of extraction, harvesting, and recovery; indicate distance between extraction, harvesting, and recovery and the project site.

3. **Credit MR6; Biobased Materials:** Indicate type of biobased material in product and biobased content.

1.5 QUALITY ASSURANCE

A. **Manufacturer Qualifications:** A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

B. **Environmental Requirements:** Manufacturer and Contractor shall conform to Federal, State, and Local V.O.C. (Volatile Organic Compound) Regulations in area where Project is located. Notify A/E in writing if variations to Specifications herein are required.

1. V.O.C. content shall be a maximum 250 (55) gm/liter, unless more stringent codes or laws apply.

PART 2 - PRODUCTS

2.1 MATERIALS

A. **Portland Cement:** ASTM C 150, Type I or II, low alkali. Use one brand of cement throughout project.

B. **Normal Weight Aggregates:** ASTM C 33. Provide aggregates from a single source for exposed concrete.

C. **Lightweight Aggregates:** ASTM C330. Provide aggregates from single source for each class of concrete.

D. **Water:** Potable.

E. **Air-Entraining Admixture:** ASTM C 260.

G. Fly-Ash: ASTM C 618, Class F [Class F] [Class C] [Class F is for reactive aggregates].

H. Moisture-Retaining Cover: Provide waterproof paper, polyethylene film, or polyethylene-coated burlap meeting the requirements of ASTM C 171.

I. Liquid Membrane-Forming Curing Compound: Liquid type membrane-forming curing compound meeting the requirements of ASTM C 309; Type 1-D with fugitive dye for interior concrete and foundations; Type 2, white pigmented, for exposed exterior concrete except exposed exterior Architectural concrete, use Type 1-D.

Curing compound shall NOT be used on interior slabs, except exposed integrally colored concrete slabs. Curing compound to be used on integrally colored concrete slabs shall be approved by the manufacturer of the color.

J. Vapor Retarder shall comply with Section 07 26 00 of these Specifications.

K. Granular base shall meet the following grading requirements when tested in accordance with ASTM C 136.

Granular base shall meet the gradation and material properties requirements as listed in the General Structural Notes.

The plasticity Index shall be no greater than 3 when tested in accordance with ASTM D 4318. The coarse aggregate shall have a percent wear of 50 or less when tested in accordance with ASTM C 131.

2.2 PROPORTIONING AND DESIGN OF MIXES

A. Prepare design mixes for each type and strength of concrete by either laboratory trial mixture or field experience methods as specified in ACI 301, Section 4. If trial mixture method is used, employ an independent testing facility, acceptable to Architect, for preparing and reporting proposed mix designs.

B. Submit written reports to Architect, or Engineer, of each proposed mix for each class of concrete at least 15 days prior to start of work. Do not begin concrete production until mixes have been approved.

C. Structural lightweight concrete shall have a measured equilibrium density not exceeding 115 pounds per cubic foot when tested in accordance with ASTM C 567.

D. Refer to the General Structural Notes for concrete strengths.

E. Slabs-on-ground or on vapor retarder shall have a water/total cementitious ratio not to exceed 0.45.

F. Admixtures
1. Structural lightweight concrete may have an entrained air content up to a maximum of 10 percent.

2. Use water reducing admixture conforming to ASTM C 494, Type A, in all concrete unless approved otherwise by the Structural Engineer.

3. All other admixtures shall have the written approval of the Architect or Structural Engineer.

4. Calcium chloride is not permitted.

5. All admixtures, except high range water reducers, shall be added to the concrete at the batch plant.

PART 3 - EXECUTION

3.1 COORDINATION

A. Coordinate the installation of joint materials and moisture barriers with placement of forms and reinforcing steel. Set screeds accurately. Embedded items shall be accurately aligned and adequately supported. Verify installation of mechanical, plumbing, and electrical items to be embedded in concrete. Correct any unsatisfactory condition before proceeding further.

3.2 PREPARATION

A. Before placing concrete, clean and roughen surface of previously placed concrete. Clean reinforcing steel. Remove debris, providing clean-outs at bottom of forms when necessary. Moisten surfaces to receive concrete unless otherwise prepared. Remove excess water before placing concrete.

3.3 CONCRETE PLACEMENT

A. General: Comply with ACI 301.

B. Place concrete continuously in layers not deeper than 24 inches. Concrete shall not be placed against concrete which has hardened sufficiently to cause the formation of seams or planes of weakness. If a section cannot be placed continuously, provide construction joints. Deposit concrete as nearly as practicable to its final location to avoid segregation. Do not use vibrators to transport concrete.

C. Maintain reinforcing in proper position during concrete placement operations.

D. Consolidate concrete, immediately after placing, by mechanical vibrating equipment supplemented by hand-spading, rodding or tamping. Use equipment and procedures for consolidation of concrete in accordance with ACI recommended practices.
E. Bring slab surfaces to correct level with straightedge and strikeoff. Use bull floats or darbies to smooth surface. Do not disturb slab surfaces prior to beginning finishing operations.

F. Cold Weather Concreting: Protect concrete work from physical damage or reduced strength caused by frost, freezing or low temperatures. Comply with ACI 306.1.

G. Hot Weather Concreting: When hot weather conditions exist that would impair quality and strength of concrete, reduce delivery time of ready mix concrete, lower the temperature of materials, or add retarder to ensure that the concrete is plastic. Retempering with water is not allowed. Comply with ACI 305R.

3.4 FINISH OF FORMED SURFACES

A. Rough Form Finish: Provide where formed concrete surfaces are not exposed to view. Tie holes and surface imperfections shall be repaired and patched and fins and other projections exceeding ¼ inch in height rubbed down or chipped off.

3.5 FINISH OF HORIZONTAL SURFACES

A. At tops of foundation walls and grade beams finish with a texture matching adjacent formed surfaces unless otherwise indicated.

3.6 SLAB FINISHES

A. Float Finish: Begin floating when surface water has disappeared and when concrete has stiffened sufficiently to permit operation of power-driven or hand floats. Consolidate surface with power-driven floats, or by hand-floating if area is small or inaccessible to power units. Check and level surface plane to a tolerance not exceeding ¼ inch in 10 feet when tested with a 10 foot straightedge.

B. Scratch Finish: Apply scratch finish to slab surfaces that are to receive floor topping. Roughen surface before final set, using stiff brushes, or brooms.

C. Trowel Finish: Apply trowel finish to all slab surfaces unless noted otherwise. After floating, begin first trowel finish using a power-driven or hand trowel. Finish concrete surface by a final hand-trowel operation, free of trowel marks, and uniform in texture and appearance. The final surface finish for slabs-on-grade shall have a minimum FF = [25] and a minimum FL = [20] per ACI requirements. The final surface finish for elevated slabs shall have a minimum FF = [25]. [Verify with Architectural requirements.]

D. Broom Finish: Apply on exterior slabs, ramps, steps, and sidewalks. Immediately after concrete has received a float finish, draw a broom or burlap belt across the surface to give a coarse transverse scored texture.

3.7 CONCRETE CURING AND PROTECTION
A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Start initial curing as soon as free water has disappeared from concrete surface after placing and finishing. Continue curing for at least 7 days.

B. Moisture-retaining Cover curing: All interior concrete slabs, except exposed integrally colored concrete slabs, are to be cured with a moisture retaining cover for the first 7 days. After that time, the cover shall be removed and the slab should be allowed to dry. Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width with sides and ends lapped at least 3 inches and sealed. Repair any holes or tears in cover during curing period.

C. Curing compound: At contractor's option, exterior concrete slabs may be cured using curing compound. All vertical concrete (walls, beams, etc...) shall be cured using curing compound – apply compound to the vertical surface as soon as the forms are removed. Apply curing compound uniformly in accordance with the manufacturer's printed instructions. Curing compound shall NOT be used on interior slabs, except exposed integrally colored concrete slabs.

D. Exposed integrally colored concrete slabs: Use curing compound recommended by the concrete supplier. Apply with and airless sprayer.

3.8 CONCRETE SURFACE REPAIRS

A. Patching Surface Imperfections: Remove loose material and patch surface imperfections and holes left by tie rods with cement mortar. Surface imperfections include honeycomb, excessive air voids, sand streaking and cracks.

3.9 FOR EXPOSED-TO-VIEW SURFACES

A. Blend white portland cement and standard portland cement so that, when dry, patching mortar will match color surrounding. Provide test areas at inconspicuous location to verify mixture and color match before proceeding with patching. Compact mortar in place and strike-off slightly higher than surrounding surface.

3.10 FIELD QUALITY CONTROL

A. The Owner shall employ the services of a qualified testing laboratory to perform tests and submit test reports.

B. Sampling Fresh Concrete: ASTM C 172.

C. Slump: ASTM C 143; one test for each set of compressive strength test specimens.

D. Air Content: ASTM C 173 or C 231 for each set of compressive strength test specimens.
E. Concrete Temperature: Test hourly when air temperature is 40 degrees F. and below, when 80 degrees F and above; and when compression test specimens are made.

F. Compression Test Specimen: ASTM C 31, one set of 4 standard cylinders for each compressive strength test, unless otherwise directed. Mold and store cylinders for laboratory cured test specimens except when field cure test specimens are required. Mold one set of standard cylinders for volume of concrete specified below or fraction thereof.

1. Slabs on Grade or Metal Deck 30 cubic yards
2. Footings and stem walls 50 cubic yards
3. All other locations (unless noted otherwise) 30 cubic yards

G. Compressive Strength Tests: ASTM C 39; test 1 specimen at 7 days, 2 specimens at 28 days, and retain one specimen in reserve for later testing. Additional Tests: The testing laboratory will make additional tests of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure as directed by the Architect. The testing laboratory may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by the Architect or Engineer. The Owner shall pay for such tests conducted, and any other additional testing as may be required, when unacceptable concrete is verified.

H. Granular Base Course: ASTM C 136 and ASTM D 4318 for every 500 square yards of building slab area.

END OF SECTION 03 30 00
PART 1 - GENERAL

1.1 WORK INCLUDED
A. This section includes all lightgage studs, joists and track, 20 gage or heavier, including bridging, and related accessories as indicated on the Contract Drawings and specified herein.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Structural Steel - Section 05 10 00
B. Steel Joists - Section 05 21 00

1.3 QUALITY ASSURANCE
A. Reference Standards:
 3. ASTM International.
 a. ASTM A 653/ A653M-11 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
 b. A 1008/ A 1008M-11 Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low Alloy, High-Strength Low Alloy with Improved Formability
 c. ASTM A 1011/ A 1011M-10 Standard Specification for Steel, Sheet and Strip, Hot Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low Alloy with Improved Formability, and Ultra-High-Strength
 4. Qualifications of Erector: Erector shall have a minimum of 5 years experience in the erection of structural steel of structures of similar size.
5. Qualifications of Field Welders: Welders shall be certified in accordance with AWS D1.1 within the last 12 months.

1.4 SUBMITTALS

A. Submit manufacturer’s product information and installation instructions for each item of lightgage framing. Submit shop drawings for all prefabricated lightgage systems.

B. LEED Submittals:

1. Credit MR4.1; Recycled Content: Indicate recycled content; indicate percentage of pre-consumer and post-consumer recycled content per unit of product.

2. Credit MR5.1; Local/Regional Materials:

 a. Indicate location of manufacturing facility; indicate distance between manufacturing facility and the project site.

 b. Indicate location of extraction, harvesting, and recovery; indicate distance between extraction, harvesting, and recovery and the project site.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect metal framing units from rusting and damage. Deliver to project site in manufacturer’s unopened containers or bundles, fully identified with name, brand, type, and grade. Store off ground in a dry ventilated space or protect with suitable waterproof coverings.

B. Waste Management and Disposal: As specified in Division 01 Section “Construction Waste Management” and as follows:

1. Collect off cuts and scrap and place in designated area for recycling in accordance with the Waste Management Plan and local recycler standards.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Metal Framing:

1. All 12, 14, and 16 gage steel studs and joists shall be formed from steel that meets the requirements of one of the following standards with a minimum yield strength of 50,000 psi:

 a. Painted Material - ASTM A 1011, Grade 50.

2. All 18 and 20 gage steel studs and joists; all track, bridging and accessories shall be formed from steel that meets the requirements of one of the following with a minimum yield strength of 33,000 psi:

a. Painted Material - ASTM A 1008, Grade C.

B. Material Finishes: All stud and joist components shall be primed with paint meeting the performance requirements of TT-P-1636C, or shall be formed from steel having a G-60 galvanized coating or better.

2.2 FABRICATION

A. Framing components may be prefabricated into panels prior to erection. Prefabricated panels shall be square, with components attached to prevent racking. Handling and lifting of panels shall be done in a manner as to not cause distortion in any member.

B. All framing components shall be cut squarely for attachment to perpendicular members, or as required for an angular fit against abutting members. Members shall be held positively in place until properly fastened.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install metal framing systems in accordance with manufacturer's printed instructions and recommendations, unless otherwise indicated on Contract Drawings.

B. Install and align tracks accurately to layout at base and tops of studs. Secure tracks as indicated on Contract Drawings. Provide fasteners at corners and ends of tracks.

C. Install supplementary framing, blocking and bracing in metal framing system to support fixtures, equipment, etc. Comply with stud manufacturer's recommendations and industry standards, considering weight and loading of each item.

D. Secure studs to top and bottom tracks by welding at both inside and outside flanges or with a minimum of 2-#8 self tapping screws (one per flange) up to 16 gage material and 2-#10 self tapping screws (one per flange) for 14 gage and thicker, unless noted otherwise.
E. Frame wall openings larger than 2 foot-0 inches square with double studs at each jamb of frame except where more than 2 are either shown or indicated in manufacturer's instructions. Install tracks and jack studs above and below wall openings. Anchor tracks to jamb studs with stud shoes or by welding, and space jack studs same as full-height studs of wall. Secure stud system wall opening frame in manner indicated.

F. All components of build-up stud sections, including jack studs, full height studs, columns, headers, etc. shall be welded together with utilizing 1/8" fillet welds 1" long at 12" on center along the full height of each flange to flange connection.

G. Install horizontal bridging in stud system, spaced (vertical distance) at no more than 4 foot – 0 inches o.c. Weld at each intersection.

H. Touch-up shop-applied protective coatings damaged during handling and installation. Use compatible primer for prime coated surfaces; use galvanizing repair paint for galvanized surfaces, such as zinc-rich paint.

END OF SECTION 05 40 00
SECTION 06 10 00
ROUGH CARPENTRY

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Furnish and install all structural plywood, blocking, supports, non-structural nailers, and stripping as required for securing other work, shown on Drawings. Furnish all hardware, miscellaneous rough carpentry and related accessories as indicated on the Drawings or specified herein for a complete installation.

1.2 QUALITY ASSURANCE

A. Codes and Standards: All lumber shall conform to all requirements of the International Building Code. All framing lumber and plywood shall be appropriately grade marked with an agency certified by the American Lumber Standards Committee Board of Review for lumber or the American Plywood Association for plywood.

B. Coordination: Contractor shall coordinate location of blocking with other related trades. Other Contractors will furnish exact locations of grounds and blockings to this Contractor for proper installation of their Work.

1.3 SUBMITTALS

A. Product Data: Submit copies of manufacturer’s product data indicating specifications and installation requirements for rough hardware items specified, i.e., connectors, joist hangers, etc.

B. Letters: Submit letter of compliance that all lumber is grade-marked in compliance with specified products and that lumber is of species and fiber stress specified.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Lumber:

1. Standard Grade Hem-Fir: Non-structural furring, concealed blocking and stripping, and miscellaneous nailers, grade marked with WWPA stamp.

B. Framing Lumber:

1. Studs, sills, plates, ledgers, stiffeners, bridging, etc. Size and spacing as indicated and as required, shall be:
Species: Spruce-Pine-Fir: Grade No. 2 or better

- $F_b = 875 \text{ psi}$
- $F_t = 450 \text{ psi}$
- $F_v = 70 \text{ psi}$
- $F_c = 425 \text{ psi perpendicular to grain}$
- $F_c = 725 \text{ psi parallel to grain}$
- $E_c = 1,300,000 \text{ psi}$

2. Wood members 2" to 4" thick, 5" and wider.

Species: Hem-Fir: Grade No. 1 or better

- $F_b = 1200 \text{ psi}$
- $F_t = 800 \text{ psi}$
- $F_v = 75 \text{ psi}$
- $F_c = 425 \text{ psi perpendicular to grain}$
- $F_c = 1050 \text{ psi parallel to grain}$
- $E_c = 1,500,000 \text{ psi}$

3. Beam and Stringers.

Species: Hem-Fir: Grade No. 1 or Douglas Fir-Larch: Dense No. 2

- $F_b = 1050 \text{ psi}$
- $F_t = 525 \text{ psi}$
- $F_v = 70 \text{ psi}$
- $F_c = 405 \text{ psi perpendicular to grain}$
- $F_c = 750 \text{ psi parallel to grain}$
- $E_c = 1,300,000 \text{ psi}$

C. Plywood:

D. Fasteners:

1. Nails: Meeting the requirements of ASTM F1667

 a. Common wire nails. Use galvanized box nails where rough carpentry is exposed to moisture.

 b. Non-corrosive finish nails of either stainless steel, aluminum or high quality hot-dipped galvanized shall be used on all exposed decorative lumber and redwood flooring.

under all nuts. Bolts shall meet the requirements of ANSI/ASME Standard B18.2.1.

4. Connectors, Joist Hangers, Anchors, Etc.: Type and size to meet job conditions and as indicated on the Drawings, or as required, as manufactured by Simpson Co., San Leandro, California 94577 or acceptable substitution.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Provide and securely fasten wood nailing strips, plates, blocking, etc., at proper levels in stud partitions, to anchor all items which require use of wood blocking to fasten or support components and accessories, and as nailers used in conjunction with roofing membrane, sheet metal and flashing and roofing accessories.

B. Workmanship and General Framing

1. Selection of Lumber Pieces: Carefully select all members, selecting pieces so that knots and obvious defects will not interfere with placing bolts, nailing or making connections. Lumber may be rejected by Architect, whether or not it has been installed, for excessive warp, twist, bow, crook, mildew, fungus, or mold, as well as for improper cutting and fitting.

2. Shimming: Do not shim sills, joists, short studs, trimmers, headers, lintels, or other framing components.

3. Framing: Set all horizontal or sloped members with crown up. Do not notch, bore, or cut members for pipes, ducts, conduits, or other reasons except as indicated on Drawings or approved by Architect.

4. Bearings: Make all bearings full unless indicated otherwise. Finish all bearing surfaces on which structural members are resting to give sure and even support. Where framing members slope, cut or notch ends as required for uniform bearing surface.

5. Blocking: Install all blocking required to support all items of finish and to cut off all concealed draft openings, both vertical and horizontal, between ceiling and floor areas. Fire stops shall be two (2) inches (nominal) thick, by full width of opening being blocked. Provide fire stop in accordance with the Uniform Building Code, Chapter 25.

6. Bridging: Cross bridging shall be of not less than two (2) inches by three (3) inches nominal wood or of metal cross bridging of equal strength. Space lines of bridging at eight (8) feet max.
7. Nailing:
 a. All nailing shall be in accordance with the Contract Drawings.
 b. For conditions not covered in the Contract Drawings, provide penetration into piece receiving the point of not less than 1/2 the length of the nail or spike.
 c. Do all nailing without splitting wood. Pre-bore as required. Replace all split members at Contractor's expense.

8. Bolting: Drill holes 1/16 inch larger in diameter than bolts being used. Drill straight and true from one side only.
 a. Bolt threads shall not bear on wood. Use washers under head and nut where both bear on wood. Use washers under all nuts.

END OF SECTION 06 10 00
SECTION 06-1600
SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Wall sheathing.
2. Roof sheathing.
3. Underlayment.
4. Building paper.
6. Flexible flashing at openings in sheathing.

B. Related Sections include the following:

1. Division 06 Section "Rough Carpentry" for plywood backing panels.

1.3 SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component
 materials and dimensions and include construction and application details.

1. Include data for wood-preservative treatment from chemical treatment manufacturer and
 certification by treating plant that treated plywood complies with requirements. Indicate
 type of preservative used and net amount of preservative retained.
2. Include data for fire-retardant treatment from chemical treatment manufacturer and
 certification by treating plant that treated plywood complies with requirements. Include
 physical properties of treated materials.
3. For fire-retardant treatments specified to be High-Temperature (HT) type, include physical
 properties of treated plywood both before and after exposure to elevated temperatures,
 based on testing by a qualified independent testing agency according to ASTM D 5516.
4. For products receiving a waterborne treatment, include statement that moisture content of
 treated materials was reduced to levels specified before shipment to Project site.
5. Include copies of warranties from chemical treatment manufacturers for each type of
 treatment.

B. Research/Evaluation Reports: For the following, showing compliance with building code in
 effect for Project:

1. Preservative-treated plywood.
2. Fire-retardant-treated plywood.
1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: For assemblies with fire-resistance ratings, provide materials and construction identical to those of assemblies tested for fire resistance per ASTM E 119 by a testing and inspecting agency acceptable to authorities having jurisdiction.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack plywood and other panels flat with spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 PRESERVATIVE-TREATED PLYWOOD

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.

C. Application: Treat items indicated on Drawings and plywood in contact with masonry or concrete or used with roofing, flashing, vapor barriers, and waterproofing.

2.2 WALL SHEATHING

1. Span Rating: Not less than 32/16.
2. Nominal Thickness: Not less than 1/2 inch.

B. Paper-Surfaced Gypsum Wall Sheathing: ASTM C 79/C 79M or ASTM C 1396/C 1396M, gypsum sheathing; with water-resistant-treated core and with water-repellent paper bonded to core's face, back, and long edges.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Gypsum.
 b. LaFarge North America Inc.
 c. G-P Gypsum Corporation.
 e. Temple-Inland Forest Products Corporation.
f. United States Gypsum Co.

2. Type and Thickness: Regular, 5/8 inch and Type X, 5/8 inch thick.
3. Edge and End Configuration: Square.
4. Size: 24 by 96 inches for horizontal and 48 by 96 inches for vertical.

2.3 ROOF SHEATHING

A. Plywood Roof Sheathing: Exterior, Structural I sheathing.
 1. Nominal Thickness: Not less than 1/2 inch.

2.4 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this Article for material and manufacture.
 1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

B. Nails, Brads, and Staples: ASTM F 1667.

D. Wood Screws: ASME B18.6.1.

E. Screws for Fastening Wood Structural Panels to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.
 1. For wall and roof sheathing panels, provide screws with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.

F. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing board to be attached, with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B 117.
 1. For steel framing less than 0.0329 inch thick, attach sheathing to comply with ASTM C 1002.
 2. For steel framing from 0.033 to 0.112 inch thick, attach sheathing to comply with ASTM C 954.

2.5 WEATHER-RESISTANT SHEATHING PAPER

A. Building Paper: ASTM D 226, Type (No. 15 asphalt-saturated organic felt), unperforated.

B. Roof Underlayment: ASTMD 226, Type II (No.30 Asphalt-Saturated Organic Felt)
2.6 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Paper-Surfaced Gypsum Sheathing Board: Elastomeric, medium-modulus, neutral-curing silicone joint sealant compatible with joint substrates formed by gypsum sheathing and other materials, recommended by sheathing manufacturer for application indicated, and complying with requirements for elastomeric sealants specified in Division 07 Section "Joint Sealants."

2.11 MISCELLANEOUS MATERIALS

A. Adhesives for Field Gluing Panels to Framing: Formulation complying with ASTM D 3498 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction, unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:
 1. NES NER-272 for power-driven fasteners.
 2. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."

D. Use common wire nails, unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections. Install fasteners without splitting wood.

E. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

F. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

G. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 WOOD STRUCTURAL PANEL INSTALLATION

B. Fastening Methods: Fasten panels as indicated below:
1. Wall and Roof Sheathing:
 a. Screw to cold-formed metal framing.
 b. Space panels 1/8 inch apart at edges and ends.

3.3 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.

1. Fasten gypsum sheathing to cold-formed metal framing with screws.

B. Apply fasteners so heads bear tightly against face of sheathing boards but do not cut into facing.

C. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent boards without forcing. Abut ends of boards over centers of studs, and stagger end joints of adjacent boards not less than one stud spacing. Attach boards at perimeter and within field of board to each steel stud.

 1. Space fasteners approximately 8 inches o.c.
 2. For sheathing under stucco cladding, boards may be initially tacked in place with screws if overlying self-furring metal lath is screw-attached through sheathing to studs immediately after sheathing is installed.

D. Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Attach boards at perimeter and within field of board to each stud.

 1. Space fasteners approximately 8 inches o.c.
 2. For sheathing under stucco cladding, boards may be initially tacked in place with screws if overlying self-furring metal lath is screw-attached through sheathing to studs immediately after sheathing is installed.

3.4 WEATHER-RESISTANT SHEATHING-PAPER INSTALLATION

A. Building Paper: Apply horizontally with a 2-inch overlap and a 6-inch end lap; fasten to sheathing with galvanized staples or roofing nails.

 1. Extend into jambs of openings and seal corners with tape.

3.5 SHEATHING JOINT-AND-PENETRATION TREATMENT

A. Seal sheathing joints according to sheathing manufacturer's written instructions.

 1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient quantity of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
 2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing board joints, and apply and trowel silicone emulsion sealant to embed entire face of tape in sealant. Apply...
sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

3. Apply sheathing tape to joints between foam-plastic sheathing panels and at items penetrating sheathing. Apply at upstanding flashing to overlap both flashing and sheathing.

3.6 PROTECTION

A. Paper-Surfaced Gypsum Sheathing: Protect sheathing by covering exposed exterior surface of sheathing with weather-resistant sheathing paper securely fastened to framing. Apply covering immediately after sheathing is installed.

END OF SECTION 06-1600
SECTION 06-4023
INTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Plastic-laminate cabinets.
2. Solid surface countertops.

B. Related Sections include the following:

1. Division 06 Section "Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing woodwork and concealed within other construction before woodwork installation.

1.3 DEFINITIONS

A. Interior architectural woodwork includes wood furring, blocking, shims, and hanging strips for installing woodwork items unless concealed within other construction before woodwork installation.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated, including cabinet hardware and accessories and finishing materials and processes.

B. Product Data: For panel products, high-pressure decorative laminate, adhesive for bonding plastic laminate, solid-surfacing material, cabinet hardware and accessories, finishing materials and processes.

1. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements.

C. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.

1. Show details full size.
2. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
3. Show locations and sizes of cutouts and holes for plumbing fixtures, faucets, soap dispensers, and other items installed in architectural woodwork.
4. Show veneer leaves with dimensions, grain direction, exposed face, and identification numbers indicating the flitch and sequence within the flitch for each leaf.
5. Apply WI-certified compliance label to first page of Shop Drawings.

D. Samples for Initial Selection:
1. Plastic laminates.

E. Samples for Verification:
1. Plastic laminates, 8 by 10 inches, for each type, color, pattern, and surface finish.
2. Exposed cabinet hardware and accessories, one unit for each type and finish.

F. Product Certificates: For each type of product, signed by product manufacturer.

G. Qualification Data: For Installer and fabricator.

1.5 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.

B. Installer Qualifications: Certified participant in AWI's Quality Certification Program.

C. Source Limitations: Engage a qualified woodworking firm to assume undivided responsibility for production of interior architectural woodwork.

D. Quality Standard: Unless otherwise indicated, comply with AWI's "Architectural Woodwork Quality Standards" for grades of interior architectural woodwork indicated for construction, finishes, installation, and other requirements.

1. Provide AWI Quality Certification Program labels and certificates indicating that woodwork, including installation, complies with requirements of grades specified.

E. Fire-Test-Response Characteristics: Where fire-retardant materials or products are indicated, provide materials and products with specified fire-test-response characteristics as determined by testing identical products per test method indicated by UL, ITS, or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify with appropriate markings of applicable testing and inspecting agency in the form of separable paper label or, where required by authorities having jurisdiction, imprint on surfaces of materials that will be concealed from view after installation.

F. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver woodwork until painting and similar operations that could damage woodwork have been completed in installation areas. If woodwork must be stored in other than installation
areas, store only in areas where environmental conditions comply with requirements specified in "Project Conditions" Article.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install woodwork until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 17 and 50 percent during the remainder of the construction period.

B. Field Measurements: Where woodwork is indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1. Locate concealed framing, blocking, and reinforcements that support woodwork by field measurements before being enclosed, and indicate measurements on Shop Drawings.
2. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating woodwork without field measurements. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.8 COORDINATION

A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to ensure that interior architectural woodwork can be supported and installed as indicated.

PART 2 - PRODUCTS

2.1 WOODWORK FABRICATORS

A. Available Fabricators: Subject to compliance with requirements, fabricators offering interior architectural woodwork that may be incorporated into the Work include, but are not limited to, the following:

1. OGB Architectural Millwork
2. Sunray Construction, Inc.
3. Albuquerque Cabinets, Inc.

2.2 MATERIALS

A. General: Provide materials that comply with requirements of AWI's quality standard for each type of woodwork and quality grade specified, unless otherwise indicated.

B. Wood Products: Comply with the following:
1. Particleboard: Straw-based particleboard complying with requirements in ANSI A208.1, Grade M-2, except for density.

2. Recycled Content of Medium-Density Fiberboard and Particleboard: Provide products with an average recycled content so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 100 percent.

C. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or, if not indicated, as required by woodwork quality standard.

1. Manufacturer: Subject to compliance with requirements, provide high-pressure decorative laminates by one of the following:
 a. Formica Corporation.
 b. Nevamar Company, LLC; Decorative Products Div.
 c. Wilson art International; Div. of Premark International, Inc.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this Article, which are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified.

1. Do not use treated materials that do not comply with requirements of referenced woodworking standard or that are warped, discolored, or otherwise defective.
2. Use fire-retardant-treatment formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants to distinguish treated materials from untreated materials.
3. Identify fire-retardant-treated materials with appropriate classification marking of UL, U.S. Testing, Timber Products Inspection, or another testing and inspecting agency acceptable to authorities having jurisdiction.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Comply with performance requirements of AWPA C20 (lumber) and AWPA C27 (plywood). Use the following treatment type:

2. Interior Type A: Low-hygroscopic formulation.
3. Mill lumber after treatment within limits set for wood removal that do not affect listed fire-test-response characteristics, using a woodworking plant certified by testing and inspecting agency.
4. Mill lumber before treatment and implement special procedures during treatment and drying processes that prevent lumber from warping and developing discolorations from drying sticks or other causes, marring, and other defects affecting appearance of treated woodwork.
5. Kiln-dry materials before and after treatment to levels required for untreated materials.
2.4 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets.

B. Shelf Standards and Rest: KV flush mounted side standards with brackets.

C. Pulls Stanley #345840, 4” with 626 finishes.

D. Cabinets Locks: Disc tumbler, master keyed and keyed alike or as directed otherwise. Hinged door and drawer use National Lock No. C8053 as manufactured by National Lock Hardware, Rockford, Illinois 61101. Finish shall be 626.

E. Drawer Slides: Knape & Vogt; 1260, 60 lb. load capacity, zinc finish.

F. Hinges: Blum 120 degrees “compact 33” concealed spring type.

G. Grommets for Cable Passage through Countertops: 2-inch OD, black, molded-plastic grommets and matching plastic caps with slot for wire passage.

2.5 MISCELLANEOUS MATERIALS

A. Furring, Blocking Shims, and Hanging Strips with fire rated walls: Softwood or hardwood lumber, kiln dried to less than 15 percent moisture content.

B. Furring, Blocking, Shims, and Hanging Strips: Fire-retardant-treated softwood lumber, kiln dried to less than 15 percent moisture content.

C. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide nonferrous-metal or hot-dip galvanized anchors and inserts on inside face of exterior walls and elsewhere as required for corrosion resistance. Provide toothed-steel or lead expansion sleeves for drilled-in-place anchors.

D. Adhesives, General: Do not use adhesives that contain urea formaldehyde.

E. VOC Limits for Installation Adhesives and Glues: Use installation adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):

1. Wood Glues: 30 g/L.
2. Contact Adhesive: 250 g/L.

F. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.

2.6 FABRICATION, GENERAL

A. Interior Woodwork Grade: Unless otherwise indicated, provide Custom-grade interior woodwork complying with referenced quality standard.
B. Wood Moisture Content: Comply with requirements of referenced quality standard for wood moisture content in relation to ambient relative humidity during fabrication and in installation areas.

C. Sand fire-retardant-treated wood lightly to remove raised grain on exposed surfaces before fabrication.

D. Fabricate woodwork to dimensions, profiles, and details indicated. Ease edges to radius indicated for the following:

E. Complete fabrication, including assembly, finishing, and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

1. Notify Architect seven days in advance of the dates and times woodwork fabrication will be complete.
2. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that various parts fit as intended and check measurements of assemblies against field measurements indicated on Shop Drawings before disassembling for shipment.

F. Shop-cut openings to maximum extent possible to receive hardware, appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

1. Seal edges of openings in countertops with a coat of varnish.

2.7 PLASTIC-LAMINATE CABINETS

A. Grade: Custom.

B. AWI Type of Cabinet Construction: Flush overlay.

C. Laminate Cladding for Exposed Surfaces: High-pressure decorative laminate complying with the following requirements:

1. Horizontal Surfaces Other Than Tops: Grade HGS.
2. Vertical Surfaces: Grade HGS.
3. Edges: PVC edge banding, 0.12 inch thick. Color: Black

D. Materials for Semi exposed Surfaces:

1. Surfaces Other Than Drawer Bodies: High-pressure decorative laminate, Grade VGS.
a. Edges of Plastic-Laminate Shelves: PVC edge banding, 0.12 inch thick, matching laminate in color, pattern, and finish.
b. For semi exposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, Grade VGS.

2. Drawer Sides and Backs: Thermoset decorative panels.
3. Drawer Bottoms: Hardwood plywood.

E. Concealed Backs of Panels with Exposed Plastic Laminate Surfaces: High-pressure decorative laminate, Grade BKL.

F. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:

1. As selected by Architect from laminate manufacturer’s full range in the following categories:
 a. Solid colors.
 b. Wood grains.
 c. Patterns.

2.1 SOLID-SURFACING-MATERIAL COUNTERTOPS

A. Grade: Custom.

B. Solid-Surfacing-Material Thickness: 3/4 inch.

C. Colors, Patterns, and Finishes: Provide materials and products that result in colors of solid-surfacing material complying with the following requirements:

1. As selected by Architect from manufacturer’s full range.

D. Fabricate tops in one piece, unless otherwise indicated. Comply with solid-surfacing-material manufacturer’s written recommendations for adhesives, sealers, fabrication, and finishing.

1. Fabricate tops with shop-applied edges of materials and configuration indicated.
2. Fabricate tops with loose backsplashes for field application.

E. Install integral sink bowls in countertops in shop.

F. Drill holes in countertops for plumbing fittings and soap dispensers in shop.

2.2 SHOP FINISHING

A. Grade: Provide finishes of same grades as items to be finished.

B. General: Finish architectural woodwork at fabrication shop as specified in this Section. Defer only final touchup, cleaning, and polishing until after installation.

C. General: Finish such items at fabrication shop as specified in this Section. Refer to Division 09 painting Sections for finishing architectural woodwork not indicated to be shop finished.
PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition woodwork to average prevailing humidity conditions in installation areas.

B. Before installing architectural woodwork, examine shop-fabricated work for completion and complete work as required, including removal of packing and backpriming.

3.2 INSTALLATION

A. Grade: Install woodwork to comply with requirements for the same grade specified in Part 2 for fabrication of type of woodwork involved.

B. Assemble woodwork and complete fabrication at Project site to comply with requirements for fabrication in Part 2, to extent that it was not completed in the shop.

C. Install woodwork level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb (including tops) to a tolerance of 1/8 inch in 96 inches.

D. Scribe and cut woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

E. Fire-Retardant-Treated Wood: Handle, store, and install fire-retardant-treated wood to comply with chemical treatment manufacturer's written instructions, including those for adhesives used to install woodwork.

F. Anchor woodwork to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing as required for complete installation. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork and matching final finish if transparent finish is indicated.

G. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.

1. Install cabinets with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.

2. Fasten wall cabinets through back, near top and bottom, at ends and not more than 16 inches o.c. with No. 10 wafer-head screws sized for 1-inch penetration into wood framing, blocking, or hanging strips.

H. Countertops: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.

1. Align adjacent stone countertops and form seams to comply with manufacturer's written recommendations using adhesive in color to match countertop. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

2. Install countertops with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
3. Secure backsplashes to tops with concealed metal brackets at 16 inches o.c. and to walls with adhesive.
4. Caulk space between backsplash and wall with sealant specified in Division 07 Section “Joint Sealants.”

3.3 ADJUSTING AND CLEANING

A. Repair damaged and defective woodwork, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.

B. Clean, lubricate, and adjust hardware.

C. Clean woodwork on exposed and semi-exposed surfaces. Touch up shop-applied finishes to restore damaged or soiled areas.

END OF SECTION 06-4023
SECTION 07-2100
THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Perimeter insulation under slabs-on-grade.
 2. Perimeter wall insulation (supporting backfill).
 3. Concealed building insulation.
 4. Exposed building insulation.
 5. Sound attenuation insulation.
 B. Related Sections include the following:
 1. Division 09 Sections Portland Cement Plastering and Gypsum Board and for installation
 in metal-framed assemblies of insulation specified by referencing this Section.

1.3 DEFINITIONS
 A. Mineral-Fiber Insulation: Insulation composed of rock-wool fibers, slag-wool fibers, or glass
 fibers; produced in boards and blanket with latter formed into batts (flat-cut lengths) or rolls.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE
 A. Source Limitations: Obtain each type of building insulation through one source from a single
 manufacturer.
 B. Fire-Test-Response Characteristics: Provide insulation and related materials with the fire-test-
 response characteristics indicated, as determined by testing identical products per test method
 indicated below by UL or another testing and inspecting agency acceptable to authorities having
 jurisdiction. Identify materials with appropriate markings of applicable testing and inspecting
 agency.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration by moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

B. Protect plastic insulation as follows:

1. Do not expose to sunlight, except to extent necessary for period of installation and concealment.
2. Protect against ignition at all times. Do not deliver plastic insulating materials to Project site before installation time.
3. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 FOAM-PLASTIC BOARD INSULATION

A. Extruded-Polystyrene Board Insulation: ASTM C 578, of type and density indicated below, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively:

1. Available Manufacturers:
 a. DiversiFoam Products.
 b. Dow Chemical Company.
 c. Owens Corning.
 d. Pactiv Building Products Division.

2. Type IV, 1.60 lb/cu. ft., unless otherwise indicated.

B. Tapered, Polyisocyanurate Board Insulation with glass reinforced mat facer: ASTM C 1289, Type I, Class 1, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, based on tests performed on unfaced core on thicknesses up to 4 inches.

1. Available Manufacturers:
 a. Firestone Building Products Company.
c. Dow Chemical Company
d. Rmax, Inc.

2.3 GLASS-FIBER BLANKET INSULATION

A. Available Manufacturers:
 1. CertainTeed Corporation.
 2. Guardian Fiberglass, Inc.
 4. Knauf Fiber Glass.
 5. Owens Corning.

B. Faced, Glass-Fiber Blanket Insulation: ASTM C 665, Type II, Class A (membrane-faced surface with a flame-spread index of 25 or less); Category 1 (membrane is a vapor barrier), faced with polypropylene-scrim-kraft vapor-retarder membrane on 1 face.

C. Where glass-fiber blanket insulation is indicated by the following thicknesses, provide blankets in batt or roll form with thermal resistances indicated:
 1. 3-1/2 inches thick with a thermal resistance of 13 deg F x h x sq. ft. /Btu at 75 deg F.
 2. 6 inches thick with a thermal resistance of 21 deg F x h x sq. ft. /Btu at 75 deg F.
 3. 9-1/2 inches thick with a thermal resistance of 30 deg F x h x sq. ft. /Btu at 75 deg F.

2.4 INSULATION FASTENERS AND ADHESIVES

A. 1. Adhesive for bonding Insulation: Type recommended by insulation manufacturer and complying with fire resistance requirements.
 2. Mechanical Anchors: Type and size as recommended by insulation manufacturer for the type of application and condition of substrate.
 3. Wire Metal Straps: Type and gage as required to hold thermal and sound attenuation in place when insulation extends more than 8'-0" above finish floor level.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements of Sections in which substrates and related work are specified and for other conditions affecting performance.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of substances harmful to insulation
3.3 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and application indicated.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed at any time to ice, rain, and snow.

C. Extend insulation in thickness indicated to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Water-Piping Coordination: If water piping is located within insulated exterior walls, coordinate location of piping to ensure that it is placed on warm side of insulation and insulation encapsulates piping.

E. For preformed insulating units, provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.

3.4 INSTALLATION OF PERIMETER INSULATION

A. On vertical surfaces, set insulation units in adhesive applied according to manufacturer's written instructions. Use adhesive recommended by insulation manufacturer.

 1. If not otherwise indicated, extend insulation a minimum of 24 inches below exterior grade line.

B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.

C. Protect below-grade insulation on vertical surfaces from damage during backfilling by applying protection course with joints butted. Set in adhesive according to insulation manufacturer's written instructions.

D. Protect top surface of horizontal insulation from damage during concrete work by applying protection course with joints butted.

3.5 INSTALLATION OF GENERAL BUILDING INSULATION

A. Apply insulation units to substrates by method, complying with manufacturer's written instructions.

B. Seal joints between foam-plastic insulation units by applying adhesive, mastic, or sealant to edges of each unit to form a tight seal as units are shoved into place. Fill voids in completed installation with adhesive, mastic, or sealant as recommended by insulation manufacturer.

C. Set vapor-retarder-faced units with vapor retarder to warm-in-winter side in location indicated of construction, unless otherwise indicated.
1. Tape joints and ruptures in vapor retarder, and seal each continuous area of insulation to surrounding construction to ensure airtight installation.

D. Install glass-fiber insulation in cavities formed by framing members according to the following requirements:

1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill cavity, provide lengths that will produce a snug fit between ends.
2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.

3.6 PROTECTION

A. Protect installed insulation and vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 07-2100
SECTION 07 26 00

UNDER-SLAB VAPOR RETARDER FOR CONCRETE SLABS-ON-GRADE

PART 1 – GENERAL

1.1 SUMMARY

A. Products Supplied Under This Section
 1. Vapor Retarder, seam tape, mastic, pipe boots for installation under concrete slabs.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Cast-in-place Concrete - Section 03 30 00
B. Concrete Forming and Accessories - Section 03 20 00
C. Earthwork for Building Construction - Section 31 23 11

1.3 REFERENCES

A. American Society for Testing and Materials (ASTM)
 1. ASTM E 96/E96M-10 Standard Test Methods for Water Vapor Transmission of Materials
 2. ASTM E 154-08a Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs
 3. ASTM E 1643-11 Standard Practice for Selection, Design, Installation and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs
 4. ASTM E 1745-11 Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs

B. American Concrete Institute (ACI)
 1. ACI 302.2R-06, Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials.

1.4 SUBMITTALS

A. Quality Control / Assurance
1. Comply with Section 01 33 00 – Submittal Procedures.

2. Independent laboratory test results showing compliance with ASTM & ACI Standards.

3. Manufacturer’s samples, literature

4. Manufacturer’s installation instructions for placement, seaming and pipe boot installation

B. Delivery, Storage, and Handling

1. Deliver materials to site in manufacturer's original, unopened containers and packaging, with labels clearly identifying product name and manufacturer.

2. Store materials in a clean dry area in accordance with manufacturer's instructions.

3. Stack membrane on smooth ground or wood platform to eliminate warping.

4. Protect materials during handling and application to prevent damage or contamination.

5. Ensure membrane is stamped with manufacturer’s name, product name and membrane thickness at intervals of no more than 85” (220 cm).

C. Environmental requirements

1. Product not intended for uses subject to abuse or permanent exposure to the elements.

2. Do not apply on frozen ground.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Vapor Retarder (Performance-Based Specifications)

1. Vapor Retarder must have the following qualities at minimum and meet floor finish manufacturer’s warranty requirements.

 a. Water Vapor Retarder ASTM E1745: Meets or exceeds Class A

 b. Maximum Permeance ASTM E96: 0.01 Perms or as required to meet Flooring Manufacturer’s Warranties.
c. Tensile Strength ASTM E154, Section 9: not less than 45 LBS. Force/Inch

d. Puncture Resistance ASTM D1709, Method B.

e. Thickness of Retarder (plastic) ACI 302.1R-96: Not less than 15 mils

f. Material: Virgin Polyethylene or Polyolefin

2. Vapor Retarder Products, may be by one of the following manufacturers or an approved equal, as long as the requirements above are met.

g. Insulation Solutions, http://www.insulationsolution.com

2.2 ACCESSORIES

A. Seam Tape

1. Tape must have the following qualities:

a. Water Vapor Transmission Rate ASTM E 96 0.3 perms or lower

B. Vapor Proofing Mastic

1. Mastic must have the following qualities:

a. Water Vapor Transmission Rate ASTM E 96 0.3 perms or lower

C. Pipe Boots

1. Construct pipe boots from vapor Retarder material, pressure sensitive tape and/or mastic per manufacturer’s instructions.

PART 3 – EXECUTION

3.1 EXAMINATION
A. Examine surfaces to receive membrane. Ensure compaction requirements have been completed and geotechnical firm has confirmed compaction requirements have been met. Notify Architect if surfaces are not acceptable. Do not begin surface preparation or application until unacceptable conditions have been corrected.

3.2 SURFACE PREPARATION

A. Prepare surfaces in accordance with manufacturers instructions.

3.3 INSTALLATION

A. Install Vapor Retarder:

1. Installation shall be in accordance with manufacturer’s instructions and ASTM E 1643.

 a. Unroll Vapor Retarder with the longest dimension parallel with the direction of the pour.

 b. Lap Vapor Retarder over footings and seal to foundation walls.

 c. Overlap joints 6 inches and seal with manufacturer’s tape.

 d. Seal all penetrations (including pipes) per manufacturer’s instructions.

 e. No penetration of the Vapor Retarder is allowed except for reinforcing steel and permanent utilities.

 f. Repair damaged areas by cutting patches of Vapor Retarder, overlapping damaged area 6 inches and taping all four sides with tape.

END OF SECTION 07 26 00
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and other Contract Documents, listed in the agreement between the Owner and Contractor, apply to this Section.

1.2 SUMMARY

A. Section includes standing-seam metal roof panels.

1.3 PRE-INSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project site.

1.4 DESIGN AND PERFORMANCE REQUIREMENTS

A. Complete engineered system by manufacturers engineering department including Design Load:
 1. Calculate wind uplift using ASCE-10
 2. Calculate clip spacing
 3. Verify stress and deflection of panel meet project design load
 4. Verify project design load conditions with ASTM 1592
 5. Verify project design load conditions with UL580 class 90

C. Air Infiltration:
 1. No air infiltration with 20 psf pressure differential per ASTM E 1680

D. Air Exfiltration:
 1. No air exfiltration with 20 psf pressure differential per ASTM E 1680

E. Water Resistance:
 1. No water penetration under 5 gal/hr spray at 20 psf pressure differential per ASTM E 1646

F. Static Water Pressure Head Test:
 1. No leakage up to 6 hours per ASTM E 2140-01

G. UL-Approved Rated Fire Roofs:
 1. 1, 1 ½ and 2 hour fire-rated assemblies per UL construction numbers P225, P510, P514, P516, P701 and P715
H. ASTM 1592:
 1. 22 ga. steel and 0.032" and 0.040" aluminum panels at 2'-6" and 5'-0" spans over open purlins. Design uplift loads for 24 ga. steel panels are 69.70 psf at 5'-0" clip spacing and 95.76 psf for 2'-6" clip spacing.

 2. Design uplift load for 22 ga. steel panels is 87.88 psf at 5'-0" clip spacing and 420 psf for 12" clip spacing. Design uplift loads for 0.032" aluminum panels are 48.48 psf for 5'-0" clip spacing and 66.67 psf for 2'-6" clip spacing. Design uplift loads for 0.040" aluminum panels are 66.67 psf at 5'-0" clip spacing and 82.42 psf for 2' 6" clip spacing.

I. TAS 201-94 Missile Impact Test:
 1. Results: No penetration when tested in accordance with TAS 201-94.

J. Miami Dade NOA
 1. Steel Panels NOA No. 11-1006.20

K. Roofing Systems Certified for Canada
 1. UL TGFU7-R9288

L. TAS 100-94 Wind Driven Rain Test
 1. No leakage at 110MPH

M. TAS 125, Standard Requirements for Metal Roofing Systems
 1. 22 Gauge Steel Panels Passed up to -120 PSF

N. Panels must have job site forming capabilities for projects with long panel runs over 50'

1.2 SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings:
 1. Include fabrication and installation layouts with dimensions of metal panels with clip spacing for wind uplift; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches. Include fastening types and sizes.

C. Samples: For each type of exposed finish required, prepared on Samples of size indicated below.
 1. Metal Panels: 12 inches long by actual panel width. Include clips, fasteners, closures, and other metal panel accessories.
 2. Include similar Samples of trim and accessories.
 3. Include samples of metal panel for color selection from all manufacturers’ finish options for Architect to select from.

D. Qualification Data: For Installer.
E. Product Test Reports: For each product, for tests performed by a qualified testing agency.

F. Field quality-control reports.

G. Sample Warranties: For special warranties.

H. Maintenance Data: For metal panels to include in maintenance manuals.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Installer of sheet metal roofing for a minimum of 10 years documented experience.

B. Panel Manufacturer: Minimum of 10 years experience in manufacturing architectural roof panels in a permanent stationary indoor facility. Provide facility information if requested.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

C. Store panels, flashings and accessories in a safe, dry environment under a waterproof breathable covering to prevent water damage. Allow for adequate ventilation to prevent condensation. Panels and flashings with strippable film shall not be stored in direct sunlight.

D. Remove strippable protective covering on metal panels during installation.

E. Upon receipt of delivery of metal panel system, and prior to signing the delivery ticket, the installer is to examine each shipment for damage and for completion of the consignment.

1.5 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers’ written instructions and warranty requirements.

1.6 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.7 WARRANTY

A. Material and Workmanship Warranty: Manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
a. Structural failures including rupturing, cracking, or puncturing.
b. Deterioration of metals and other materials beyond normal weathering.

2. Warranty Period: Two years from date of Substantial Completion.

B. Paint Finish Warranty: 30 years from date of Substantial Completion. If metallic colors are used, the “fade” part of the warranty shall be removed.

1. 30 years for Kynar type finish.
2. 20 years for Metallic/Mica finish, Custom finish

C. Installer’s Warranty: Submit installer's warranty, signed by Installer, covering the Work of this Section, including all components of roof panels for the following warranty period:

1. Warranty Period: Two years from date of Substantial Completion

D. Weather-tight Warranty:

1. Warranty Period: Twenty years from date of Substantial Completion

PART 2 - PRODUCTS

2.1 PANEL MATERIALS

A. Metallic-Coated Steel Sheet: aluminum-zinc alloy-coated steel sheet (Galvalume) complying with ASTM A 792/A 792M, Class AZ50/AZ55 coating designation; structural quality. Pre-painted by the coil-coating process to comply with ASTM A 755/A 755M.

2.2 FIELD-INSTALLED INSULATION

A. 1-1/2” Faced, Polyisocyanurate Board Insulation: ASTM C 1289, Type I, Class 1 aluminum foil, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, based on tests performed on unfaced core.

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet: 30 to 40 mils thick minimum, consisting of slip-resisting, polyethylene-film top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with release-paper backing; cold applied. Provide primer when recommended by underlayment manufacturer.

3. Products: Subject to compliance with requirements, provide one of the following:
 a. Carlisle Coatings & Waterproofing Inc., Div. of Carlisle Companies Inc.; CCW WIP 300HT.
 c. Fabral; RoofSeal.
 d. InterWrap; Titanium UDL 30, Titanium UDL 50.
 e. Owens Corning; WeatherLock Metal High Temperature Underlayment.

B. Felts: ASTM D 226, Type II (No. 30), asphalt-saturated organic felts if recommended by Manufacturer.
C. Slip Sheet: Manufacturer's recommended slip sheet, of type required for application.

2.4 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Sub-framing and Furring: Provide manufacturer's standard sections as required for support and alignment of metal panel system.

B. Panel Accessories: Provide components required for a complete, weather-tight panel system including trim, copings, fasciae, mullions, sills, corner units, panel clips, flashings, sealants, gaskets, fillers, panel closures, and similar items. Match material and finish of metal panels unless otherwise indicated.

C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

D. Panel Fasteners: Self-tapping screws designed to withstand design loads.

E. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are non-staining, and do not damage panel finish.

 1. Sealant Tape: Butyl
 2. Joint Sealant: One Part Poly

2.5 FABRICATION

A. General: Provide factory-formed metal roof panel system complying with ASTM E 1514 requirements.

B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

C. Form panels in continuous lengths, endlaps are not permitted.

D. Field forming of panels shall be done by factory employees operating the machines.

E. Fabricate metal panel joints with factory-installed butyl sealant that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

F. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
 4. Sealed Joints: Form non-expansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.

 a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal panel manufacturer for application, but not less than thickness of metal being secured.

2.7 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Steel Panels and Accessories:

 1. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 2. Mica Fluoropolymer: AAMA 621. Two-coat fluoropolymer finish with suspended mica flakes containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 3. Three-Coat Metallic Fluoropolymer: AAMA 621. Three-coat fluoropolymer finish with suspended metallic flakes containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 4. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil.

D. Aluminum Panels and Accessories:

 1. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 2. Mica Fluoropolymer: AAMA 2605. Two-coat fluoropolymer finish with suspended mica flakes containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 3. Three-Coat Metallic Fluoropolymer: AAMA 2605. Three-coat fluoropolymer finish with suspended metallic flakes containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

 4. Exposed Anodized Finish:

 a. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

 b. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.

1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer.

2. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.

B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install sub-framing, furring, and other miscellaneous panel support members and anchorages according to ASTM C 754 and metal panel manufacturer's written recommendations.

3.3 METAL PANEL INSTALLATION

A. General: Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.

1. Shim or otherwise plumb substrates receiving metal panels.

2. Flash and seal metal panels at perimeter of all openings. Refer to manufacturers recommendations.

3. Install flashing and trim as metal panel work proceeds.

4. Panels to be in one continuous length, long length roofs must be field formed by Manufacturer.

5. Provide weather-tight escutcheons for pipe- and conduit-penetrating panels.

B. Fasteners:

1. Steel Panels: Use stainless-steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

2. Aluminum Panels: Use aluminum or stainless-steel fasteners for surfaces exposed to the exterior; use aluminum or galvanized-steel fasteners for surfaces exposed to the interior.

C. Anchor Clips: Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

D. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.
E. Standing-Seam Metal Roof Panel Installation: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended in writing by manufacturer.

1. Install clips to supports with self-tapping fasteners.
2. Install pressure plates at locations indicated in manufacturer's written installation instructions.
3. Seamed Joint: Crimp standing seams with manufacturer-approved, motorized seamer tool so metal roof panels, and factory-applied sealant are completely engaged.

F. Accessory Installation: Install accessories with positive anchorage to building and weather tight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.

1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof and weather-resistant performance.
2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

3.4 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet on slope and location lines as indicated and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect metal roof panel installation, including accessories. Report results in writing.
B. Remove and replace applications of metal roof panels where tests and inspections indicate that they do not comply with specified requirements.
C. Prepare inspection reports.
D. Installer must have installation shop drawings on site at all times.

3.6 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.
B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.
SECTION 07-6200
SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Formed Products:
 a. Formed steep-slope roof sheet metal fabrications.
 b. Formed wall sheet metal fabrications.
 c. Formed equipment support flashing.

B. Related Sections:
 1. Division 06 Section "Rough Carpentry" for wood nailers, curbs, and blocking.
 2. Division 07 Section "Standing Seam Metal Roof System" for installing sheet metal flashing and trim integral with roofing.
 3. Division 07 Section "Roof Specialties" for manufactured roof specialties not part of sheet metal flashing and trim.

1.3 PERFORMANCE REQUIREMENTS
A. General: Sheet metal flashing and trim assemblies as indicated shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Thermal Movements: Provide sheet metal flashing and trim that allows for thermal movements from ambient and surface temperature changes.

 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.

B. Shop Drawings: Show fabrication and installation layouts of sheet metal flashing and trim, including plans, elevations, and keyed details. Distinguish between shop- and field-assembled work. Include the following:
1. Identification of material, thickness, weight, and finish for each item and location in Project.
2. Details for forming sheet metal flashing and trim, including profiles, shapes, seams, and dimensions.
3. Details for joining, supporting, and securing sheet metal flashing and trim, including layout of fasteners, cleats, clips, and other attachments. Include pattern of seams.
4. Details of termination points and assemblies, including fixed points.
5. Details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
6. Details of special conditions.
7. Details of connections to adjoining work.

1.5 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

B. Sheet Metal Flashing and Trim Standard: Comply with SMACNA's "Architectural Sheet Metal Manual" unless more stringent requirements are specified or shown on Drawings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.

B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to the extent necessary for the period of sheet metal flashing and trim installation.

PART 2 - PRODUCTS

2.1 SHEET METALS

A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying a strippable, temporary protective film before shipping.

1. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 coating designation; structural quality.

2.2 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and recommended by manufacturer of primary sheet metal unless otherwise indicated.
B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating.
 b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
2. Fasteners for Zinc-Coated Galvanized Steel Sheet: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329 or Series 300 stainless steel.

C. Solder:

1. For Stainless Steel: ASTM B 31, Grade Sn60, with an acid flux of type recommended by stainless-steel sheet manufacturer.

D. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.

E. Elastomeric Sealant: ASTM C 920, elastomeric silicone polymer sealant; low modulus; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

F. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

2.3 FABRICATION, GENERAL

A. General: Custom fabricate sheet metal flashing and trim to comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, geometry, metal thickness, and other characteristics of item indicated. Fabricate items at the shop to greatest extent possible.

1. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
2. Obtain field measurements for accurate fit before shop fabrication.
3. Form sheet metal flashing and trim without excessive oil canning, buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.
4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces exposed to view.

B. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet on slope and location lines as indicated and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

C. Sealed Joints: Form non-expansion but movable joints in metal to accommodate elastomeric sealant.
D. Expansion Provisions: Where lapped expansion provisions cannot be used, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with butyl sealant concealed within joints.

E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

F. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.

G. Do not use graphite pencils to mark metal surfaces.

2.4 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Base Flashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.028 inch thick.

B. Counterflashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick.

C. Flashing Receivers: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick.

D. Roof-Penetration Flashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.028 inch thick.

2.5 WALL SHEET METAL FABRICATIONS

A. Opening Flashings in Frame Construction: Fabricate head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings. Form head and sill flashing with 2-inch- high, end dams. Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch.

2.6 MISCELLANEOUS SHEET METAL FABRICATIONS

A. Equipment Support Flashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 Inch

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions and other conditions affecting performance of the Work.

 1. Verify compliance with requirements for installation tolerances of substrates.
2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.

B. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 UNDERLAYMENT INSTALLATION

A. General: Install underlayment as indicated on Drawings.

B. Polyethylene Sheet: Install polyethylene sheet with adhesive for anchorage to minimize use of mechanical fasteners under sheet metal flashing and trim. Apply in shingle fashion to shed water, with lapped and taped joints of not less than 2 inches.

C. Felt Underlayment: Install felt underlayment with adhesive for temporary anchorage to minimize use of mechanical fasteners under sheet metal flashing and trim. Apply in shingle fashion to shed water, with lapped joints of not less than 2 inches.

3.3 INSTALLATION, GENERAL

A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.

1. Install sheet metal flashing and trim true to line and levels indicated. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
3. Space cleats not more than 12 inches apart. Anchor each cleat with two fasteners. Bend tabs over fasteners.
4. Install exposed sheet metal flashing and trim without excessive oil canning, buckling, and tool marks.
5. Install sealant tape where indicated.
6. Torch cutting of sheet metal flashing and trim is not permitted.
7. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating or by other permanent separation as recommended by SMACNA.

1. Coat back side of uncoated aluminum and stainless-steel sheet metal flashing and trim with bituminous coating where flashing and trim will contact wood, ferrous metal, or cementitious construction.
2. Underlayment: Where installing metal flashing directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip sheet or install a course of polyethylene sheet.
C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently watertight, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.

D. Fastener Sizes: Use fasteners of sizes that will penetrate wood sheathing not less than 1-1/4 inches for nails and not less than 3/4 inch for wood screws metal decking not less than recommended by fastener manufacturer to achieve maximum pull-out resistance

E. Seal joints as shown and as required for watertight construction.

1. Where sealant-filled joints are used, embed hooked flanges of joint members not less than 1 inch into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is moderate, between 40 and 70 deg F, set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F.
2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants."

F. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets to be soldered to a width of 1-1/2 inches, except reduce pre-tinning where pre-tinned surface would show in completed Work.

1. Do not solder aluminum sheet.
2. Do not use torches for soldering. Heat surfaces to receive solder and flow solder into joint. Fill joint completely. Completely remove flux and spatter from exposed surfaces.

G. Rivets: Rivet joints where indicated and where necessary for strength.

3.4 ROOF FLASHING INSTALLATION

A. General: Install sheet metal flashing and trim to comply with performance requirements, of SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, set units true to line, and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.

B. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending a minimum of 4 inches over base flashing. Install stainless-steel draw band and tighten.

C. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches over base flashing. Lap counterflashing joints a minimum of 4 inches and bed with sealant. Secure in a waterproof manner by means of snap-in installation and sealant or lead wedges and sealant.
3.5 WALLFLASHING INSTALLATION

A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to SMACNA recommendations and as indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.

B. Through-Wall Flashing: Installation of through-wall flashing is specified in Division 04 Section Stone Masonry."

C. Opening Flashings in Frame Construction: Install continuous head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings.

3.6 MISCELLANEOUS FLASHING INSTALLATION

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with installation of roofing and equipment. Weld or seal flashing with elastomeric sealant to equipment support member.

3.7 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet on slope and location lines as indicated and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

B. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerances specified in MCA's "Guide Specification for Residential Metal Roofing."

3.8 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean and neutralize flux materials. Clean off excess solder.

C. Clean off excess sealants.

D. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of installation, remove unused materials and clean finished surfaces. Maintain in a clean condition during construction.

E. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 07-6200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Roof curbs.
2. Equipment supports.
3. Roof supports.
4. Preformed flashings.

B. Related Sections include the following:

1. Division 05 Section "Metal Fabrications" for metal vertical ladders, ships' ladders, and stairs for access to roof hatches.
2. Division 06 Section "Rough Carpentry" for roof sheathing, wood cants, and wood nailers.
3. Division 07 Section "Standing Seam Metal Roof System" for preformed metal roofing.
4. Division 07 Section "Sheet Metal Flashing and Trim" for shop- and field-fabricated metal flashing and counter flashing, roof expansion-joint covers, and miscellaneous sheet metal trim and accessories.
5. Division 23 Section "HVAC roof-mounted HVAC units."

1.3 SUBMITTALS

A. Product Data: For each type of roof accessory indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: Show fabrication and installation details for roof accessories. Show layouts of roof accessories including plans and elevations. Indicate dimensions, weights, loadings, required clearances, method of field assembly, and components. Include plans, elevations, sections, details, and attachments to other work.

C. Coordination Drawings: Roof plans, drawn to scale, and coordinating penetrations and roof-mounted items. Show the following:

1. Size and location of roof accessories specified in this Section.
2. Method of attaching roof accessories to roof or building structure.
3. Other roof-mounted items including mechanical and electrical equipment, ductwork, piping, and conduit.
D. Samples: For each type of exposed factory-applied finish required and for each type of roof accessory indicated, prepared on Samples of size to adequately show color.

E. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

A. Sheet Metal Standard: Comply with SMACNA's "Architectural Sheet Metal Manual" details for fabrication of units, including flanges and cap flashing to coordinate with type of roofing indicated.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Pack, handle, and ship roof accessories properly labeled in heavy-duty packaging to prevent damage.

1.6 PROJECT CONDITIONS

A. Field Measurements: Verify required openings for each type of roof accessory by field measurements before fabrication and indicate measurements on Shop Drawings.

1.7 COORDINATION

A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.

1.8 WARRANTY

A. Special Warranty on Painted Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace roof accessories that show evidence of deterioration of factory-applied finishes within specified warranty period.

PART 2 - EXECUTION

2.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of work.

1. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored and is ready to receive roof accessories.
2. Verify dimensions of roof openings for roof accessories.
3. Proceed with installation only after unsatisfactory conditions have been corrected.
2.2 INSTALLATION

A. General: Install roof accessories according to manufacturer's written instructions. Anchor roof accessories securely in place and capable of resisting forces specified. Use fasteners, separators, sealants, and other miscellaneous items as required for completing roof accessory installation. Install roof accessories to resist exposure to weather without failing, rattling, leaking, and fastener disengagement.

B. Install roof accessories to fit substrates and to result in watertight performance.

C. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.

1. Coat concealed side of uncoated aluminum roof accessories with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
2. Underlayment: Where installing exposed-to-view components of roof accessories directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip sheet, or install a course of polyethylene underlayment.

D. Install roof accessories level, plumb, true to line and elevation, and without warping, jogs in alignment, excessive oil canning, buckling, or tool marks.

E. Roof Hatch Installation:

1. Check roof hatch for proper operation. Adjust operating mechanism as required. Clean and lubricate joints and hardware.
2. Attach safety railing system to roof hatch curb.
3. Attach ladder safety post according to manufacturer's written instructions.

2.3 CLEANING

A. Clean exposed surfaces according to manufacturer's written instructions.

END OF SECTION 07-7200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Silicone joint sealants.
2. Urethane joint sealants.
3. Polysulfide joint sealants.
4. Latex joint sealants.
5. Solvent-release-curing joint sealants.
6. Preformed joint sealants.
7. Acoustical joint sealants.

B. Related Sections:

1. Division 04 Section "Unit Masonry" for masonry control and expansion joint fillers and gaskets.
2. Division 08 Section "Aluminum Entrances and Storefronts" for structural and other glazing sealants.
3. Division 08 Section "Plastic Glazing" for plastic glazing sealants.
4. Division 09 Section "Gypsum Board" for sealing perimeter joints.
5. Division 09 Section "Tiling" for sealing tile joints.
6. Division 09 Section "Acoustical Ceilings" for sealing edge moldings at perimeters with acoustical sealant.

1.3 SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

C. Samples for Verification: For each kind and color of joint sealant required, provide samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

D. Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

E. Qualification Data: For qualified Installer.

F. Product Certificates: For each kind of joint sealant and accessory, from manufacturer.

G. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating that sealants comply with requirements.

H. Warranties: Sample of warranties.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Source Limitations: Obtain each kind of joint sealant from single source from single manufacturer.

1.5 PROJECT CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.6 WARRANTY

A. Special Installer's Warranty: Manufacturer's standard form in which Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer's standard form in which joint-sealant manufacturer agrees to furnish joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. VOC Content of Interior Sealants: Provide sealants and sealant primers for use inside the weatherproofing system that comply with the following limits for VOC content when calculated according to 40 CFR 59, Part 59, Subpart D (EPA Method 24):

1. Architectural Sealants: 250 g/L.
2. Sealant Primers for Nonporous Substrates: 250 g/L.
3. Sealant Primers for Porous Substrates: 775 g/L.

C. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.

1. Suitability for Immersion in Liquids. Where sealants are indicated for Use I for joints that will be continuously immersed in liquids, provide products that have undergone testing according to ASTM C 1247. Liquid used for testing sealants is deionized water, unless otherwise indicated.

D. Stain-Test-Response Characteristics: Where sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

E. Suitability for Contact with Food: Where sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.

F. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer’s full range.

2.2 SEALANTS

A. General

1. Unless noted otherwise, all sealants shall be the products of the designed manufacturers. Subject to compliance with requirements, comparable products may be used based on Architect’s review of submittals per Section 01-3300 “Submittal Procedures”.

2. All sealants for each application shall be the product of a single manufacturer suitable for the intended use.

B. Product Characteristics

<table>
<thead>
<tr>
<th>Location</th>
<th>Sealant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Sealant</td>
<td>Tremco Dymonic</td>
</tr>
<tr>
<td>ASTM C920</td>
<td>Vulkem 116</td>
</tr>
<tr>
<td>Grade NS</td>
<td>Sonneborn NPI</td>
</tr>
</tbody>
</table>
2. Horizontal Sealant
 ASTM C920
 Grade P or NS
 - Tremco THC-900/901
 - Vulkem 245
 - Sonneborn SL-2

3. Interior Caulk
 ASTM C834
 - Tremco Acrylic Latex 834
 - Pecora AC20
 - Sonneborn Sonolac

4. Acoustical Sealant
 Non Rated – Non Hardening
 - Tremco "Acoustical Sealant
 - Lowery’s10A Acoustical Sealer

5. Acoustical Sealant
 Fire Rated
 - Dow Fire Stop Sealant

6. Silicone Sealant
 Sanitary
 - GE SCS 1702
 - DOW 786

7. Silicone Sealant
 Structural GE SCS 1200
 - DOW 795
 - Tremco Spectrem 2

8. Subject to compliance with requirements, products of equal performance may be used
 based on the Architect’s review of submittals per Section 01630 “Product Options and
 Substitutions”.

C. For other applications provide products especially formulated for the proposed use and
 approved in advance by the Architect.

D. Colors:
 1. Colors for each sealant installation will be selected by the Architect from the
 manufacturers full color line normally available from the specified manufacturer.
 2. Should such standard color not be available from the approved manufacturer except at
 additional charge, provide such colors at no additional cost to the owner.

2.3 RATED ASSEMBLY PENETRATION SEALANTS AND FOAMS

A. Manufacturer
 1. Design is based on products manufactured by:
 - DOW Corning Corporation
 - Midland, Michigan 48686-0994
 - (517) 496-4000
 2. Subject to compliance with requirements, products of equal performance may be used
 based on the Architect’s review of submittals per Section 01630 “Product Options and
 Substitutions.

B. Product Characteristics: Fire Stop Sealant
 1. Product: Dow Corning Fire Stop Sealant
 2. Materials: One part, ready to use materials with the consistency of a soft caulk.
 3. Classified: By Underwriter’s Laboratory, Inc.
C. Product Characteristics: Fire Stop Foam
 1. Product: Dow Corning Fire Stop Foam
 3. Classified: By Underwriter’s Laboratory, Inc.

2.4 Pre-Compressed Joint Filler

A. Manufacturer
 1. Design is based on products manufactured by:
 EMSEAL Joint Systems Ltd.
 48 Union Street 203-968-3828
 Stamford, CT 06906 1-800-872-3677
 2. Subject to compliance with requirements, products of equal performance may be used
 based on the Architect’s review of submittals per Section 01630 “Product Option and
 Substitutions.”

B. Product Characteristics
 1. Product: Emseal Greyflex Expanding Foam
 2. Material: High density open cell polyurethane foam with stabilized acrylics.
 Precompressed in shrink wrapped lengths or in tape form with adhesive backing on reels.
 3. Size: Compression to 25% of joint dimension.

2.5 Primers
 Use only those primers which have been tested for durability on the surfaces to be sealed and
 are specifically recommended for this installation by the manufacturer of the sealant used.

2.6 Backup Materials
 Use only those backup materials which are specifically recommended for this installation by the
 manufacturer of the sealant used, which are non-absorbent, and which are non-staining.

2.7 Bond Breaker
 Bond breaker, if required, shall be as recommended by the sealant manufacturer.

2.8 Masking Tape
 For making around joints, provide an appropriate masking tape which will effectively prevent
 application of sealant on surfaces not scheduled to receive it, and which is removable without
 damage to substrate.

2.9 Solvents
 Solvents or cleaning agents shall be as recommended by the sealant manufacturer and the
 adjacent surface/finish manufacturers.

2.10 Other Materials
 Provide other materials, not specifically described but required for a complete and proper
 installation, as selected by the contractor subject to the approval of the Architect.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.
 c. Unglazed surfaces of ceramic tile.
 d. Exterior insulation and finish systems.

3. Remove laitance and form-release agents from concrete.

4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Porcelain enamel.
 d. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.
3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:

1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.

1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
3. Provide concave joint profile per Figure 8A in ASTM C 1193, unless otherwise indicated.
4. Provide flush joint profile where indicated per Figure 8B in ASTM C 1193.
5. Provide recessed joint configuration of recess depth and at locations indicated per Figure 8C in ASTM C 1193.

 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

G. Installation of Preformed Silicone-Sealant System: Comply with the following requirements:

1. Apply masking tape to each side of joint, outside of area to be covered by sealant system.
2. Apply silicone sealant to each side of joint to produce a bead of size complying with preformed silicone-sealant system manufacturer's written instructions and covering a bonding area of not less than 3/8 inch. Hold edge of sealant bead 1/4 inch inside masking tape.
3. Within 10 minutes of sealant application, press silicone extrusion into sealant to wet extrusion and substrate. Use a roller to apply consistent pressure and ensure uniform contact between sealant and both extrusion and substrate.

4. Complete installation of sealant system in horizontal joints before installing in vertical joints. Lap vertical joints over horizontal joints. At ends of joints, cut silicone extrusion with a razor knife.

H. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping. Do not pull or stretch material. Produce seal continuity at ends, turns, and intersections of joints. For applications at low ambient temperatures, apply heat to sealant in compliance with sealant manufacturer's written instructions.

I. Acoustical Sealant Installation: At sound-rated assemblies and elsewhere as indicated, seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 07-9200
SECTION 08-1113
HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Standard hollow metal doors and frames.

B. Related Sections:
 1. Division 04 Section "Reinforced Unit Masonry" for embedding anchors for hollow metal
 work into masonry construction.
 2. Division 08 Section "Door Hardware" for door hardware for hollow metal doors.
 3. Division 09 Sections "Exterior Painting" and "Interior Painting" for field painting hollow
 metal doors and frames.
 4. Division 26 Sections for electrical connections including conduit and wiring for door
 controls and operators.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings.

B. Standard Hollow Metal Work: Hollow metal work fabricated according to ANSI/SDI A250.8.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material
 descriptions, core descriptions, fire-resistance rating and finishes.

B. Shop Drawings: Include the following:
 1. Elevations of each door design.
 2. Details of doors, including vertical and horizontal edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
 8. Details of moldings, removable stops, and glazing.
C. Other Action Submittals:

1. Schedule: Provide a schedule of hollow metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with door hardware schedule.

D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each type of hollow metal door and frame assembly.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain hollow metal work from single source from single manufacturer.

B. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled.

1. In accordance with ASTME 152 "Standard methods of five tests of door assembles".

C. Fire-Rated, Borrowed-Light Frame Assemblies: Assemblies complying with NFPA 80 that are listed and labeled, by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated.

D. Smoke-Control Door Assemblies: Comply with NFPA 105 or UL 1784.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow metal work palletized, wrapped, or crated to provide protection during transit and Project-site storage. Do not use non-vented plastic.

1. Provide additional protection to prevent damage to finish of factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow metal work under cover at Project site. Place in stacks of five units maximum in a vertical position with heads up, spaced by blocking, on minimum 4-inch- high wood blocking. Do not store in a manner that traps excess humidity.

1. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

1.7 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.
1.8 COORDINATION

A. Coordinate installation of anchorages for hollow metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amweld Building Products, LLC.
2. Benchmark; a division of Therma-Tru Corporation.
3. Ceco Door Products; an Assa Abloy Group company.
4. Curries Company; an Assa Abloy Group company.
5. Deanssteel Manufacturing Company, Inc.
7. Fleming Door Products Ltd.; an Assa Abloy Group company.
10. Kewanee Corporation (The).
11. Mesker Door Inc.
14. Steelcraft; an Ingersoll-Rand company.
15. Windsor Republic Doors.

2.2 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Frame Anchors: ASTM A 591/A 591M, Commercial Steel (CS), 40Z coating designation; mill phosphatized.

1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

E. Powder-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow metal frames of type indicated.
F. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.

G. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool with 6- to 12-lb/cu. ft. density; with maximum flame-spread and smoke-development indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

H. Glazing: Comply with requirements in Division 08 Section "Glazing."

I. Bituminous Coating: Cold-applied asphalt mastic, SSPC-Paint 12, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.3 STANDARD HOLLOW METAL DOORS

A. General: Provide doors of design indicated, not less than thickness indicated; fabricated with smooth surfaces, without visible joints or seams on exposed faces unless otherwise indicated. Comply with ANSI/SDI A250.8.

1. Design: Flush panel
2. Core Construction: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core.
 a. Fire Door Core: As required to provide fire-protection ratings indicated.
 b. Thermal-Rated (Insulated) Doors: Where indicated, provide doors fabricated with thermal-rating with V factor of 0.24 of not less than when tested according to ASTM C 1363.
 1) Locations: Exterior doors and interior doors where indicated.
5. Top and Bottom Edges: Closed with flush or inverted 0.042-inch- thick, end closures or channels of same material as face sheets.

B. Exterior Doors: Face sheets fabricated from metallic-coated steel sheet. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level:

1. Level 2 and Physical Performance Level B (Heavy Duty), Model 2 (Seamless).

C. Interior Doors: Face sheets fabricated from cold-rolled steel sheet unless metallic-coated sheet is indicated. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level:

1. Level 2 and Physical Performance Level B (Heavy Duty), Model 2 (Seamless).

D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same material as door face sheets.
E. Fabricate concealed stiffeners and hardware reinforcement from either cold- or hot-rolled steel sheet.

2.4 STANDARD HOLLOW METAL FRAMES

A. General: Comply with ANSI/SDI A250.8 and with details indicated for type and profile.

 1. Fabricate frames with mitered corners.
 2. Fabricate frames as full profile welded unless otherwise indicated.
 3. Frames for Level 2 Steel Doors: 16 gage thick steel sheet.

C. Interior Frames: Fabricated from cold-rolled steel sheet.
 1. Fabricate frames with mitered corners.
 2. Fabricate frames as full profile welded unless otherwise indicated.
 3. Frames for Level 2 Steel Doors: 16 gage thick steel sheet.
 4. Frames for Borrowed Lights: 18 gage steel

D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcement plates from same material as frames.

2.5 FRAME ANCHORS

A. Jamb Anchors: Three per Jamb (min). 18 gage
 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
 2. Stud-Wall Type: Designed to engage stud, welded to back of frames;
 3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
 4. Post-installed Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch-diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

B. Floor Anchors: Formed from same material as frames, not less than 18 gage thick, and as follows:
 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at finish floor surface.

2.6 HOLLOW METAL PANELS

A. Provide hollow metal panels of same materials, construction, and finish as specified for adjoining hollow metal work.
2.7 STOPS AND MOLDINGS

A. Moldings for Glazed Lites in Doors: Minimum 0.032 inch thick, fabricated from same material as door face sheet in which they are installed.

B. Fixed Frame Moldings: Formed integral with hollow metal frames, a minimum of 5/8 inch high unless otherwise indicated.

C. Loose Stops for Glazed Lites in Frames: Minimum 5/8 inch thick, fabricated from same material as frames in which they are installed.

2.8 ACCESSORIES

A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

B. Ceiling Struts: Minimum 1/4-inch-thick by 1-inch wide steel.

C. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

2.9 FABRICATION

A. Fabricate hollow metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Tolerances: Fabricate hollow metal work to tolerances indicated in ANSI/NAAMM-HMMA 861.

C. Hollow Metal Doors:

1. Exterior Doors: Provide weep-hole openings in bottom of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.

2. Glazed Lites: Factory cut openings in doors.

3. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted.

D. Hollow Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Welded Frames: Weld flush face joints continuously; grind, fill, dress, and make smooth, flush, and invisible.

2. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.

3. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.

4. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.

5. Floor Anchors: Weld anchors to bottom of jambs and Mullions with at least four spot welds per anchor.
6. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Masonry Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Three anchors per jamb.
 b. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Three anchors per jamb.
 c. Compression Type: Not less than three anchors in each jamb.
 d. Post-installed Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.

7. Door Silencers: Except on weather-stripped doors, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

E. Fabricate concealed stiffeners, edge channels, and hardware reinforcement from either cold- or hot-rolled steel sheet.

F. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates furnished as specified in Division 08 Section "Door Hardware."
 1. Locate hardware as indicated, or if not indicated, according to ANSI/NAAMM-HMMA 861.
 2. Reinforce doors and frames to receive non-templated, mortised and surface-mounted door hardware.
 3. Comply with applicable requirements in ANSI/SDI A250.6 and ANSI/DHI A115 Series specifications for preparation of hollow metal work for hardware.
 4. Coordinate locations of conduit and wiring boxes for electrical connections with Division 26 Sections.

G. Stops and Moldings: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow metal work.
 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings, so that each glazed lite is capable of being removed independently.
 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
 4. Provide loose stops and moldings on inside of hollow metal work.
 5. Coordinate rabbet width between fixed and removable stops with type of glazing and type of installation indicated.
2.10 STEEL FINISHES

A. Prime Finish: Apply manufacturer’s standard primer immediately after cleaning and pre-treating.

1. Shop Primer: Manufacturer’s standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.11 Color and Gloss: As selected by Architect from manufacturer’s full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.

C. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Prior to installation, adjust and securely brace welded hollow metal frames for squareness, alignment, twist, and plumbness to the following tolerances:

1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
4. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.

C. Drill and tap doors and frames to receive non-templated, mortised, and surface-mounted door hardware.
3.3 INSTALLATION

A. General: Install hollow metal work plumb, rigid, properly aligned, and securely fastened in place; comply with Drawings and manufacturer’s written instructions.

B. Hollow Metal Frames: Install hollow metal frames of size and profile indicated. Comply with ANSI/SDI A250.11.

1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.

 a. At fire-protection-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable glazing stops located on secure side of opening.
 d. Install door silencers in frames before grouting.
 e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 f. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 g. Field apply bituminous coating to backs of frames that are filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with post-installed expansion anchors.

 a. Floor anchors may be set with powder-actuated fasteners instead of post-installed expansion anchors if so indicated and approved on Shop Drawings.

4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.

5. Concrete Walls: Solidly fill space between frames and concrete with grout. Take precautions, including bracing frames, to ensure that frames are not deformed or damaged by grout forces.

6. In-Place Concrete or Masonry Construction: Secure frames in place with post-installed expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

7. In-Place Gypsum Board Partitions: Secure frames in place with post-installed expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

8. Ceiling Struts: Extend struts vertically from top of frame at each jamb to overhead structural supports or substrates above frame unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction. Provide adjustable wedged or bolted anchorage to frame jamb members.

9. Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances:

 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.

c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.

d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Standard Steel Doors:

 a. Jambs and Head: 1/8 inch plus or minus 1/16 inch.
 b. Between Edges of Pairs of Doors: 1/8 inch plus or minus 1/16 inch.
 c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

3. Smoke-Control Doors: Install doors according to NFPA 105.

D. Glazing: Comply with installation requirements in Division 08 Section "Glazing" and with hollow metal manufacturer's written instructions.

1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow metal work immediately after installation.

C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

D. Metallic-Coated Surfaces: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION 08-1113
SECTION 08-1416
FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Solid-core doors with wood-veneer faces.
2. Factory finishing flush wood doors.

B. Related Sections:

1. Division 08 Section "Glazing" for glass view panels in flush wood doors.
2. Division 08 Section "Finish Hardware."

1.3 SUBMITTALS

A. Product Data: For each type of door indicated. Include details of core and edge construction, louvers, and trim for openings. Include factory-finishing specifications.

B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; location and extent of hardware blocking; and other pertinent data.

1. Indicate dimensions and locations of mortises and holes for hardware.
2. Indicate dimensions and locations of cutouts.
3. Indicate requirements for veneer matching.
4. Indicate doors to be factory finished and finish requirements.
5. Indicate fire-protection ratings for fire-rated doors.

C. Samples for Initial Selection: For factory-finished doors.

D. Samples for Verification:

1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches, for each material and finish. For each wood species and transparent finish, provide set of three samples showing typical range of color and grain to be expected in the finished work.
2. Corner sections of doors, approximately 8 by 10 inches, with door faces and edges representing actual materials to be used.

 a. Provide samples for each species of veneer and solid lumber required.
 b. Provide samples for each color, texture, and pattern of plastic laminate required.
c. Finish veneer-faced door samples with same materials proposed for factory-finished doors.

3. Louver blade and frame sections, 6 inches long, for each material and finish specified.
4. Frames for light openings, 6 inches long, for each material, type, and finish required.

E. Warranty: Sample of warranty.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain flush wood doors from single manufacturer.

B. Quality Standard: In addition to requirements specified, comply with AWI's "Architectural Woodwork Quality Standards Illustrated."

C. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Comply with requirements of referenced standard and manufacturer's written instructions.

B. Package doors individually in cardboard cartons and wrap bundles of doors in plastic sheeting.

C. Mark each door on top and bottom rail with opening number used on Shop Drawings.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weather tight, wet work in spaces is complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

B. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weather tight, wet work in spaces is complete and dry, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 humidity range percent during the remainder of the construction period.

1.7 WARRANTY

A. Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

a. Warping (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section.

b. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.
2. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Algoma Hardwoods, Inc.
 2. Eggers Industries.

2.2 DOOR CONSTRUCTION, GENERAL
A. WDMA I.S.1-A Performance Grade:
 1. Heavy Duty unless otherwise indicated.
 2. Extra Heavy Duty: Classrooms, public toilets, janitor’s closets.
B. Particleboard-Core Doors:
 2. Particleboard: Straw-based particleboard complying with ANSI A208.1, Grade LD-2
 3. Blocking: Provide wood blocking in particleboard-core doors as follows:
 a. 5-inch top-rail blocking, in doors indicated to have closers.
 b. 5-inch bottom-rail blocking, in exterior doors and doors indicated to have kick, mop, or armor plates.
 c. 5-inch midrail blocking, in doors indicated to have exit devices.
C. Mineral-Core Doors:
 1. Core: Noncombustible mineral product complying with requirements of referenced quality standard and testing and inspecting agency for fire-protection rating indicated.
 2. Blocking: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated as follows:
 a. 5-inch top-rail blocking.
 b. 5-inch bottom-rail blocking, in doors indicated to have protection plates.
 c. 5-inch midrail blocking, in doors indicated to have armor plates.
 d. 4-1/2-by-10-inch lock blocks 5-inch midrail blocking, in doors indicated to have exit devices.
 3. Edge Construction: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
2.3 VENEERED-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Solid-Core Doors (Marshfield: DPC-1, DFP-20 & DFM-45PPFM)

1. Grade: Custom Grade A faces.
2. Species: Birch
3. Cut: Plain sliced (flat sliced)
5. Assembly of Veneer Leaves on Door Faces: Running match.
6. Pair and Set Match: Provide for doors hung in same opening.
7. Room Match: Match door faces within each separate room or area of building. Corridor-door faces do not need to match where they are separated by 20 feet or more.
8. Room Match: Provide door faces of compatible color and grain within each separate room or area of building.
9. Exposed Vertical and Top Edges: Same species as faces. Retain one of five options in first subparagraph below.
10. Core: Particleboard and Mineral Core
11. Construction: Five plies. Stiles and rails are bonded to core, then entire unit abrasive planed before veneering.

B. Metal Frames for Light Openings in Fire-Rated Doors: Manufacturer's standard frame formed of 0.048-inch-thick, cold-rolled steel sheet; with baked-enamel- or powder-coated finish; and approved for use in doors of fire-protection rating indicated.

2.4 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.

1. Comply with requirements in NFPA 80 for fire-rated doors.

B. Factory machine doors for hardware that is not surface applied. Locate hardware to comply with DHI-WDHS-3. Comply with final hardware schedules, door frame Shop Drawings, DHI A115-W series standards, and hardware templates.

1. Coordinate with hardware mortises in metal frames to verify dimensions and alignment before factory machining.
2. Metal Astragals: Factory machine astragals and formed-steel edges for hardware for pairs of fire-rated doors.

C. Openings: Cut and trim openings through doors in factory.

1. Light Openings: Trim openings with moldings of material and profile indicated.
2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Division 08 Section "Glazing."

2.5 FACTORY FINISHING

A. General: Comply with referenced quality standard for factory finishing. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
1. Finish faces, all four edges, edges of cutouts, and mortises. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.

B. Finish doors at factory.

C. Finish doors at factory that are indicated to receive transparent finish.

D. Transparent Finish:
 1. Grade: Custom.
 2. Finish: Clear O-95 finish as manufactured by Marshfield Doors Systems, Inc. or approved equal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine doors and installed door frames before hanging doors.
 1. Verify that frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 2. Reject doors with defects.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 Hardware Installation: For installation, see Division 08 Section "Finish Hardware."

A. Installation Instructions: Install doors to comply with manufacturer's written instructions and the referenced quality standard, and as indicated.
 1. Install fire-rated doors in corresponding fire-rated frames according to NFPA 80.

B. Job-Fitted Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors. Machine doors for hardware. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 1. Clearances: Provide 1/8 inch at heads, jambs, and between pairs of doors. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.
 a. Comply with NFPA 80 for fire-rated doors.
 2. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.
 3. Bevel fire-rated doors 1/8 inch in 2 inches at lock edge; trim stiles and rails only to extent permitted by labeling agency.

C. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.
3.3 ADJUSTING

A. Operation: Rehang or replace doors that do not swing or operate freely.

B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 08-1416
SECTION 08-3113
ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Access doors and frames for walls and ceilings.
 2. Floor access doors and frames.

B. Related Sections include the following:
 1. Division 03 Section "Cast-in-Place Concrete" for blocking out openings for access doors and frames in concrete.
 2. Division 04 Section "Reinforced Unit Masonry" for anchoring and grouting access door frames set in masonry construction.
 3. Division 22 Section "Plumbing"
 4. Division 23 Section "Heating, ventilation and air conditioning".
 5. Division 26 Section "Electrical"

1.3 SUBMITTALS

A. Product Data: For each type of access door and frame indicated. Include construction details, fire ratings, materials, individual components and profiles, and finishes.

B. Shop Drawings: Show fabrication and installation details of access doors and frames for each type of substrate. Include plans, elevations, sections, details, and attachments to other work.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of access doors and frames through one source from a single manufacturer.

B. Fire-Rated Access Doors and Frames: Units complying with NFPA 80 that are identical to access door and frame assemblies tested for fire-test-response characteristics per the following test method and that are listed and labeled by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:
 1. NFPA 252 or UL 10B for vertical access doors and frames.
 2. ASTM E 119 or UL 263 for horizontal access doors and frames.
C. Size Variations: Obtain Architect's acceptance of manufacturer's standard-size units, which may vary slightly from sizes indicated.

1.5 COORDINATION

A. Verification: Determine specific locations and sizes for access doors needed to gain access to concealed plumbing, mechanical, or other concealed work, and indicate in the schedule specified in "Submittals" Article.

PART 2 - PRODUCTS

2.1 STEEL MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

1. ASTM A 123/A 123M, for galvanizing steel and iron products.
2. ASTM A 153/A 153M, for galvanizing steel and iron hardware.

B. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.

1. ASTM A 123/A 123M, for galvanizing steel and iron products
2. ASTM A 153/A 153M, for galvanizing steel and iron hardware.

C. Steel Sheet: Uncoated or electrolytic zinc-coated, ASTM A 591/A 591M with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.

D. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS) with A60 zinc-iron-alloy (galvannealed) coating or G60 mill-phosphatized zinc coating; stretcher-leveled standard of flatness; with minimum thickness indicated representing specified thickness according to ASTM A 924/A 924M.

E. Steel Finishes: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation for Steel Sheet: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, or other contaminants that could impair paint bond. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."

2. Surface Preparation for Metallic-Coated Steel Sheet: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a conversion coating suited to the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas, and apply galvanizing repair paint specified below to comply with ASTM A 780.

3. Factory-Primed Finish: Apply shop primer immediately after cleaning and pre-treating.
4. Baked-Enamel Finish: Immediately after cleaning and pre-treating, apply manufacturer's standard two-coat, baked-enamel finish consisting of prime coat and thermosetting
topcoat. Comply with paint manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.

5. **Powder-Coat Finish:** Immediately after cleaning and pre-treating, apply manufacturer's standard thermosetting polyester or acrylic urethane powder coating with cured-film thickness not less than 1.5 mils. Prepare, treat, and coat metal to comply with resin manufacturer's written instructions.

F. Drywall Beads: Edge trim formed from 0.0299-inch zinc-coated steel sheet formed to receive joint compound and in size to suit thickness of gypsum board.

G. Plaster Beads: Casing bead formed from 0.0299-inch zinc-coated steel sheet with flange formed out of expanded metal lath and in size to suit thickness of plaster.

2.2 STAINLESS-STEEL MATERIALS

A. Rolled-Stainless-Steel Floor Plate: ASTM A 793, manufacturer's standard finish.

B. Stainless-Steel Sheet, Strip, Plate, and Flat Bars: ASTM A 666, Type 304. Remove tool and die marks and stretch lines or blend into finish.

1. **Finish:** Manufacturer's standard.

2.3 ALUMINUM MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T6.

1. **Mill finish, AA-M10 Mechanical Finish:** as fabricated.

B. Aluminum-Alloy Rolled Tread Plate: ASTM B 632/B 632M, Alloy 6061-T6.

1. **Mill finish, AA-M10 Mechanical Finish:** as fabricated.

C. Aluminum Sheet: ASTM B 209, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with not less than strength and durability properties of Alloy 5005-H15; with minimum sheet thickness indicated representing specified thickness according to ANSI H35.2.

1. **Mill Finish:** AA-M10 Mechanical Finish: as fabricated.

2. **Class II, Clear Anodic Finish:** AA-M12C22A31 Mechanical Finish: nonspecular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class II, clear coating 0.010 mm or thicker complying with AAMA 611.

3. **Class I, Clear Anodic Finish:** AA-M12C22A41 Mechanical Finish: nonspecular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker complying with AAMA 611.

4. **Baked-Enamel Finish:** AA-C12C42R1x Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below. Apply baked enamel complying with paint manufacturer's written specifications for cleaning, conversion coating, and painting.
2.4 ACCESS DOORS AND FRAMES FOR WALLS AND CEILINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acudor Products, Inc.
2. Babcock-Davis; A Cierra Products Co.
4. Cendrex Inc.
5. Dur-Red Products.
6. Elmdor/Stoneman; Div. of Acorn Engineering Co.
7. Jensen Industries.
8. J. L. Industries, Inc.
11. MIFAB, Inc.
12. Milcor Inc.

1. Locations: Wall and ceiling surfaces.
2. Door: Minimum 0.060-inch-thick sheet metal in the form of a pan recessed 5/8 inch for gypsum board and acoustical tile infill.
3. Frame: Minimum 0.060-inch-thick sheet metal with drywall bead for gypsum board surfaces and for insertion into acoustical tile ceiling.
5. Latch: Cam latch operated by hex head wrench flush key with interior release.

1. Locations: Wall and ceiling surfaces.
2. Door: Minimum 0.040-inch-thick, metallic-coated steel sheet; flush panel construction with manufacturer's standard 2-inch-thick fiberglass insulation.
3. Frame: Minimum 0.060-inch-thick extruded aluminum.
5. Lock: Dual-action handles with key lock.

2.5 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.

B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

C. Latching Mechanisms: Furnish number required to hold doors in flush, smooth plane when closed.

1. For cylinder lock, furnish two keys per lock and key all locks alike.
2. For recessed panel doors, provide access sleeves for each locking device. Furnish plastic grommets and install in holes cut through finish.

D. Extruded Aluminum: After fabrication, apply manufacturer’s standard protective coating on aluminum that will come in contact with concrete.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Comply with manufacturer’s written instructions for installing access doors and frames.
B. Set frames accurately in position and attach securely to supports with plane of face panels aligned with adjacent finish surfaces.
C. Install doors flush with adjacent finish surfaces or recessed to receive finish material.

3.2 ADJUSTING AND CLEANING
A. Adjust doors and hardware after installation for proper operation.
B. Remove and replace doors and frames that are warped, bowed, or otherwise damaged.

END OF SECTION 08-3113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Exterior storefront framing.
 2. Exterior manual-swing entrance doors.
B. Related Sections:
 1. Division 07 Section “Joint Sealants”.
 2. Division 08 Section “Glazing”
 3. Division 08 Section “ Finish Hardware”.

1.3 DEFINITIONS
A. ADA/ABA Accessibility Guidelines: U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disability Act (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines for Buildings and Facilities."

1.4 PERFORMANCE REQUIREMENTS
A. General Performance: Aluminum-framed systems shall withstand the effects of the following performance requirements without exceeding performance criteria or failure due to defective manufacture, fabrication, installation, or other defects in construction:
 1. Movements of supporting structure indicated on Drawings including, but not limited to, deflection from uniformly distributed and concentrated live loads.
 2. Dimensional tolerances of building frame and other adjacent construction.
 3. Failure includes the following:
 a. Deflection exceeding specified limits.
 b. Thermal stresses transferring to building structure.
 c. Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 d. Glazing-to-glazing contact.
 e. Noise or vibration created by wind and by thermal and structural movements.
 f. Loosening or weakening of fasteners, attachments, and other components.
 g. Sealant failure.
h. Failure of operating units.

B. Delegated Design: Design aluminum-framed systems using performance requirements and design criteria indicated.

C. Structural Loads:

1. Wind Loads:
 a. Basic Wind Speed: 85 mph.
 b. Importance Factor: 1.0
 c. Exposure Category: C

D. Deflection of Framing Members:

1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane shall not exceed L/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span.

E. Air Infiltration: Provide aluminum-framed systems with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 6.24 lbf/sq. ft.

F. Water Penetration under Static Pressure: Provide aluminum-framed systems that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

G. Water Penetration under Dynamic Pressure: Provide aluminum-framed systems that do not evidence water leakage through fixed glazing and framing areas when tested according to AAMA 501.1 under dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

1. Maximum Water Leakage: No uncontrolled water penetrating aluminum-framed systems or water appearing on systems' normally exposed interior surfaces from sources other than condensation. Water leakage does not include water controlled by flashing and gutters that is drained to exterior and water that cannot damage adjacent materials or finishes.

H. Thermal Movements: Provide aluminum-framed systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
2. Test Performance: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested according to AAMA 501.5.
 a. High Exterior Ambient-Air Temperature: That which produces an exterior metal-surface temperature of 180 deg F.
 b. Low Exterior Ambient-Air Temperature: 0 deg F.
3. Interior Ambient-Air Temperature: 75 deg F.

I. Condensation Resistance: Provide aluminum-framed systems with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 53 when tested according to AAMA 1503.

J. Thermal Conductance: Provide aluminum-framed systems with fixed glazing and framing areas having an average U-factor of not more than 0.57 Btu/sq. ft. x h x deg when tested according to AAMA 1503.

K. Sound Transmission: Provide aluminum-framed systems with fixed glazing and framing areas having the following sound-transmission characteristics:

1. Sound Transmission Class (STC): Minimum 35 STC when tested for laboratory sound transmission loss according to ASTM E 90 and determined by ASTM E 413.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for aluminum-framed systems.

B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.

1. Include details of provisions for system expansion and contraction and for drainage of moisture in the system to the exterior.

C. Samples for Initial Selection: For units with factory-applied color finishes.

D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

E. Fabrication Sample: Of each vertical-to-horizontal intersection of aluminum-framed systems, made from 12-inch lengths of full-size components and showing details of the following:

1. Joinery, including concealed welds.
2. Anchorage.
5. Flashing and drainage.

F. Delegated-Design Submittal: For aluminum-framed systems indicated to comply with performance requirements and design criteria.

1. Detail fabrication and assembly of aluminum-framed systems.

G. Qualification Data: For qualified Installer and testing agency.
H. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for aluminum-framed systems, indicating compliance with performance requirements.

I. Source quality-control reports.

J. Field quality-control reports.

K. Maintenance Data: For aluminum-framed systems to include in maintenance manuals.

L. Warranties: Sample of special warranties.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.

C. Engineering Responsibility: Prepare data for aluminum-framed systems, including Shop Drawings, based on testing and engineering analysis of manufacturer’s standard units in systems similar to those indicated for this Project.

D. Product Options: Information on Drawings and in Specifications establishes requirements for systems' aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

1. Do not revise intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If revisions are proposed, submit comprehensive explanatory data to Architect for review.

F. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.

1.7 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of structural supports for aluminum-framed systems by field measurements before fabrication and indicate measurements on Shop Drawings.
1.8 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of aluminum-framed systems that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration caused by thermal movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Adhesive or cohesive sealant failures.
 e. Water leakage through fixed glazing and framing areas.
 f. Failure of operating components.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components on which finishes do not comply with requirements or that fail in materials or workmanship within specified warranty period. Warranty does not include normal weathering.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide TRIFABVG45IT as manufactured by Kawneer North America or comparable product by one of the following:

1. Arcadia, Inc.
2. Commercial Architectural Products, Inc.
4. TRACO.
5. Tubelite.
6. Vistawall Architectural Products; The Vistawall Group; a Bluescope Steel company.

2.2 MATERIALS

A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.

1. Materials Standard: ASTM B 221; 6063-T6 alloy temper.
2. Member Wall Thickness: Each framing member shall provide structural strength to meet specified performance requirements.
3. Tolerance: Reference to tolerances for wall thickness and other cross-sectional dimensions of storefront members are nominal and in compliance with AA Aluminum Standards and Data.
B. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer, complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM and prepare surfaces according to applicable SSPC standard.

1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.3 ACCESSORIES

A. Fasteners: Where exposed, shall be Stainless Steel.

B. Gasket: Glazing gasket shall be extruded EPDM rubber.

C. Perimeter Anchors: Aluminum. When steel anchors are used, provide insulation between steel material and aluminum material to prevent galvanic action.

D. Thermal Barrier (Trifab VG 451T)

1. Kawneer IsoLock Thermal Break with a ¼” (6.4) separation consisting of a two-part chemically curing, high-density polyurethane, which is mechanically and adhesively joined to aluminum storefront sections.

 a. Thermal Break shall be designed to accordance with AAMA TIR-A8 and tested in accordance with AAMA 505.

2.4 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.

1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch-thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.

 a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.

2. Door Design: Wide stile; 5-inch nominal width.

 a. Accessible Doors: Smooth surfaced for width of door in area within 10 inches above floor or ground plane.

 a. Provide non-removable glazing stops on outside of door.
2.5 ENTRANCE DOOR HARDWARE

As specified in Division 08 Section “Door Hardware” except as follows:

A. Weather Stripping: Manufacturer’s standard replaceable components.
 1. Compression Type: Made of ASTM D 2000, molded neoprene, or ASTM D 2287, molded PVC.

B. Weather Sweeps: Manufacturer’s standard exterior-door bottom sweep with concealed fasteners on mounting strip.

2.6 ACCESSORY MATERIALS

A. Break Metal:
 1. .063 gauge break metal supplied by aluminum window manufacturer. Color and finish to match aluminum framing.

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by de-scaling or grinding.

C. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends copeed or mitered.
 3. Means to drain water passing joints, condensation within framing members, and moisture migrating within the system to exterior.
 4. Physical and thermal isolation of glazing from framing members.
 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 7. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Storefront Framing: Fabricate components for assembly using.

F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 1. At exterior doors, provide compression weather stripping at fixed stops.
2. At interior doors, provide silencers at stops to prevent metal-to-metal contact. Install three silencers on strike jamb of single-door frames and two silencers on head of frames for pairs of doors.

G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
2. At exterior doors, provide weather sweeps applied to door bottoms.

H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.8 ALUMINUM FINISHES

1. Color: To be selected by Architect from the manufacturers full color range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:

1. Comply with manufacturer's written instructions.
2. Do not install damaged components.
3. Fit joints to produce hairline joints free of burrs and distortion.
4. Rigidly secure non-movement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
6. Seal joints watertight unless otherwise indicated.

B. Metal Protection:

1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or applying sealant or tape, or by installing nonconductive spacers as recommended by manufacturer for this purpose.
2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.

D. Set continuous sill members and flashing in full sealant bed as specified in Division 07 Section "Joint Sealants" to produce weather tight installation.

E. Install components plumb and true in alignment with established lines and grades, and without warp or rack.

F. Install glazing as specified in Division 08 Section "Glazing."

G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 1. Exterior Doors: Install to produce weather tight enclosure and tight fit at weather stripping.
 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers’ written instructions using concealed fasteners to greatest extent possible.

H. Install perimeter joint sealants as specified in Division 07 Section "Joint Sealants" to produce weathertight installation.

3.3 ERECTION TOLERANCES

A. Install aluminum-framed systems to comply with the following maximum erection tolerances:
 1. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet; 1/4 inch over total length.
 2. Alignment:
 a. Where surfaces abut in line, limit offset from true alignment to 1/16 inch.
 b. Where surfaces meet at corners, limit offset from true alignment to 1/32 inch.

B. Diagonal Measurements: Limit difference between diagonal measurements to 1/8 inch.

3.4 FIELD QUALITY CONTROL

A. Testing Services: Testing and inspecting of representative areas to determine compliance of installed systems with specified requirements shall take place as follows:
 1. Water Spray Test: Before installation of interior finishes has begun, a minimum area of 75 feet by 1 story of aluminum-framed systems designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.

B. Repair or remove work if test results and inspections indicate that it does not comply with specified requirements.

C. Additional testing and inspecting, at Contractor’s expense, will be performed to determine compliance of replaced or additional work with specified requirements.
D. Aluminum-framed assemblies will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Adjust operating entrance door hardware to function smoothly as recommended by manufacturer.

1. For entrance doors accessible to people with disabilities, adjust closers to provide a 3-second closer sweep period for doors to move from a 70-degree open position to 3 inches from the latch, measured to the leading door edge.

END OF SECTION 08-4113
SECTION 08-5113
ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes fixed aluminum-framed windows for exterior locations.
 B. Related Sections include the following:
 1. Division 08 Section “Aluminum-Framed Entrances and Storefronts” for coordinating finish
 among aluminum fenestration units.

1.3 DEFINITIONS
 A. Performance class designations according to AAMA/WDMA 101/I.S.2/NAFS:
 1. AW: Architectural.
 2. HC: Heavy Commercial.
 3. C: Commercial.
 B. Performance grade number according to AAMA/WDMA 101/I.S.2/NAFS:
 1. Design pressure number in pounds force per square foot used to determine the structural
 test pressure and water test pressure.
 C. Structural Test Pressure: For uniform load structural test, is equivalent to 150 percent of the
 design pressure.
 D. Minimum Test Size: Smallest size permitted for performance class (gateway test size). Products
 must be tested at minimum test size or at a size larger than minimum test size to comply with
 requirements for performance class.

1.4 PERFORMANCE REQUIREMENTS
 A. General: Provide aluminum windows capable of complying with performance requirements
 indicated, based on testing manufacturer’s windows that are representative of those specified,
 and that are of minimum test size indicated below:
2. Size indicated on Drawings.

B. Structural Performance: Provide aluminum windows capable of withstanding the effects of the following loads, based on testing units representative of those indicated for Project that pass AAMA/WDMA 101/I.S.2/NAFS, Uniform Load Structural Test:

1. Design Wind Loads: Determine design wind loads applicable to Project from basic wind speed indicated in miles per hour at 33 feet above grade, according to ASCE 7, Section 6.5, "Method 2-Analytical Procedure," based on mean roof heights above grade indicated on Drawings.

 a. Basic Wind Speed: 85 mph.
 b. Importance Factor: I
 c. Exposure Category: A.

2. Deflection: Design glass framing system to limit lateral deflections of glass edges to less than 1/175 of glass-edge length or 3/4 inch, whichever is less, at design pressure based on testing performed according to AAMA/WDMA 101/I.S.2/NAFS, Uniform Load Deflection Test or structural computations.

C. Windborne-Debris Resistance: Provide glazed windows capable of resisting impact from windborne debris, based on the pass/fail criteria as determined from testing glazed windows identical to those specified, according to ASTM E 1886 and testing information in ASTM E 1996 and requirements of authorities having jurisdiction.

D. Thermal Movements: Provide aluminum windows, including anchorage, that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

 1. Temperature Range: 120 deg F ambient; 180 deg F material surfaces.

1.5 SUBMITTALS

A. Product Data: Include construction details, material descriptions, fabrication methods, dimensions of individual components and profiles, hardware, finishes, and operating instructions for each type of aluminum window indicated.

B. Shop Drawings: Include plans, elevations, sections, details, hardware, attachments to other work, operational clearances, installation details, and the following:

 1. Mullion details, including reinforcement and stiffeners.
 2. Joinery details.
 4. Flashing and drainage details.
 5. Weather-stripping details.
 7. Glazing details.
 8. Window cleaning provisions.
9. For installed products indicated to comply with design loads, include structural analysis data prepared by or under the supervision of a qualified professional engineer detailing fabrication and assembly of aluminum windows and used to determine the following:
 a. Structural test pressures and design pressures from wind loads indicated.
 b. Deflection limitations of glass framing systems.

C. Samples for Initial Selection: For units with factory-applied color finishes.
 1. Include similar Samples of hardware and accessories involving color selection.

D. Samples for Verification: For aluminum windows and components required, prepared on Samples of size indicated below.
 1. Main Framing Member: 12-inch long, full-size sections of extrusions with factory-applied color finish.
 2. Window Corner Fabrication: 12-by-12-inch long, full-size window corner including full-size sections of extrusions with factory-applied color finish, weather stripping, and glazing.
 3. Hardware: Full-size units with factory-applied finishes.

E. Product Schedule: For aluminum windows. Use same designations indicated on Drawings.

F. Qualification Data: For Installer and manufacturer.

G. Field quality-control test reports.

H. Product Test Reports: Based on evaluation of comprehensive tests performed within the last four years by a qualified testing agency for each type, class, grade, and size of aluminum window. Test results based on use of downsized test units will not be accepted.

I. Maintenance Data: For weather stripping and finishes to include in maintenance manuals.

J. Warranty: Special warranty specified in this Section.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An installer acceptable to aluminum window manufacturer for installation of units required for this Project.
 1. Installer's responsibilities include providing professional engineering services needed to assume engineering responsibility.
 2. Engineering Responsibility: Preparation of data for aluminum windows, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

B. Manufacturer Qualifications: A manufacturer capable of fabricating aluminum windows that meet or exceed performance requirements indicated and of documenting this performance by inclusion in lists and by labels, test reports, and calculations.

C. Source Limitations: Obtain aluminum windows through one source from a single manufacturer.
D. Product Options: Information on Drawings and in Specifications establishes requirements for aluminum windows’ aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

E. Product Options: Drawings indicate size, profiles, and dimensional requirements of aluminum windows and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements." Do not modify size and dimensional requirements.

1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

1. Provide [AAMA] [WDMA]-certified aluminum windows with an attached label.

G. Glazing Publications: Comply with published recommendations of glass manufacturers and with GANA's "Glazing Manual" unless more stringent requirements are indicated.

H. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

1. Build mockup for type(s) of window(s) indicated, in location(s) shown on Drawings.

I. Pre-installation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to aluminum windows including, but not limited to, the following:

1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review and discuss the finishing of aluminum windows that is required to be coordinated with the finishing of other aluminum work for color and finish matching.
3. Review, discuss, and coordinate the interrelationship of aluminum windows with other exterior wall components. Include provisions for structural anchorage, glazing, flashing, weeping, sealants, and protection of finishes.
4. Review and discuss the sequence of work required to construct a watertight and weather tight exterior building envelope.
5. Inspect and discuss the condition of substrate and other preparatory work performed by other trades.

1.7 PROJECT CONDITIONS

A. Field Measurements: Verify aluminum window openings by field measurements before fabrication and indicate measurements on Shop Drawings.

1. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish opening dimensions and proceed with fabricating aluminum windows
without field measurements. Coordinate wall construction to ensure that actual opening dimensions correspond to established dimensions.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace aluminum windows that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Failure to meet performance requirements.
 b. Structural failures including excessive deflection, water leakage, air infiltration, or condensation.
 c. Deterioration of metals, other materials, and metal finishes beyond normal weathering.
 d. Failure of insulating glass.

2. Warranty Period:

 a. Window: Two years from date of Substantial Completion.
 b. Glazing: Five years from date of Substantial Completion.
 c. Metal Finish: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Basis-of-Design Product: Kawneer TR 9100 (Single Hung Windows with Screen) and TR 9500 (Fixed Window), unless noted otherwise. Subject to compliance with requirements, provide product specified or a comparable product by one of the following:

 1. All Seasons Windows & Doors; All Seasons Commercial Division, Inc.
 2. Kawneer; an Alcoa Company.
 3. Peerless Products Inc.
 4. Thermal Windows, Inc.

2.2 MATERIALS

A. Aluminum Extrusions: Alloy and temper recommended by aluminum window manufacturer for strength, corrosion resistance, and application of required finish, but not less than 22,000-psi (150-MPa) ultimate tensile strength, not less than 16,000-psi minimum yield strength, and not less than 0.062-inch thickness at any location for the main frame and sash members.
2.3 ALUMINUM WINDOWS

A. Window Type: As indicated on Drawings.

B. AAMA/WDMA Performance Requirements: Provide aluminum windows of performance indicated that comply with AAMA/WDMA 101/I.S.2/NAFS unless more stringent performance requirements are indicated.

1. Performance Class and Grade: C 30.

C. Condensation-Resistance Factor (CRF): Provide aluminum windows tested for thermal performance according to AAMA 1503, showing a CRF of 45.
D. Thermal Transmittance: Provide aluminum windows with a whole-window, U-factor maximum indicated at 15-mph exterior wind velocity and winter condition temperatures when tested according to AAMA 1503.
 1. U-Factor: 0.35 Btu/sq. ft. x h x deg F or less.

E. Solar Heat-Gain Coefficient (SHGC): Provide aluminum windows with a whole-window SHGC maximum of 0.40, determined according to NFRC 200 procedures.

F. Sound Transmission Class (STC): Provide glazed windows rated for not less than 26 STC when tested for laboratory sound transmission loss according to ASTM E 90 and determined by ASTM E 413.

G. Air Infiltration: Maximum rate not more than indicated when tested according to AAMA/WDMA 101/I.S.2/NAFS, Air Infiltration Test.
 1. Maximum Rate: 0.3 cfm/sq. ft. of area at an inward test pressure of 1.57 lbf/sq. ft.
 2. Maximum Rate: 0.3 cfm/sq. ft. of area at an inward test pressure of 6.24 lbf/sq. ft.
 3. Maximum Rate: 0.1 cfm/sq. ft. of area at an inward test pressure of 6.24 lbf/sq. ft.

H. Water Resistance: No water leakage as defined in AAMA/WDMA referenced test methods at a water test pressure equaling that indicated, when tested according to AAMA/WDMA 101/I.S.2/NAFS, Water Resistance Test.
 1. Test Pressure: 15 percent of positive design pressure, but not less than 2.86 lbf/sq. ft. or more than 15 lbf/sq. ft.
 2. Test Pressure: 20 percent of positive design pressure, but not more than 15 lbf/sq. ft.
 3. Test Pressure: <Insert percent and pressure.>

I. Forced-Entry Resistance: Comply with Performance Grade 10 requirements when tested according to ASTM F 588.

J. Life-Cycle Testing: Test according to AAMA 910 and comply with AAMA/WDMA 101/I.S.2/NAFS.

2.4 GLAZING

A. Glass and Glazing Materials: Refer to Division 08 Section "Glazing" for glass units and glazing requirements applicable to glazed aluminum window units.

B. Glass: Insulating-glass units with color tint as selected by Architect from full range of tint colors.

C. Glazing System: Manufacturer's standard factory-glazing system that produces weather-tight seal and complies with requirements for windborne-debris resistance. Manufacturer's standard factory-glazing system as indicated in Division 08 Section "Glazing."

2.5 FABRICATION

A. Fabricate aluminum windows in sizes indicated. Include a complete system for assembling components and anchoring windows.
B. Fabricate aluminum windows that are re-glazable without dismantling sash or ventilator framing.

D. Thermally Improved Construction: Fabricate aluminum windows with an integral, concealed, low-conductance thermal barrier; located between exterior materials and window members exposed on interior side; in a manner that eliminates direct metal-to-metal contact.
 1. Provide thermal-break construction that has been in use for not less than three years and has been tested to demonstrate resistance to thermal conductance and condensation and to show adequate strength and security of glass retention.
 2. Provide thermal barriers tested according to AAMA 505; determine the allowable design shear flow per the appendix in AAMA 505.
 3. Provide hardware with low conductivity or nonmetallic material for hardware bridging thermal breaks at frame or vent sash.

E. Weather Stripping: Provide full-perimeter weather stripping for each operable sash and ventilator.
 1. Horizontal-Sliding Windows: Provide operable sash with a double row of sliding weather stripping in horizontal rails and single- or double-row weather stripping in meeting or jamb stiles, as required to meet specified performance requirements. Provide compression-type weather stripping at perimeter of each movable panel where sliding-type weather stripping is not appropriate.

F. Weep Holes: Provide weep holes and internal passages to conduct infiltrating water to exterior.

G. Provide water-shed members above side-hinged ventilators and similar lines of natural water penetration.

H. Mullions: Provide mullions and cover plates as shown, matching window units, complete with anchors for support to structure and installation of window units. Allow for erection tolerances and provide for movement of window units due to thermal expansion and building deflections, as indicated. Provide mullions and cover plates capable of withstanding design loads of window units.

I. Sub-frames: Provide sub-frames with anchors for window units as shown, of profile and dimensions indicated but not less than 0.062-inch thick extruded aluminum. Miter or cope corners, and weld and dress smooth with concealed mechanical joint fasteners. Finish to match window units. Provide sub-frames capable of withstanding design loads of window units.

J. Factory-Glazed Fabrication: Glaze aluminum windows in the factory where practical and possible for applications indicated. Comply with requirements in Division 08 Section "Glazing" and with AAMA/WDMA 101/I.S.2/NAFS.

K. Glazing Stops: Provide snap-on glazing stops coordinated with Division 08 Section "Glazing" and glazing system indicated. Provide glazing stops to match sash and ventilator frames.

2.6 FINISHES, GENERAL

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 ALUMINUM FINISHES

A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

B. Baked-Enamel Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Apply baked enamel complying with paint manufacturer's written instructions for cleaning, conversion coating, and painting.

1. Organic Coating: Thermosetting, modified-acrylic or polyester enamel primer/topcoat system complying with AAMA 2603, except with a minimum dry film thickness of 1.5 mils medium gloss.

2. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine openings, substrates, structural support, anchorage, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work. Verify rough opening dimensions, levelness of sill plate, accurate locations of connections to building electrical system, and operational clearances. Examine wall flashings, vapor retarders, water and weather barriers, and other built-in components to ensure a coordinated, weather-tight window installation.

1. Masonry Surfaces: Visibly dry and free of excess mortar, sand, and other construction debris.
2. Metal Surfaces: Dry; clean; free of grease, oil, dirt, rust, corrosion, and welding slag; without sharp edges or offsets at joints.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with Drawings, Shop Drawings, and manufacturer's written instructions for installing windows, hardware, accessories, and other components.

B. Install windows level, plumb, square, true to line, without distortion or impeding thermal movement, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction.
C. Set sill members in bed of sealant or with gaskets, as indicated, for weathertight construction.

D. Install windows and components to drain condensation, water penetrating joints, and moisture migrating within windows to the exterior.

E. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials.

F. Connect automatic operators to building electrical system.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
 1. Testing and inspecting agency will interpret tests and state in each report whether tested work complies with or deviates from requirements.

B. Testing Services: Testing and inspecting of installed windows shall take place as follows:
 1. Testing Methodology: Testing of windows for air infiltration and water resistance shall be performed according to AAMA 502, Test Method [A] [B], by applying same test pressures required to determine compliance with AAMA/WDMA 101/I.S.2/NAFS in Part 1 “Performance Requirements” Article.
 2. Testing Extent: [Three] [Three mockup] <Insert number or description> windows as selected by Architect and a qualified independent testing and inspecting agency. Windows shall be tested immediately after installation.
 3. Test Reports: Shall be prepared according to AAMA 502.

C. Remove and replace non-complying aluminum window and retest as specified above.

D. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.4 ADJUSTING, CLEANING, AND PROTECTION

A. Clean aluminum surfaces immediately after installing windows. Avoid damaging protective coatings and finishes. Remove excess sealants, glazing materials, dirt, and other substances.

B. Clean factory-glazed glass immediately after installing windows. Comply with manufacturer's written recommendations for final cleaning and maintenance. Remove nonpermanent labels, and clean surfaces.

C. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.

D. Protect window surfaces from contact with contaminating substances resulting from construction operations. In addition, monitor window surfaces adjacent to and below exterior concrete and masonry surfaces during construction for presence of dirt, scum, alkaline deposits, stains, or other contaminants. If contaminating substances do contact window surfaces, remove contaminants immediately according to manufacturer's written recommendations.
3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain window operating system. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 08-5113
PART 1 GENERAL

1.1 SUMMARY

A. SECTION INCLUDES
1. Finish hardware for doors.
2. Electronic hardware.
3. Thresholds & weatherstripping
4. Keying System
5. Templates
6. Hardware schedule

1.2 RELATED SECTIONS

1. 08 11 00 - Hollow metal doors and frames.
2. 08 14 00 - Wood doors.
3. 08 41 00 - Entrances and Storefronts.

1.3 REFERENCES

A. Publications of agencies and organizations listed below form a part of this specification section to the extent referenced.
1. DHI - Recommended Locations for Builders' Hardware.
4. UL - Building Material Directory.
5. DHI - Door and Hardware Institute
6. WHI - Warnock Hersey
7. BHMA - Builders Hardware Manufacturers Association
8. ANSI – American National Standards Institute

1.4 SUBMITTALS

A. Schedules: Submit detailed finish hardware schedule and product data in accordance with section 01 35 00.
 1. Furnish a typewritten schedule in vertical format complete with catalog cuts. Schedule shall be complete, including type, manufacturers name and number, and finish of each item required. Include complete schedule of keying system.

B. Samples: If requested, submit sample of each type of finish hardware proposed for the project. If approved, samples may be used on project.

C. Templates: Furnish templates required for fabrication of hollow metal doors and frames, aluminum and glass doors, or other items related to hardware
1.5 QUALITY ASSURANCE

A. Supplier: Hardware supplier shall have a minimum of three years experience in supplying hardware for projects of this size and scope and shall have in his employ a certified Architectural Hardware Consultant (AHC) to prepare submittals and coordinate proper preparation for and installation of hardware.

B. Substitutions: Manufacturers and model numbers listed are to establish a standard of quality. Similar items of approved manufacturers that are equal in design, function and quality will be accepted upon prior approval by the architect, and provided required data and physical samples are submitted in accordance with Section 01 25 00.

C. Regulatory requirements: Conform to code requirements applicable to fire rated doors and frames and to accessibility for the physically handicapped.

1.6 DELIVERY, STORAGE AND HANDLING

A. Package each item of hardware in original containers and mark each to correspond with heading numbers on the hardware schedule.

B. Include necessary instructions, templates, drawings and fasteners for proper installation.

C. Store off the floor in a clean dry area out of the way of work in progress.

1.7 WARRANTY

A. Provide warranty of hardware items for one year.
 1. Provide a twenty five year warranty for door Closers.
 2. Provide a ten year warranty for door Lever locks.
 3. Provide a ten year warranty for door Exit devices.

PART 2 - PRODUCTS

MANUFACTURERS

A. Catalog numbers of manufacturers listed in the first column have been used to establish the quality required. Manufacturers listed in the other columns are acceptable.

<table>
<thead>
<tr>
<th>Hinges</th>
<th>Ives</th>
<th>Bommer, Hager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locks</td>
<td>Schlage</td>
<td>Owner’s Standard</td>
</tr>
<tr>
<td>Closers</td>
<td>LCN</td>
<td>Sargent, Norton</td>
</tr>
<tr>
<td>Flat goods</td>
<td>Ives</td>
<td>Rockwood, Trimco</td>
</tr>
<tr>
<td>OH Stops</td>
<td>Glynn Johnson</td>
<td>Rixson</td>
</tr>
<tr>
<td>Thresholds</td>
<td>Zero</td>
<td>Pemko, National Guard</td>
</tr>
<tr>
<td>Weatherstrip</td>
<td>Zero</td>
<td>Pemko, National Guard</td>
</tr>
</tbody>
</table>

2.02 MATERIALS

A. Screws and Fasteners: Furnish all exposed fasteners to match item being secured. Make all fasteners of the same material as item being fastened except provide stainless steel or brass for securing aluminum items.

B. Hinges:
 1. Full mortise template hinges, ball bearing type.
 2. Non-removable pin and heavy weight at exterior doors.
 3. Furnish quantity of hinges as follows:
 a. Doors to 60" high: 2 hinges
 b. Doors over 60" to 90" high: 3 hinges

087100-2 Finish Hardware
c. Doors over 90" to 120": 4 hinges

4. Furnish hinge sizes as follows:
 a. For 1 3/4" doors to 3'0" wide: 4.5" x 4.5"
 b. For 1 3/4" doors over 3'0" wide: 5 x 4.5"
 c. Width of hinges adjusted to clear adjacent trim.

C. Locksets and Latchsets
 1. Bored type locksets complying with ANSI 156.2 Series 4000 Grade 1.
 2. Provide 2 3/4" backsets unless job conditions dictate otherwise.
 3. Provide strikes with extended lip where required to protect trim from damage by latchbolt.
 4. Falcon Quantum levers specified as the standard of quality.

D. Door Closers
 1. Bodies to be close grained malleable iron or aluminum with three separate control valves, including backcheck, ANSI Grade 1.
 2. Closers to match adjacent hardware.
 3. Provide all closers with thru bolts.
 4. All closers to comply with Americans with Disabilities Act requirements.
 5. LCN 4050 (Exterior), 1450 FC (Interior) Series specified as the standard of quality.

E. Kick Plates
 1. Provide .050 x 10" high x 2" less than door width for single doors and 1" less than door width for pairs.
 2. Ives 8400 series specified as the standard of quality.

F. Push Plates
 1. Provide .050 x 4" x 16" push plates unless conditions dictate otherwise.
 2. Ives 8200 series specified as the standard of quality.

G. Pull Plates
 1. Provide .050 x 4" x 16" plate with 10" c/c pull.
 2. Ives 8305 series specified as the standard of quality.

H. Flush Bolts
 1. Manual flush bolts equal to Ives FB458 with 12" rods.
 2. Provide extension rods where conditions dictate.

I. Door Stops
 1. Wall stops shall be used whenever possible. Use dome type floor stops where wall stops cannot be used.
 2. Ives WS401/402 specified as the standard of quality.

J. Silencers
 1. Provide 3 for each single door and 2 for each pair of doors. Not required on door having weatherstripping or gasketting.

K. Thresholds and Weatherstripping as listed in hardware sets.

2.03 FINISHES

A. Provide matching finishes for hardware items at each door opening to the greatest extent possible, except as otherwise indicated.

B. Provide finishes which comply with those established by BHMA listed in "Materials and Finishes Standard 1301".

C. Finishes for this project are **Dull Chrome** as follows:
 1. Hinges 652

087100-3 Finish Hardware
PART 3 EXECUTION

3.01 EXAMINATION
A. Examine doors, frames and related items for conditions that would prevent proper application of finish hardware. Do not proceed until defects have been corrected.

3.02 INSTALLATION
A. Install each item in accordance with manufacturer’s instructions and recommendations. Set units level, plumb and true to line and location. Do not install surface mounted items until finishes have been completed on substrate.

3.03 ADJUST AND CLEAN
A. At final completion hardware shall be left clean and free from disfigurement. Make a final adjustment to closers and other items of hardware. Where hardware is found defective repair or replace or otherwise correct as required.

3.04 HARDWARE SETS
A. While the following hardware sets are intended to cover all doors and establish a type and standard of quality, it is the responsibility of the hardware supplier to examine the plans and specifications and furnish proper hardware for all openings. The hardware supplier shall review the entire specification versus the door schedule and notify the architect of any errors, inconsistencies, or omissions during the bid period.

HARDWARE SET: 01

DOOR NUMBER:
105A 107

EACH TO HAVE:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item Description</th>
<th>Model/Specifications</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td>652</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>ND70TD RHO</td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>PERMANENT CORE</td>
<td>23-030</td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4050 REG</td>
<td>689</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CVX</td>
<td>630</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
</tr>
</tbody>
</table>

HARDWARE SET: 02
Hardware Set: 03

Door Number: 105B

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Supplier Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA Hinges</td>
<td>5BB1 4.5 X 4.5 NRP</td>
<td>652 IVE</td>
</tr>
<tr>
<td>1 EA Entrance Lock</td>
<td>ND92TD RHO</td>
<td>626 SCH</td>
</tr>
<tr>
<td>1 EA Permanent Core</td>
<td>23-030</td>
<td>626 SCH</td>
</tr>
<tr>
<td>1 EA Lock Protector</td>
<td>BLP-107</td>
<td>630 DON</td>
</tr>
<tr>
<td>1 EA Surface Closer</td>
<td>4050 SCUSH</td>
<td>689 LCN</td>
</tr>
<tr>
<td>1 EA Kick Plate</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630 IVE</td>
</tr>
<tr>
<td>1 EA Rain Drip</td>
<td>142A X D.W. +4"</td>
<td>628 ZER</td>
</tr>
<tr>
<td>1 SET Seals</td>
<td>8303AA X D.S.</td>
<td>628 ZER</td>
</tr>
<tr>
<td>1 EA Door Sweep</td>
<td>39A X D.W.</td>
<td>719 ZER</td>
</tr>
<tr>
<td>1 EA Threshold</td>
<td>8655A X D.W.</td>
<td>719 ZER</td>
</tr>
</tbody>
</table>

Hardware Set: 04

Door Number: 106A

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Supplier Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA Hinges</td>
<td>5BB1 4.5 X 4.5</td>
<td>652 IVE</td>
</tr>
<tr>
<td>1 EA Entrance Lock</td>
<td>ND53TD RHO</td>
<td>626 SCH</td>
</tr>
<tr>
<td>1 EA Permanent Core</td>
<td>23-030</td>
<td>626 SCH</td>
</tr>
<tr>
<td>1 EA OH Stop</td>
<td>90S</td>
<td>630 GLY</td>
</tr>
<tr>
<td>1 EA Surface Closer</td>
<td>4050 REG</td>
<td>689 LCN</td>
</tr>
<tr>
<td>1 EA Kick Plate</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630 IVE</td>
</tr>
<tr>
<td>1 SET Seals</td>
<td>8303AA X D.S.</td>
<td>628 ZER</td>
</tr>
<tr>
<td>1 EA Door Bottom</td>
<td>111AA X D.W.</td>
<td>628 ZER</td>
</tr>
<tr>
<td>1 EA Threshold</td>
<td>548A X D.W.</td>
<td>719 ZER</td>
</tr>
</tbody>
</table>

Hardware Set: 05

Door Number: 108

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Supplier Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA Hinges</td>
<td>5BB1 4.5 X 4.5</td>
<td>652 IVE</td>
</tr>
<tr>
<td>1 EA Privacy Lock</td>
<td>ND40S RHO</td>
<td>626 SCH</td>
</tr>
<tr>
<td>1 EA Surface Closer</td>
<td>4050 PA</td>
<td>689 LCN</td>
</tr>
<tr>
<td>1 EA Kick Plate</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630 IVE</td>
</tr>
<tr>
<td>1 EA Wall Stop</td>
<td>WS406/407CVX</td>
<td>630 IVE</td>
</tr>
<tr>
<td>3 EA Silencer</td>
<td>SR64</td>
<td>GRY IVE</td>
</tr>
</tbody>
</table>

Hardware Set: 05

Door Number: 109

087100-5 Finish Hardware
EACH TO HAVE:

3 EA HINGE 5BB1 4.5 X 4.5 652 IVE
1 EA PRIVACY LOCK ND40S RHO 626 SCH
1 EA SURFACE CLOSER 4050 REG 689 LCN
1 EA KICK PLATE 8400 10" X 2" LDW B-CS 630 IVE
1 EA WALL STOP WS406/407CCV 630 IVE
3 EA SILENCER SR64 GRY IVE

HARDWARE SET: 06

DOOR NUMBER:

106C 110

EACH TO HAVE:

1 EA CONT. HINGE 112HD 628 IVE
1 EA ENTRANCE LOCK ND92TD RHO 626 SCH
1 EA PERMANENT CORE 23-030 626 SCH
1 EA OH STOP 100S 630 GLY
1 EA SURFACE CLOSER 4050 TOP JAMB X 4050-18G 689 LCN
1 EA DOOR SWEEP 39A X D.W. 719 ZER
1 EA THRESHOLD 8655A X D.W. 719 ZER
1 SET SEALS BY ALUMINUM FRAME SUPPLIER

HARDWARE SET: 07

DOOR NUMBER:

106B

EACH TO HAVE:

3 EA HINGE 5BB1 4.5 X 4.5 652 IVE
1 EA ENTRANCE LOCK ND53TD RHO 626 SCH
1 EA PERMANENT CORE 23-030 626 SCH
1 EA SURFACE CLOSER 4050 REG 689 LCN
1 EA KICK PLATE 8400 10" X 2" LDW B-CS 630 IVE
1 EA WALL STOP WS406/407CCV 630 IVE
3 EA SILENCER SR64 GRY IVE

IT IS THE RESPONSIBILITY OF THE HARDWARE SUPPLIER TO FIELD VERIFY EXISTING CONDITIONS ON HINGE AND STRIKE PREPS AND SUPPLY HINGES AND STRIKES TO FIT INTO THESE PREPS.

END OF SECTION
Door/Hardware Index

<table>
<thead>
<tr>
<th>Mark #</th>
<th>HWSet #</th>
</tr>
</thead>
<tbody>
<tr>
<td>105A</td>
<td>01</td>
</tr>
<tr>
<td>105B</td>
<td>02</td>
</tr>
<tr>
<td>106A</td>
<td>03</td>
</tr>
<tr>
<td>106B</td>
<td>07</td>
</tr>
<tr>
<td>106C</td>
<td>06</td>
</tr>
<tr>
<td>107</td>
<td>01</td>
</tr>
<tr>
<td>108</td>
<td>04</td>
</tr>
<tr>
<td>109</td>
<td>05</td>
</tr>
<tr>
<td>110</td>
<td>06</td>
</tr>
</tbody>
</table>
SECTION 08-8000
GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 1. Windows.
 2. Doors.
 4. Storefront framing.
 5. Glazed entrances.
 6. Interior borrowed lites.
B. Related Sections:
 1. Division 07 Section “Joint Sealants”
 2. Division 08 Section “Hollow Metal Doors and Frames.”
 3. Division 08 Section “Flush Wood Doors.”
 4. Division 08 Section “Aluminum Framed Entrances and Storefronts”.

1.3 DEFINITIONS
A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
C. Interspace: Space between lites of an insulating-glass unit.

1.4 PERFORMANCE REQUIREMENTS
A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
B. Delegated Design: Design glass, including comprehensive engineering analysis according to ICC's 2006 International Building Code by a qualified professional engineer, using the following design criteria:

1. Design Wind Pressures: Determine design wind pressures applicable to Project according to ASCE/SEI 7, based on heights above grade indicated on Drawings.
 a. Basic Wind Speed: 85 mph.
 b. Importance Factor: 1.0
 c. Exposure Category: C

2. Vertical Glazing: For glass surfaces sloped 15 degrees or less from vertical, design glass to resist design wind pressure based on glass type factors for short-duration load.

3. Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass to resist each of the following combinations of loads:
 a. Outward design wind pressure minus the weight of the glass. Base design on glass type factors for short-duration load.
 b. Inward design wind pressure plus the weight of the glass plus half of the design snow load. Base design on glass type factors for short-duration load.
 c. Half of the inward design wind pressure plus the weight of the glass plus the design snow load. Base design on glass type factors for long-duration load.

4. Glass Type Factors for Wired, Patterned, and Sandblasted Glass:
 a. Short-Duration Glass Type Factor for Wired Glass: 0.5.
 b. Long-Duration Glass Type Factor for Wired Glass: 0.3.
 c. Short-Duration Glass Type Factor for Patterned Glass: 1.0.
 d. Long-Duration Glass Type Factor for Patterned Glass: 0.6.
 e. Short-Duration Glass Type Factor for Sandblasted Glass: 0.5.

5. Thickness of Patterned Glass: Base design of patterned glass on thickness at thinnest part of the glass.

6. Probability of Breakage for Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass for a probability of breakage not greater than 0.001.

7. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.

8. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.

 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

1.5 SUBMITTALS

A. Product Data: For each glass product and glazing material indicated.

B. Glass Samples: For each type of glass. 12 inches square.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
D. Product Certificates: For glass and glazing products, from manufacturer.
E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for all glass types used on project.
F. Warranties: Sample of warranties.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.
B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.
C. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.
D. Safety Glazing Labeling: Where safety glazing labeling is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
E. Fire-Protection-Rated Glazing Labeling: Permanently mark fire-protection-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, test standard, whether glazing is for use in fire doors or other openings, whether or not glazing passes hose-stream test, whether or not glazing has a temperature rise rating of 450 deg F, and the fire-resistance rating in minutes.
F. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
B. Comply with insulating-glass manufacturer's written recommendations for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or below 40 deg F.
1.9 WARRANTY

A. Manufacturer’s Warranty for Coated-Glass Products: Manufacturer’s standard form in which coated-glass manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer’s written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer’s Special Warranty on Laminated Glass: Manufacturer’s standard form in which laminated-glass manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer’s written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: Five years from date of Substantial Completion.

C. Manufacturer’s Special Warranty on Insulating Glass: Manufacturer’s standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer’s written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.

1. Minimum Glass Thickness for Exterior Lites: Not less than one inch.
2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.

B. Strength: Where float glass is indicated, provide annealed float glass, Kind HS heat-treated float glass, or Kind FT heat-treated float glass as needed to comply with “Performance Requirements” Article. Where heat-strengthened glass is indicated, provide Kind HS heat-treated float glass or Kind FT heat-treated float glass as needed to comply with “Performance Requirements” Article where fully tempered glass is indicated, provide Kind FT heat-treated float glass.

C. Windborne-Debris-Impact Resistance: Provide exterior glazing that passes basic enhanced-protection testing requirements in ASTM E 1996 for Wind Zone 2 when tested according to ASTM E 1886. Test specimens shall be no smaller in width and length than glazing indicated
for use on the Project and shall be installed in same manner as glazing indicated for use on the

1. Large-Missile Test: For glazing located within 30 feet of grade.
2. Small-Missile Test: For glazing located more than 30 feet above grade.
3. Large-Missile Test: For all glazing, regardless of height above grade.

D. Thermal and Optical Performance Properties: Provide glass with performance properties
specified, as indicated in manufacturer's published test data, based on procedures indicated
below:

1. For monolithic-glass lites, properties are based on units with lites 6.0 mm thick of
 thickness indicated.
2. For laminated-glass lites, properties are based on products of construction indicated.
3. For insulating-glass units, properties are based on units of thickness indicated for overall
 unit and for each lite.
4. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's
 WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
5. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values,
 according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
6. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS

A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.

1. Products: Subject to compliance with requirements, available products that may be
 incorporated into the Work include, but are not limited to, the following:
 a. AFG Industries, Inc.;
 b. Guardian Industries Corp.;
 c. Pilkington North America;
 d. PPG Industries, Inc.;

B. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise
 indicated; of kind and condition indicated.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion
 parallel to bottom edge of glass as installed unless otherwise indicated.
2. For uncoated glass, comply with requirements for Condition A.
3. For coated vision glass, comply with requirements for Condition C (other coated glass).

2.3 INSULATING GLASS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering
 products that may be incorporated into the Work include, but are not limited to, the following:

1. AFG Industries, Inc.
2. Guardian Industries Corp.
3. Pilkington North American
4. PPG Industries, Inc.

B. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.

1. Sealing System: Dual seal, with manufacturer's standard primary and secondary.
2. Spacer: Manufacturer's standard spacer material and construction. Revise subparagraph below if a specific type of desiccant is required.
3. Desiccant: Molecular sieve or silica gel, or blend of both.

C. Glass: Comply with applicable requirements in "Glass Products" Article and in "Laminated Glass" Article as indicated by designations in "Insulating-Glass Types" Article and in "Insulating-Laminated-Glass Types" Article.

2.4 GLAZING GASKETS

A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:

1. Neoprene complying with ASTM C 864.
2. EPDM complying with ASTM C 864.

B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned neoprene EPDM or silicone gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.

1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.

C. Lock-Strip Gaskets: Neoprene extrusions in size and shape indicated, fabricated into frames with molded corner units and zipper lock-strips, complying with ASTM C 542, black.

2.5 GLAZING SEALANTS

A. General:

1. Compatibility: Provide glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
3. VOC Content: For sealants used inside of the weatherproofing system, not more than 250 g/L when calculated according to 40 CFR 59, Subpart D.
4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Type recommended by sealant manufacture.
C. Glazing Sealants for Fire-Rated Glazing Products: Products that are approved by testing agencies that listed and labeled fire-resistant glazing products with which they are used for applications and fire-protection ratings indicated.

2.6 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; non-staining and non-migrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:

1. AAMA 804.3 tape, where indicated.
2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:

1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.7 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

G. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.
2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

D. Glass Type Low-e-coated, tinted insulating glass. “Caribia and Sungate 500 (3) Low- E glass by PPG or approved equal”.

 1. Overall Unit Thickness: 1 inch
 2. Thickness of Each Glass Lite: \(\frac{1}{4}” \)
 3. Interspace Content: Argon.
 4. Indoor Lite: Clear
 5. Solar Heat Gain Coefficient: 0.34

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:

 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that will leave visible marks in the completed work.
3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

J. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

K. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

L. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.
3.4 CLEANING AND PROTECTION

A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

E. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

END OF SECTION 08-8000
SECTION 09-2216
NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes non-load-bearing steel framing members for the following applications:

1. Interior framing systems (e.g., supports for partition walls, framed soffits, furring, etc.).
2. Interior suspension systems (e.g., supports for ceilings, suspended soffits, etc.).

B. Related Sections include the following:

1. Division 05 Section "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; roof rafters and ceiling joists; and roof trusses.
2. Division 09 Section "Portland Cement Plastering" for metal lath supported by non-load-bearing steel framing.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

PART 2 - PRODUCTS

2.1 NON-LOAD-BEARING STEEL FRAMING, GENERAL

A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal, unless otherwise indicated.

2. Protective Coating, hot-dip galvanized, unless otherwise indicated.

2.2 SUSPENSION SYSTEM COMPONENTS

A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.0625-inch-diameter wire, or double strand of 0.0475-inch-diameter wire.

B. Hanger Attachments to Concrete:

1. Anchors: Fabricated from corrosion-resistant materials with holes or loops for attaching wire hangers and capable of sustaining, without failure, a load equal to 5 times that imposed by construction as determined by testing according to ASTM E 488 by an independent testing agency.
 a. Type: Cast-in-place anchor, designed for attachment to concrete forms.

2. Powder-Actuated Fasteners: Suitable for application indicated, fabricated from corrosion-resistant materials with clips or other devices for attaching hangers of type indicated, and capable of sustaining, without failure, a load equal to 10 times that imposed by construction as determined by testing according to ASTM E 1190 by an independent testing agency.

C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.162-inch diameter.

D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.0538 inch and minimum 1/2-inch-wide flanges.

1. Depth: As required.

E. Furring Channels (Furring Members):

1. Cold-Rolled Channels: 0.0538-inch bare-steel thickness, with minimum 1/2-inch-wide flanges, 3/4 inch deep.

2. Steel Studs: ASTM C 645.
 a. Depth: As indicated on Drawings.

4. Resilient Furring Channels: 1/2-inch-deep members designed to reduce sound transmission.

F. Grid Suspension System for Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
a. Armstrong World Industries, Inc.;
b. Chicago Metallic Corporation; Drywall Furring System.
c. USG Corporation; Drywall Suspension System.

G. Basis of Design Products: Subject to compliance with requirements, provide Armstrong HD8901 main beams and XL8945P cross tees.

2.3 STEEL FRAMING FOR FRAMED ASSEMBLIES

A. Steel Studs and Runners: ASTM C 645.
 1. Depth: As indicated on Drawings

B. Slip-Type Head Joints: Where indicated, provide one of the following:
 1. Single Long-Leg Runner System: ASTM C 645 top runner with 2-inch- deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top runner and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.
 2. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch- deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.
 3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.

 a. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 1) Steel Network Inc.
 2) Superior Metal Trim; Superior Flex Track System (SFT).

C. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Trak Corp.; Fire Trak
 b. Metal-Lite, Inc.; The System.

D. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.

E. Cold-Rolled Channel Bridging: 0.0538-inch bare-steel thickness, with minimum 1/2-inch-wide flanges.

 1. Depth: As indicated on Drawings.
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch-thick, galvanized steel.
F. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 1. Minimum Base Metal Thickness:
 2. Depth: As indicated on Drawings.

G. Resilient Furring Channels: 1/2-inch- deep, steel sheet members designed to reduce sound transmission.
 1. Configuration:

H. Cold-Rolled Furring Channels: 0.0538-inch bare-steel thickness, with minimum 1/2-inch- wide flanges.
 1. Depth: As indicated on Drawings.
 2. Furring Brackets: Adjustable, corrugated-edge type of steel sheet with minimum bare-steel thickness of 0.0312 inch.
 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.0625-inch- diameter wire, or double strand of 0.0475-inch- diameter wire.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide one of the following:
 1. Asphalt-Saturated Organic Felt: ASTM D 226, Type I (No. 15 asphalt felt), non-perforated.
 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building
structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.

1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

B. Coordination with Sprayed Fire-Resistive Materials:

1. Before sprayed fire-resistant materials are applied, attach offset anchor plates or ceiling runners (tracks) to surfaces indicated to receive sprayed fire-resistant materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches o.c.
2. After sprayed fire-resistant materials are applied, remove them only to extent necessary for installation of non-load-bearing steel framing. Do not reduce thickness of fire-resistant materials below that required for fire-resistance ratings indicated. Protect adjacent fire-resistant materials from damage.

3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754, except comply with framing sizes and spacing indicated.

1. Gypsum Plaster Assemblies: Also comply with requirements in ASTM C 841 that apply to framing installation.
2. Portland Cement Plaster Assemblies: Also comply with requirements in ASTM C 1063 that apply to framing installation.
3. Gypsum Veneer Plaster Assemblies: Also comply with requirements in ASTM C 844 that apply to framing installation.
4. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

C. Install bracing at terminations in assemblies.

D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING SUSPENSION SYSTEMS

A. Install suspension system components in sizes and spacings indicated on Drawings, but not less than those required by referenced installation standards for assembly types and other assembly components indicated.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:
1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, counter splaying, or other equally effective means.

2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.

3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
5. Do not attach hangers to steel roof deck.
6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
8. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.

E. Seismic Bracing: Sway-brace suspension systems with hangers used for support.

F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

G. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

3.5 INSTALLING FRAMED ASSEMBLIES

A. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

B. Install studs so flanges within framing system point in same direction.

C. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings, except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.

2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb, unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.

3. Other Framed Openings: Frame openings other than door openings the same as required for door openings, unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

6. Curved Partitions:
 a. Bend track to uniform curve and locate straight lengths so they are tangent to arcs.
 b. Begin and end each arc with a stud, and space intermediate studs equally along arcs. On straight lengths of not less than 2 studs at ends of arcs, place studs 6 inches o.c.

D. Direct Furring:

1. Screw to wood framing.
2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.

E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

END OF SECTION 09-2216
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Interior gypsum board.
 2. Exterior gypsum board.
 3. Tile backing panels.

B. Related Sections include the following:
 1. Division 05 Section "Cold-Formed Metal Framing" for load-bearing steel framing that supports gypsum board.
 2. Division 06 Section "Rough Carpentry" for wood framing and furring that supports gypsum board.
 3. Division 06 Section "Sheathing" for gypsum sheathing.
 4. Division 07 Section "Thermal Insulation" for insulation and vapor retarders installed in assemblies that incorporate gypsum board.
 5. Division 09 Section "Non-Structural Metal Framing" for non-structural framing and suspension systems that support gypsum board.
 6. Division 09 Section "Tiling" for cementitious backer units installed as substrates for ceramic tile.
 7. Division 09 painting Sections for primers applied to gypsum board surfaces.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For the following products:
 1. Textured Finishes: Manufacturer's standard size for each textured finish indicated and on same backing indicated for Work.

1.4 QUALITY ASSURANCE

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

1.5 STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against damage from weather, condensation, direct sunlight, construction traffic, and other causes. Stack panels flat to prevent sagging.

1.6 PROJECT CONDITIONS
A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer’s written recommendations, whichever are more stringent.
B. Do not install interior products until installation areas are enclosed and conditioned.
C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PANELS, GENERAL
A. Size: Provide in maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.2 INTERIOR GYPSUM BOARD
A. General: Complying with ASTM C 36/C 36M or ASTM C 1396/C 1396M, as applicable to type of gypsum board indicated and whichever is more stringent.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Gypsum Co.
 b. BPB America Inc.
 c. G-P Gypsum.
 d. Lafarge North America Inc.
 e. National Gypsum Company.
 f. PABCO Gypsum.
 g. Temple.
2.3 TILE BACKING PANELS

A. Water-Resistant Gypsum Backing Board: ASTM C 630/C 630M or ASTM C 1396/C 1396M.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. American Gypsum Co.
b. BPB America Inc.
c. G-P Gypsum.
d. Lafarge North America Inc.
e. National Gypsum Company.
f. PABCO Gypsum.
g. Temple.
h. USG Corporation.

B. Cementitious Backer Units: ANSI A118.9.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

a. Custom Building Products; Wonderboard.
b. FinPan, Inc.; Util-A-Crete Concrete Backer Board.
c. USG Corporation; DUROCK Cement Board.

2.4 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized steel sheet.

2. Shapes:

a. Corner bead.
c. LC-Bead: J-shaped; exposed long flange receives joint compound.
d. L-Bead: L-shaped; exposed long flange receives joint compound.
e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
f. Expansion (control) joint.
g. Curved-Edge Corner bead: With notched or flexible flanges.

1. Material: Hot-dip galvanized steel sheet, plastic, or rolled zinc.
2. Shapes:
 a. Corner bead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 c. Expansion (Control) Joint: One-piece, rolled zinc with V-shaped slot and removable strip covering slot opening.

C. Aluminum Trim: Extruded accessories of profiles and dimensions indicated.

 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fry Reglet Corp.
 b. Gordon, Inc.
 c. Pittcon Industries.

 2. Aluminum: Alloy and temper with not less than the strength and durability properties of ASTM B 221, Alloy 6063-T5.

 3. Finish: Corrosion-resistant primer compatible with joint compound and finish materials specified.

2.5 JOINT TREATMENT MATERIALS

A. General: Plain or Perforated comply with ASTM C 475/C 475M.

2.6 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.

B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.

 1. Use adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.

 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

D. Acoustical Sealant: As specified in Division 07 Section "Joint Sealants."

 1. Provide sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Thermal Insulation: As specified in Division 07 Section "Thermal Insulation."
F. Vapor Retarder: As specified in Division 07 Section “Thermal Insulation.”

2.7 TEXTURE FINISHES

A. Primer: As recommended by textured finish manufacturer.

B. Polystyrene Aggregate Ceiling Finish: Water-based, job-mixed, polystyrene aggregate finish with flame-spread and smoke-developed indexes of not more than 25 when tested according to ASTM E 84.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. G-P Gypsum; Georgia-Pacific Regency Ceiling Textures/Polystyrene.
 b. National Gypsum Company; Perfect Spray.
 c. USG Corporation; SHEETROCK Ceiling Spray Texture, QT.

C. Aggregate Finish: Water-based, job-mixed, aggregated, drying-type texture finish for spray application.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. G-P Gypsum; Georgia-Pacific Ceiling Textures/Vermiculite.
 b. USG Corporation; SHEETROCK Wall and Ceiling Spray Texture (Aggregated).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames and framing, for compliance with requirements and other conditions affecting performance.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C 840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch-wide spaces at these locations, and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Wood Framing: Install gypsum panels over wood framing, with floating internal corner construction. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members, or provide control joints to counteract wood shrinkage.

J. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

K. Install sound attenuation blankets before installing gypsum panels, unless blankets are readily installed after panels have been installed on one side.

3.3 PROTECTION

A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

B. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.
SECTION 09290

DRYWALL FINISHING

PART 1 GENERAL

1.01 SECTION INCLUDES

A. The extent of gypsum drywall finish treatment is shown on the Contract Documents and in Schedules, and is hereby defined to include a joint treatment system designed to conceal the joints between sheets of gypsum board and other surface defects, and to prepare them for decorative finishes.

B. The types of drywall finishing work include the following:

1. Joint reinforcement and finish treatment with compounds.

2. Trim and accessories which are installed concurrently with or subsequently to joint reinforcement and finishing.

3. Partial treatment, for the restriction of air or smoke passage through joints.

1.02 QUALITY ASSURANCE

A. Fire-Resistance Ratings: Where a fire-resistance classification is indicated for gypsum drywall construction, provide drywall finishing materials and application procedures which have been tested and listed by recognized authorities, including UL and A.I.A.

B. Industry Standard: Comply with GA-216 "Application and Finishing of Gypsum Board" by the Gypsum Association, and with the gypsum board and joint treatment manufacturer's instructions and recommendations, whichever is the most stringent.

C. Manufacturer: Same as the manufacturer of the gypsum board, or as recommended by the manufacturer of the gypsum board.

D. Gypsum Board Finish Mockups: Before finishing gypsum board assemblies, install mockups of at least 16 sq.ft. in surface area to demonstrate aesthetic effects and qualities for materials and execution.

1. Install mockups for the following applications:

 a. Surfaces with texture finishes including specified paint application.

2. Simulate finished lighting conditions for review of mockups.
3. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.03 SUBMITTALS

A. Manufacturer's Data, Drywall Finishing: For information only, submit 2 copies of manufacturer's product specifications and installation instructions for each type of drywall finishing material required, including other data as may be required to show compliance with these specifications.

1.04 PRODUCT HANDLING

A. Delivery and Storage of Materials: Deliver drywall finishing materials in manufacturer's unopened containers, packages or bundles identified with manufacturer's name, brand, type and grade. Store inside a dry area and protect from dampness and deterioration. Protect ready-mixed compounds (if any) from freezing.

1.05 JOB CONDITIONS

A. Maintain interior ambient temperatures at not less than 55 degrees F., where drywall finishing work is to be done, for a period of at least 24 hours prior to application, during applications, and subsequently until joint treatment materials are dry.

PART 2 PRODUCTS

2.01 MATERIALS

A. Joint Tapes: Plain or perforated complying with ASTM C475.

B. Joint Compound: ASTM C475, ready-mixed type adhesive ready for application, type as indicated.

1. Provide vinyl-based ready-mixed liquid compound.

 a. Provide 2 separate compounds, setting type for bedding and ready-mixed, drying type all-purpose or topping compound for topping.

2. Do not use joint compounds which contain asbestos fiber.

PART 3 EXECUTION

3.01 INSTALLATION

A. General: Comply with manufacturer's instructions for the mixing, handling and application of materials. Machine or hand application is Contractor's option.
Apply treatment at joints both directions, flanges of trim accessories (but not semi-finishing types), penetrations of the gypsum board (electrical boxes, piping and similar work), fastener heads, surface defects and elsewhere as indicated; and apply in a manner which will result in each of these being concealed when applied decoration has been completed.

3.02 FINISHING GYPSUM BOARD ASSEMBLIES

A. General: Treat gypsum board joints, interior angles, flanges of cornerbead, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration.

B. Pre-fill open joints, rounded or beveled edges, and damaged areas using setting type joint compound.

C. Apply joint tape over gypsum board joints, except those with trim accessories having flanges not requiring tape.

D. Apply joint tape over gypsum board joints and to flanges of trim accessories as recommended by trim accessory manufacturer.

E. Levels of Gypsum Board Finish: Provide the following levels of gypsum board finish per Gypsum Association GA-214.

 1. Level 1 For ceiling plenum areas, concealed areas, and where indicated, unless a higher level of finish is required for fire-resistance-rated assemblies and sound-rated assemblies where the assembly would generally be concealed.

 2. Level 2 Use where water resistant gypsum backer board is used to form substrates for tile and where indicated elsewhere. May be specified in garages, warehouse storage and similar areas where surface appearance is not a primary concern.

 3. Level 3 Use in specified appearance areas which are to receive medium orange peel texture finishes before final painting.

F. Use the following joint compound combination as applicable to the finish levels specified:

G. Where Level 1 gypsum board finish is indicated, all joints and interior angles shall have tape embedded in joint compound. Surface shall be free of excess joint compound. Tool marks and ridges are acceptable.
H. Where Level 2 gypsum board finish is indicated, all joints and interior angles shall have tape embedded in joint compound and one separate coat of joint compound applied over all joints, angles, fastener heads and accessories. Surface shall be free of excess joint compound, Tool marks and ridges are acceptable.

I. Where Level 3 gypsum board finish is indicated, all joints and interior angles shall have tape embedded in joint compound and two separate coats of joint compound applied over all joints, angles, fastener heads and accessories. All joint compound shall be smooth and free of tool marks and ridges. It is recommended that the prepared surface be coated with a primer/sealer prior to the application of final finishes.

J. For Level 4 gypsum board finish, all joints and interior angles shall have tape embedded in joint compound and three separate coats of joint compound applied over all joints, angles, fastener heads and accessories. All joint compound shall be smooth and free of tool marks and ridges. Touch up and sand between coats and after last coat as needed to produce a surface free of visual defects and ready for decoration. It is recommended that the prepared surface be coated with a primer/sealer prior to the application of final finishes.

L. Texture Top Coat Finish:

1. At all textured areas, provide light spatter knock-down finish coat.

2. Consult Architect regarding selection of alternate textures.

END OF SECTION 09290 – DRYWALL FINISHING
SECTION 09-3000
TILING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Ceramic tile.
 2. Metal edge strips.
B. Related Sections:
 1. Division 09 Section "Gypsum Board" for glass-mat, water-resistant backer board.

1.3 DEFINITIONS
A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.
C. Size: As noted on room finish schedule in drawings.

1.4 PERFORMANCE REQUIREMENTS
A. Static Coefficient of Friction: For tile installed on walkway surfaces, provide products with the following values as determined by testing identical products per ASTM C 1028:
 1. Level Surfaces: ± .70 (Dry) ± .60 (Wet).

1.5 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
C. Samples for Initial Selection: For each type of tile and grout indicated. Include Samples of accessories involving color selection.

D. Samples for Verification:
 1. Full-size units of each type and composition of tile and for each color and finish required.
 2. Full-size units of each type of trim and accessory.
 3. Metal edge strips in 6-inch lengths.

E. Qualification Data: For qualified Installer.

F. Material Test Reports: For each tile-setting and -grouting product.

1.6 QUALITY ASSURANCE

A. Source Limitations for Tile: Obtain tile from one source or producer.
 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.

B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from one manufacturer and each aggregate from one source or producer.

C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer for each product:
 1. Metal edge strips.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.

B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.

C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

D. Store liquid materials in unopened containers and protected from freezing.

E. Handle tile that has temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.
1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer’s written instructions.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.

2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

PART 2 - PRODUCTS

2.1 PRODUCTS, GENERAL

A. ANSI Porcelain Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.

1. Provide tile complying with Standard grade requirements unless otherwise indicated.

B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCA installation methods specified in tile installation schedules, and other requirements specified.

C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.

2.2 TILE PRODUCTS

A. Tile Type: Porcelain Glazed wall tile and Porcelain Mosaic floor tile.

1. Basis-of-Design Product: Wall and floor tile by Daltile (Volume 1.0- Glazed Porcelain with Stepwise Technology- color to be selected later) as noted on room finish schedule in drawings or full range or comparable product by one of the following with Architect’s prior approval:

 a. American Olean; Division of Dal-Tile International Inc.
 b. Crossville, Inc.
 c. Interceramic.
 d. Seneca Tiles, Inc.
2. Tile Color and Pattern: As indicated in the drawings.
3. Grout Color: As selected by Architect from manufacturer's full range.
4. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. Flat stack wall tile to floor tile with sealed corner in lieu of cove base.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following.
 a. Boiardi Products; a QEP company.
 b. Bonsal American; an Oldcastle company.
 c. Bostik, Inc.
 d. C-Cure.
 e. Custom Building Products.
 f. Jamo Inc.
 g. Laticrete International, Inc.
 h. MAPEI Corporation.
 i. Southern Grouts & Mortars, Inc.
 j. Summitville Tiles, Inc.
 k. TEC; a subsidiary of H. B. Fuller Company.

2. For wall applications, provide mortar that complies with requirements for non-sagging mortar in addition to the other requirements in ANSI A118.1.

2.3 GROUT MATERIALS

A. Sand-Portland Cement Grout: ANSI A118.7, composed of white or gray cement and white or colored aggregate as required to produce color indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Boiardi Products; a QEP company.
 b. Bonsal American; an Oldcastle company.
 c. Bostik, Inc.
 d. C-Cure.
 e. Custom Building Products.
 f. Jamo Inc.
 g. Laticrete International, Inc.
 h. MAPEI Corporation.
 i. Southern Grouts & Mortars, Inc.
 j. Summitville Tiles, Inc.
 k. TEC; a subsidiary of H. B. Fuller Company.

2. Basis-of-Design Product: Subject to compliance with requirements, provide Laticrete1500 with Laticrete 1776 grout admixture or comparable product by one of the following:
 a. Boiardi Products; a QEP company.
 b. Bonsal American; an Oldcastle company.
 c. Bostik, Inc.
 d. C-Cure.
 e. Custom Building Products.
 f. Jamo Inc.
 g. Laticrete International, Inc.
 h. MAPEI Corporation.
 i. Southern Grouts & Mortars, Inc.
 j. Summitville Tiles, Inc.
 k. TEC; a subsidiary of H. B. Fuller Company.
2.4 ELASTOMERIC SEALANTS

A. General: Provide sealants, primers, backer rods, and other sealant accessories that comply with the following requirements and with the applicable requirements in Division 07 Section “Joint Sealants.”

1. Use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Use primers, backer rods, and sealant accessories recommended by sealant manufacturer.

B. Colors: Provide colors of exposed sealants to match colors of grout in tile adjoining sealed joints unless otherwise indicated.

C. One-Part, Mildew-Resistant Silicone Sealant: ASTM C 920; Type S; Grade NS; Class 25; Uses NT, G, A, and, as applicable to nonporous joint substrates indicated, O; formulated with fungicide, intended for sealing interior ceramic tile joints and other nonporous substrates that are subject to in-service exposures of high humidity and extreme temperatures.

1. Products: Subject to compliance with requirements one of the following.
 a. DAP Inc.;
 b. Dow Corning Corporation; Dow Corning 786.
 c. GE Silicones; a division of GE Specialty Materials; Sanitary 1700.
 e. Pecora Corporation; Pecora 898 Sanitary Silicone Sealant.
 f. Tremco Incorporated; Tremsil 600 White.

D. Multipart, Pourable Urethane Sealant for Use T: ASTM C 920; Type M; Grade P; Class 25; Uses T, M, A, and, as applicable to joint substrates indicated, O.

1. Products: Subject to compliance with requirements, provide one of the following.
 b. Degussa Building Systems; Sonneborn Sonolastic SL 2.
 c. Pecora Corporation; Dynatrol II-SG.
 d. Sika Corporation; Sikaflex-2c SL.
 e. Tremco Incorporated.; Vulkem 245.

2.5 MISCELLANEOUS MATERIALS

A. Trowelable underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Metal Edge Strips: Angle or L-shape, height to match tile and setting-bed thickness, metallic or combination of metal and PVC or neoprene base, designed specifically for flooring applications; half-hard brass exposed-edge material.

C. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.
D. Grout Sealer: Manufacturer's standard silicone product for sealing grout joints and that does not change color or appearance of grout.

1. Products: Subject to compliance with requirements, provide one of the following.
 a. Bonsal American; an Oldcastle company; Grout Sealer.
 b. Bostik, Inc.; CeramaSeal Grout & Tile Sealer, Magic Seal, Silox 8, Siloxane 220.
 c. C-Cure; Penetrating Sealer 978.
 d. Custom Building Products; Surfaceguard, Grout and Tile, Grout Sealer.
 e. Jamo Inc.; Matte Finish, Penetrating Sealer.
 f. MAPEI Corporation; KER 003, Silicone Spray Sealer for Cementitious Tile Grout, 0004, Keraseal Penetrating Sealer for Unglazed Grout and Tile.
 g. Southern Grouts & Mortars, Inc.; Silicone Grout Sealer.
 i. TEC; a subsidiary of H. B. Fuller Company; TA-256 Penetrating Silicone, TA-257 Silicone Grout Sealer.

2.6 MIXING MORTARS AND GROUT

A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.

B. Add materials, water, and additives in accurate proportions.

C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.

1. Verify that substrates for setting tile are firm, dry, clean, free of coatings that are incompatible with tile-setting materials including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.

2. Verify that concrete substrates for tile floors installed with thin-set mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.
 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.
 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.

3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.
4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thin-set mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.

B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.

C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

D. Field-Applied Temporary Protective Coating: If indicated under tile type or needed to prevent grout from staining or adhering to exposed tile surfaces, precoat them with continuous film of temporary protective coating, taking care not to coat unexposed tile surfaces.

3.3 TILE INSTALLATION

A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.

1. For the following installations, follow procedures in the ANSI A108 Series of tile installation standards for providing 95 percent mortar coverage:
 a. Tile floors in wet areas.

B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.

C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.

D. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.

1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so joints between sheets are not apparent in finished work.

2. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
3. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.

E. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.

F. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.

1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.
2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants."

G. Metal Edge Strips: Install where exposed edge of tile flooring meets carpet, wood, or other flooring that finishes flush with or below top of tile and no threshold is indicated.

H. Grout Sealer: Apply grout sealer to grout joints according to grout-sealer manufacturer’s written instructions. As soon as grout sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

3.4 CLEANING AND PROTECTING

A. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.

1. Remove grout residue from tile as soon as possible.
2. Clean grout smears and haze from tile according to tile and grout manufacturer’s written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
3. Remove temporary protective coating by method recommended by coating manufacturer and that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent drain clogging.

B. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.

C. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.

D. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

END OF SECTION 09-3000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Resilient base.
 2. Resilient molding accessories.
B. Related Sections:
 1. Division 09 Section "Resilient Tile Flooring" for resilient floor tile.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples for Initial Selection: For each type of product indicated.
C. Samples for Verification: For each type of product indicated, in manufacturer's standard-size Samples but not less than 12 inches long, of each resilient product color, texture, and pattern required.
D. Product Schedule: For resilient products. Use same designations indicated on Drawings.

1.4 QUALITY ASSURANCE
A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.
1.6 PROJECT CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following time periods:

1. 48 hours before installation.
2. During installation.
3. 48 hours after installation.

B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Install resilient products after other finishing operations, including painting, have been completed.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

PART 2 - PRODUCTS

2.1 RESILIENT BASE

A. Resilient Base:

1. Manufacturers: Subject to compliance with requirements. Available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allstate Rubber Corp.; Stoler Industries.
 b. Armstrong World Industries, Inc.
 c. Flexco, Inc.
 d. Johnsonite.
 e. Mondo Rubber International, Inc.
 f. Roppe Corporation, USA.

1. Material Requirement: Type TS rubber, vulcanized thermoset
3. Style: Cove (base with toe) and Straight (flat or toeless) for carpet.

C. Minimum Thickness: 0.125 inch.

D. Height: 4 inches.
E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Preformed.

G. Inside Corners: Job formed or preformed.

H. Finish: As selected by Architect from manufacturer's full range.

I. Colors: As selected by Architects from manufacturer's full color range.

2.2 RESILIENT MOLDING ACCESSORY

A. Resilient Molding Accessory:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allstate Rubber Corp.; Stoler Industries.
 b. Armstrong World Industries, Inc.
 c. Flexco, Inc.
 d. Johnsonite.
 e. Mondo Rubber International, Inc.
 f. Roppe Corporation, USA.

B. Description: Carpet edge for glue-down applications, Nosing for carpet, Nosing for resilient floor covering, Reducer strip for resilient floor covering, Joiner for tile and carpet, Transition strips.

C. Material: Rubber.

D. Profile and Dimensions: As indicated.

E. Colors and Patterns: As selected by Architect from full range of industry colors.

2.3 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated.

1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):

 a. Cove Base Adhesives: Not more than 50 g/L.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound and remove bumps and ridges to produce a uniform and smooth substrate.

C. Do not install resilient products until they are same temperature as the space where they are to be installed.

1. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation.

D. Sweep and vacuum clean substrates to be covered by resilient products immediately before installation.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.
H. Job-Formed Corners:
1. Inside Corners: Use straight pieces of maximum lengths possible.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of carpet and resilient floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protection of resilient products.

B. Perform the following operations immediately after completing resilient product installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover resilient products until Substantial Completion.

END OF SECTION 09-6513
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Luxury Vinyl Tile Resilient Flooring (LVT).
B. Related Sections:
 1. Division 09 Section "Resilient Base and Accessories" for resilient base, reducer strips, and other accessories installed with resilient floor coverings.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For each type of floor tile. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 1. Show details of special patterns.
C. Samples for Initial Selection: For each type of floor tile indicated in manufacturer's standard size, but not less than 6-by-9-inch sections of each different color and pattern of floor covering required.
D. Product Schedule: For floor coverings. Use same designations indicated on drawings.
E. Qualification Data: For qualified Installer.
F. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: A qualified installer who employs workers for this Project who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.
 1. Engage an installer who employs workers for this Project who are trained or certified by manufacturer for installation techniques required.
B. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.

1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.

1.6 PROJECT CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive floor tile during the following time periods:

1. 48 hours before installation.
2. During installation.
3. 48 hours after installation.

B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Close spaces to traffic during floor tile installation.

D. Close spaces to traffic for 48 hours after floor tile installation.

E. Install floor coverings after other finishing operations, including painting, have been completed.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Floor Tile: Furnish 1 box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.8 WARRANTY

A. Manufacturer’s Warranty: Submit, for Owner’s acceptance, manufacturer’s standard warranty document executed by authorized company official.

B. Warranty Period: Twenty (20) year limited commercial wear warranty commencing on Date of Substantial Completion.
PART 2 - PRODUCTS

2.1 Luxury Vinyl Tile Resilient Flooring (LVT):

A. Products: Subject to compliance with requirements, provide the following: Tandus Centiva Flooring Systems, Joe Chandler, Tandus Centiva Representative, 505.459.0807.
 1. LVT Resilient Tile Flooring: “Contour Series”.
 2. Classification: ASTM F1700 Class III Type B.
 3. Total Thickness: 0.120” (3 mm)
 4. Wear Layer Thickness: 32 mil (0.8 mm)
 5. Edge Treatment: Square (SE)
 6. Size: 12” x 36”
 7. Colors and Patterns: As selected by Architect from full range of colors.

B. TESTING
 1. Flexibility ASTM F137
 2. Dimensional Stability ASTM F2199
 3. Static Load ASTM F970
 4. Residual Indentation ASTM F1914
 5. Flammability ASTM E648
 6. Slip Resistance ASTM D2047
 7. Smoke Density ASTM E662
 8. Resistance to Light ASTM F1515
 9. Chemical Resistance ASTM F925
 10. Resistance to Heat ASTM F1514

2.2 SOURCE QUALITY

A. Obtain flooring material from a single manufacturer.

PART 3 - EXECUTION

3.1 MANUFACTURER’S INSTRUCTIONS

A. Comply with manufacturer's product data, including technical bulletins, product catalog installation instructions, and product carton instructions for installation.

3.2 EXAMINATION

A. Site Verification of Conditions: Verify substrate conditions (which have been previously installed under other sections) are acceptable for product installation in accordance with manufacturer's instructions (bond testing, pH testing, calcium chloride testing, relative humidity testing, etc.).

B. Material Inspection: In accordance with manufacturer's installation requirements, visually inspect materials prior to installation. Material with visual defects shall not be installed and shall not be considered as a legitimate claim.
3.3 PREPARATION

A. Adjacent Surfaces Protection: Protect adjacent work areas and finish surfaces from damage during product installation.

B. Surface Preparation:
 1. General: Prepare floor substrate in accordance with manufacturer’s instructions.
 2. Floor Substrate: Floors shall be sound, smooth, flat, permanently dry, clean, and free of all foreign materials including, but not limited to, dust, paint, grease, oils, solvents, curing and hardening compounds, sealers, asphalt and old adhesive residue.
 3. Concrete Floor Substrate: Concrete floor substrate shall have a minimum compressive strength of 3,000 psi. Refer to Division 3 Concrete sections for patching and repairing crack materials and leveling compounds with Portland cement based compounds.
 a. Reference Standard: Comply with the latest version of ASTM F 710 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.

C. Concrete Moisture Testing: Conduct moisture tests on all concrete floors regardless of the age, grade level or the presence of existing flooring. Conduct calcium chloride tests in accordance with the latest version of ASTM F 1869. Measure the internal relative humidity of the concrete slab in accordance with the latest version of ASTM F 2170. One test of each type should be conducted for every 1,000 square feet of flooring (minimum of 3). The tests should be conducted around the perimeter of the room, at columns, and anywhere moisture may be evident. Concrete moisture vapor emissions must not exceed manufacturer’s recommendations for adhesive being used. Concrete internal relative humidity must not exceed manufacturer’s recommendation for adhesives being used. A diagram of the area showing the location and results of each test should be submitted to the Architect, General Contractor or End User. If the test results exceed these limitations, the installation must not proceed until the problem has been corrected.

3.4 FLOOR TILE INSTALLATION

A. All installation means and methods shall be as recommended by manufacture.
 1. Install flooring on covers for telephone and electrical ducts, and similar items occurring.

B. Finish Flooring Patterns: Vertical Ashlar.

3.5 CLEANING AND PROTECTION

A. Cleaning: Remove temporary coverings and protection of adjacent work areas. Repair or replace damaged installed products. Clean installed products in accordance with manufacturer’s instructions prior to owner’s acceptance. Remove construction debris from project site and legally dispose of debris.
 1. Remove visible adhesive and other surface blemishes using cleaning methods recommended by floor manufacturer.
 2. Sweep and vacuum floor after installation.
 3. Do not wash floor until after time period recommended by flooring manufacturer.
 4. Damp mop flooring to remove black marks and soil.

B. Protection: Protect installed product and finish surfaces from damage during construction. Remove and legally dispose of protective covering at time of Substantial Completion.

C. Sealers and Finish Coats: See manufacturer requirements for warranted installation.
D. Cover floor tile until Substantial Completion.

END OF SECTION 09-6519
SECTION 09-9113
EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes surface preparation and the application of paint systems on the following exterior substrates:

1. Concrete.
2. Concrete Masonry Units
3. Steel.
5. Aluminum (not anodized or otherwise coated).
6. Wood.
7. Hollow Metal Doors and Frames
8. Detention Steel Doors and Frames
9. Detention Window Frames

B. Related Sections include the following:

1. Division 05 Sections for shop priming of metal substrates with primers specified in this Section.
2. Division 06 Sections for shop priming carpentry with primers specified in this Section.
3. Division 08 Sections for factory priming windows and doors with primers specified in this Section.
4. Division 09 Section "Interior Painting" for surface preparation and the application of paint systems on interior substrates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples for Initial Selection: For each type of topcoat product indicated.

C. Product List: For each product indicated, include the following:

1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted.
1.4 QUALITY ASSURANCE

A. MPI Standards:

1. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.6 PROJECT CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that are from same production run (batch mix) as materials applied and that are packaged for storage and identified with labels describing contents.

1. Quantity: Furnish an additional 2 percent, but not less than 1 gal. of each material and color applied.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Benjamin Moore & Co.
2. Dunn-Edwards Corporation.
3. ICI Paints.
2.2 PAINT, GENERAL

A. Material Compatibility:
1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

B. Colors: As selected by Architect from manufacturer's full range.

2.3 BLOCK FILLERS

1. VOC Content: E Range of E3.

2.4 PRIMERS/SEALERS

A. Alkali-Resistant Primer: MPI #3.
1. VOC Content: E Range of E3.

B. Bonding Primer (Water Based): MPI #17.
1. VOC Content: E Range of E3.

C. Bonding Primer (Solvent Based): MPI #69.
1. VOC Content: E Range of E2.

2.5 METAL PRIMERS

A. Alkyd Anticorrosive Metal Primer: MPI #79.
1. VOC Content: E Range of E1.

B. Quick-Drying Alkyd Metal Primer: MPI #76.
1. VOC Content: E Range of E2.

1. VOC Content: E Range of E0.
D. Waterborne Galvanized-Metal Primer: MPI #134.
 1. VOC Content: E Range of E3

E. Quick-Drying Primer for Aluminum: MPI #95.
 1. VOC Content: E Range of E3.

2.6 EXTERIOR LATEX PAINTS
A. Exterior Latex (Flat): MPI #10 (Gloss Level 1).
 1. VOC Content: E Range of E3.

B. Exterior Latex (Semigloss): MPI #11 (Gloss Level 5).
 1. VOC Content: E Range of E1

C. Exterior Latex (Gloss): MPI #119 (Gloss Level 6, except minimum gloss of 65 units at 60 deg).
 1. VOC Content: E Range of E1.

2.7 EXTERIOR ALKYD PAINTS
A. Exterior Alkyd Enamel (Flat): MPI #8 (Gloss Level 1).
 1. VOC Content: E Range of E1.

B. Exterior Alkyd Enamel (Semigloss): MPI #94 (Gloss Level 5).
 1. VOC Content: E Range of E1.

C. Exterior Alkyd Enamel (Gloss): MPI #9 (Gloss Level 6).
 1. VOC Content: E Range of E1.

2.8 QUICK-DRYING ENAMELS
A. Quick-Drying Enamel (Semigloss): MPI #81 (Gloss Level 5).
 1. VOC Content: E Range of E3.

B. Quick-Drying Enamel (High Gloss): MPI #96 (Gloss Level 7).
 1. VOC Content: E Range of E3.
2.9 FLOOR COATINGS

A. Interior/Exterior Clear Concrete Floor Sealer (Water Based): MPI #99.
 1. VOC Content: E Range of E2.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Wood: 15 percent.
 3. Gypsum Board: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry.
 1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove plates, machined surfaces, and similar items already in place that are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

C. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and re-prime substrate with compatible primers as required to produce paint systems indicated.
D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Steel Substrates: Remove rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer.

F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

G. Aluminum Substrates: Remove surface oxidation.

H. Wood Substrates:
 1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
 2. Sand surfaces that will be exposed to view, and dust off.
 3. Prime edges, ends, faces, undersides, and backsides of wood.
 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions.
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 EXTERIOR PAINTING SCHEDULE

A. Concrete Substrates, Non-traffic Surfaces:
 1. Latex System: MPI EXT 3.1A.
 c. Topcoat: Exterior latex flat.

B. Concrete Substrates, Traffic Surfaces:
 1. Water-Based Clear Sealer System: MPI EXT 3.2H.

C. Concrete Masonry Units:
 1. Latex Block Filler: MPI #4.
 2. Two coats Silane Water Repellent.

D. Steel Substrates:
 1. Quick-Drying Enamel System: MPI EXT 5.1A.
 2. Aluminum Paint System: MPI EXT 5.1K.
 c. Topcoat: Aluminum paint.

E. Galvanized-Metal Substrates:
 1. Latex System: MPI EXT 5.3A.
 c. Topcoat: Exterior latex flat.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

END OF SECTION 09-9113
SECTION 09-9123
INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes surface preparation and the application of paint and stain systems on the following interior substrates:

1. Concrete.
2. Steel.
4. Aluminum (not anodized or otherwise coated).
5. Gypsum board.
6. Hollow Metal Doors and Frames.
7. Detention Steel Doors and Frames.
10. Furniture.

C. Related Sections include the following:

11. Division 05 Sections for shop priming of metal substrates with primers specified in this Section.
12. Division 06 Sections for shop priming carpentry with primers specified in this Section.
13. Division 08 Sections for factory priming windows and doors with primers specified in this Section.
14. Division 09 Section "Exterior Painting" for surface preparation and the application of paint systems on exterior substrates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples for Initial Selection: For each type of topcoat product indicated.

C. Product List: For each product indicated, include the following:

1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted.
1.4 QUALITY ASSURANCE

A. MPI Standards:
 1. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.6 PROJECT CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that are from same production run (batch mix) as materials applied and that are packaged for storage and identified with labels describing contents.
 1. Quantity: Furnish an additional 2 percent, but not less than 1 gal. of each material and color applied.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Benjamin Moore & Co.
 2. Dunn-Edwards Corporation.
 3. PPG Architectural Finishes, Inc.
5. Ecoprocote (concrete stain), or equal.

2.2 PAINT, GENERAL

A. Material Compatibility:

1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

B. VOC Content of Field- Applied Interior Paints and Coatings: Provide products that comply with the following limits for VOC content, exclusive of colorants added to a tint base, when calculated according to 40 CFR 59, Subpart D (EPA Method 24); these requirements do not apply to paints and coatings that are applied in a fabrication or finishing shop:

1. Flat Paints, Coatings, and Primers: VOC content of not more than 50 g/L.
2. Non-flat Paints, Coatings, and Primers: VOC content of not more than 150 g/L.
3. Anti-Corrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC not more than 250 g/L.
4. Floor Coatings: VOC not more than 100 g/L.
5. Shellacs, Clear: VOC not more than 730 g/L.
6. Shellacs, Pigmented: VOC not more than 550 g/L.
7. Flat Topcoat Paints: VOC content of not more than 50 g/L.
8. Non-flat Topcoat Paints: VOC content of not more than 150 g/L.
9. Anti-Corrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC not more than 250 g/L.
10. Floor Coatings: VOC not more than 100 g/L.
11. Shellacs, Clear: VOC not more than 730 g/L.
12. Shellacs, Pigmented: VOC not more than 550 g/L.
13. Primers, Sealers, and Under-coaters: VOC content of not more than 200 g/L.
14. Dry-Fog Coatings: VOC content of not more than 400 g/L.
15. Zinc-Rich Industrial Maintenance Primers: VOC content of not more than 340 g/L.
16. Pre-Treatment Wash Primers: VOC content of not more than 420 g/L.

C. Chemical Components of Field- Applied Interior Paints and Coatings: Provide topcoat paints and anti-corrosive and anti-rust paints applied to ferrous metals that comply with the following chemical restrictions; these requirements do not apply to paints and coatings that are applied in a fabrication or finishing shop:

1. Aromatic Compounds: Paints and coatings shall not contain more than 1.0 percent by weight of total aromatic compounds (hydrocarbon compounds containing one or more benzene rings).
2. Restricted Components: Paints and coatings shall not contain any of the following:
 a. Acrolein.
 b. Acrylonitrile.
 c. Antimony.
 d. Benzene.
 e. Butyl benzyl phthalate.
 f. Cadmium.
 g. Di (2-ethylhexyl) phthalate.
h. Di-n-butyl phthalate.
i. Di-n-octyl phthalate.
j. 1,2-dichlorobenzene.
k. Diethyl phthalate.
l. Dimethyl phthalate.
m. Ethylbenzene.
n. Formaldehyde.
o. Hexavalent chromium.
p. Isophorone.
q. Lead.
r. Mercury.
s. Methyl ethyl ketone.
t. Methyl isobutyl ketone.
u. Methylene chloride.
v. Naphthalene.
w. Toluene (methylbenzene).
x. 1,1,1-trichloroethane.
y. Vinyl chloride.

D. Colors: As selected by Architect from manufacturer’s full range.

2.3 PRIMERS/SEALERS

A. Interior Latex Primer/Sealer: MPI #50.
 1. VOC Content: E Range of E1
 2. Environmental Performance Rating: EPR-1

B. Interior Alkyd Primer/Sealer: MPI #45.
 1. VOC Content: E Range of E2

C. Wood-Knot Sealer: Sealer recommended in writing by topcoat manufacturer for use in paint systems indicated.

2.4 METAL PRIMERS

A. Alkyd Anticorrosive Metal Primer: MPI #79.
 1. VOC Content: E Range of E1

B. Quick-Drying Alkyd Metal Primer: MPI #76.
 1. VOC Content: E Range of E3

C. Rust-Inhibitive Primer (Water Based): MPI #107.
 1. VOC Content: E Range of E2
 2. Environmental Performance Rating: EPR-1

D. Quick-Drying Primer for Aluminum: MPI #95.
2.5 WOOD PRIMERS

A. Interior Latex-Based Wood Primer: MPI #39.
 1. VOC Content: E Range of E3
 2. Environmental Performance Rating: EPR-2

2.6 LATEX PAINTS

A. Interior Latex (Flat): MPI #53 (Gloss Level 1).
 1. VOC Content: E Range of E3
 2. Environmental Performance Rating: GPS-2

B. Interior Latex (Low Sheen): MPI #44 (Gloss Level 2).
 1. VOC Content: E Range of E3
 2. Environmental Performance Rating: GPS-2

C. Interior Latex (Eggshell): MPI #52 (Gloss Level 3).
 1. VOC Content: E Range of E2
 2. Environmental Performance Rating: GPS-1

D. Interior Latex (Satin): MPI #43 (Gloss Level 4).
 1. VOC Content: E Range of E2
 2. Environmental Performance Rating: GPS-1

E. Interior Latex (Semigloss): MPI #54 (Gloss Level 5).
 1. VOC Content: E Range of E1
 2. Environmental Performance Rating: EPR2

F. Interior Latex (Gloss): MPI #114 (Gloss Level 6, except minimum gloss of 65 units at 60 deg).
 1. VOC Content: E Range of E1
 2. Environmental Performance Rating: EPR2

2.7 QUICK-DRYING ENAMELS

A. Quick-Drying Enamel (Semigloss): MPI #81 (Gloss Level 5).
 1. VOC Content: E Range of E3

B. Quick-Drying Enamel (High Gloss): MPI #96 (Gloss Level 7).
 1. VOC Content: E Range of E3
2.8 FLOOR COATINGS

A. Interior/Exterior Clear Concrete Floor Sealer (Water Based): MPI #99.
 1. VOC Content: E Range of E2.

B. Interior Epoxy Floor Coating – Additive Alternate #5

MANUFACTURERS

A. Acceptable Manufacturer:
The Sherwin-Williams Company
101 Prospect Avenue NW
Cleveland, OH 44115
Tel: (800) 321-8194
Fax: (216) 566-1392

B. Severe Industrial Duty: (Is Generally Considered for Heavy Vehicle Traffic, Heavy Abrasion Areas, & Frequent Cleaning/Rinsing.). Epoxy paint installer shall have a minimum of 5 years experience and will need to be a qualified installer of this system.

Epoxy Primer / Self-Leveling Epoxy System

1st Coat: ArmorSeal® 33 Epoxy Primer/Sealer, B58AQ33 Series (7.0 - 8.0 mils dry)

2nd Coat: ArmorSeal® 650 SL/RC Self-Leveling Epoxy, B58Q650 Series (10.0 - 30.0 mils dry per coat)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Wood: 15 percent.
 3. Gypsum Board: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry.
1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated.

B. Remove plates, machined surfaces, and similar items already in place that are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

C. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers as required to produce paint systems indicated.

D. Concrete Substrates:
 1. Protect adjacent surfaces to prevent accidental application to surfaces not indicated to receive stain; remove accidental applications from surfaces immediately, following manufacturer's instructions.
 2. Protect concrete during construction with partial board to preserve the quality of new concrete.
 3. Clean with detergent-based materials, as recommended by manufacturer's instructions; cleaning with solvent-based or oil-based cleaners is prohibited.
 4. Open pores of hard trowelled concrete by mechanically grinding, etching, scarifying, or by non-hazardous chemical etch as recommended by manufacturer.
 5. Do not paint surfaces if moisture content of alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Steel Substrates: Remove rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer.

F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

G. Aluminum Substrates: Remove surface oxidation.

H. Wood Substrates:
1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
2. Sand surfaces that will be exposed to view, and dust off.
3. Prime edges, ends, faces, undersides, and backsides of wood.
4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

I. Gypsum Board Substrates: Do not begin paint application until finishing compound is dry and sanded smooth.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions.

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Mechanical and Electrical Work: Paint items exposed in equipment rooms and occupied spaces including, but not limited to, the following: Paint items exposed to view through specified open cell ceiling systems.

1. Mechanical Work:
 a. Uninsulated metal piping.
 b. Uninsulated plastic piping.
 c. Pipe hangers and supports.
 d. Tanks that do not have factory-applied final finishes.
 e. Visible portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets.
 f. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 g. Mechanical equipment that is indicated to have a factory-primed finish for field painting.

2. Electrical Work:
 a. Switchgear.
 b. Panelboards.
c. Electrical equipment that is indicated to have a factory-primed finish for field painting.

d. Conduit

3.4 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

A. Concrete Substrates, Nontraffic Surfaces:

1. Latex Over Sealer System: MPI INT 3.1A.
 c. Topcoat: Interior latex flat.

B. Concrete Substrates, Traffic Surfaces:

1. Water-Based Clear Sealer System: MPI INT 3.2G.

C. Steel Substrates:

1. Quick-Drying Enamel System: MPI INT 5.1A.
 c. Topcoat: Quick-drying enamel semigloss

2. Aluminum Paint System: MPI INT 5.1M.
 c. Topcoat: Aluminum paint.

D. Galvanized-Metal Substrates:
1. Latex System: MPI INT 5.3A.
 c. Topcoat: Interior latex flat

E. Aluminum (Not Anodized or Otherwise Coated) Substrates:

1. Latex System: MPI INT 5.4H.
 c. Topcoat: Interior latex flat.

2. Aluminum Paint System: MPI INT 5.4D.
 a. Prime Coat: Vinyl wash primer.
 c. Topcoat: Aluminum paint.

F. Gypsum Board Substrates – Wall/ Ceiling Paint at Dry Areas (Basis: Dunn Edwards)

1. First Coat: #65 Primer- Sealer
2. Second Coat: #90 Semi-gloss enamel
3. Third Coat: #90 Semi-gloss enamel

G. Gypsum Board Substrates – Wall/ Ceiling Paint at Wet Areas (Bases Dunn Edwards)

1. First Coat: Dunn Edwards #65 primer- Sealer
2. Second Coat: Epoxy E.
3. Third Coat: Epoxy E.

END OF SECTION 09-9123
SECTION 10-1400
SIGNAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Dimensional characters.
2. Panel signs. Administration Building to have 35 number signs plus ADA toilet room signs and the Maintenance Building to have 9 number of signs plus ADA toilet room signs. Each sign to have a minimum of 18 characters. The Architect will provide sign schedule during shop drawing review.

1.3 DEFINITIONS

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details for signs.

1. Show sign mounting heights, locations of supplementary supports to be provided by others, and accessories.
2. Provide message list, typestyles, graphic elements, including tactile characters and Braille, and layout for each sign.

C. Samples for Initial Selection: Manufacturer's color charts consisting of actual units or sections of units showing the full range of colors available for the following:

1. Melamine plastic laminate sheet.

D. Sign Schedule: To be provided by Architect

E. Qualification Data: For Installer and fabricator.

F. Maintenance Data: For signs to include in maintenance manuals.

G. Warranty: Special warranty specified in this Section.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Fabricator of products.

B. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.

C. Source Limitations for Signs: Obtain each sign type indicated from one source from a single manufacturer.

D. Regulatory Requirements: Comply with applicable provisions in ICC/ANSI 117.1-2003

1.6 PROJECT CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit installation of signs in exterior locations to be performed according to manufacturers’ written instructions and warranty requirements.

B. Field Measurements: Verify recess openings by field measurements before fabrication and indicate measurements on Shop Drawings.

1.7 COORDINATION

A. Coordinate placement of anchorage devices with templates for installing signs.

1.8 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Deterioration of metal and polymer finishes beyond normal weathering.

 b. Deterioration of embedded graphic image colors and sign lamination.

2. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SIGNAGE

A. Basis-of-Design Products: Subject to compliance with requirements provide signs as manufactured by Century Sign Builders, 505.888.2901.

B. Plaque material shall consist of melamine plastic laminate, approximately 1/8" thick with background painted a contrasting color and rated non-static, fire-retardant and self-
extinguishing. Plastic laminate will impervious to most acids, alkali, alcohol, solvents, abrasives and boiling water.

C. Lettering style shall be Standard Medium, upper case, or other sans serif or simple serif typeface.

D. Sizes of letters and numbers shall be as follows:
 1. Room numbers shall be 5/8” high.
 2. Lettering for room usage and directional identification shall be 5/8” high.
 3. Lettering for restroom identification shall be 5/8” high, corresponding symbols shall be 3” high.

E. Letters and numbers shall be centered on sign.

F. Grade 2 Braille shall be placed directly below last line of letters or numbers.

G. Sign Size:
 1. Restroom signs shall be 6” x 8”.
 2. Room identification sign shall be 8” X 4”.

2.2 ACCESSORIES

A. Anchors and Inserts: Provide nonferrous-metal or hot-dip galvanized anchors and inserts for exterior installations and elsewhere as required for corrosion resistance. Use toothed steel or lead expansion-bolt devices for drilled-in-place anchors. Furnish inserts, as required, to be set into concrete or masonry work.

2.3 FABRICATION

A. General: Provide manufacturer’s standard signs of configurations indicated.

 1. Welded Connections: Comply with AWS standards for recommended practices in shop welding. Provide welds behind finished surfaces without distortion or discoloration of exposed side. Clean exposed welded surfaces of welding flux and dress exposed and contact surfaces.
 2. Mill joints to tight, hairline fit. Form joints exposed to weather to exclude water penetration.
 3. Preassemble signs in the shop to greatest extent possible. Disassemble signs only as necessary for shipping and handling limitations. Clearly mark units for reassembly and installation, in location not exposed to view after final assembly.
 4. Conceal fasteners if possible; otherwise, locate fasteners where they will be inconspicuous.
2.4 FINISHES, GENERAL
 A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.5 DIMENSIONAL CHARACTERS
 A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Albuquerque Reprographics
 2. ACE Sign Systems, Inc.
 4. ASI-Modulex, Inc.
 5. Gemini Incorporated.
 B. Cast Characters: Produce characters with smooth flat faces, sharp corners, and precisely formed lines and profiles, free of pits, scale, sand holes, and other defects. Cast lugs into back of characters and tap to receive threaded mounting studs. Alloy and temper recommended by sign manufacturer for casting process used and for use and finish indicated. Comply with the following requirements.
 1. Character Material: Cast aluminum lettering
 2. Finish: Clear anodized. 8” letter: ½” return. 12” letter 3/4” return
 3. Letter Style: Avante Garde Medium, 8” and 12”
 5. Quantity: Reference Drawings.
 6. Building signage shall be as follows:
 As noted and shown on construction documents, sheets A-201 and A-202

2.6 ALUMINUM FINISHES
 A. Clear Anodic Finish: Manufacturer's standard Class 1 clear anodic coating, 0.018 mm or thicker, over a satin (directionally textured) mechanical finish, complying with AAMA 611.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 B. Verify that items, including anchor inserts, are sized and located to accommodate signs.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Locate signs and accessories where indicated, using mounting methods of types described and complying with manufacturer's written instructions.

1. Install signs level, plumb, and at heights indicated, with sign surfaces free of distortion and other defects in appearance.
2. Interior Wall Signs: Install signs on walls adjacent to latch side of door where applicable. Where not indicated or possible, such as double doors, install signs on nearest adjacent walls. Locate to allow approach within 3 inches of sign without encountering protruding objects or standing within swing of door.

B. Wall-Mounted Signs: Comply with sign manufacturer's written instructions except where more stringent requirements apply.

1. Mechanical Fasteners: Use non-removable mechanical fasteners placed through predrilled holes. Attach signs with fasteners and anchors suitable for secure attachment to substrate as recommended in writing by sign manufacturer.
2. Signs Mounted on Glass: Provide matching opaque plate on opposite side of glass to conceal mounting materials.

3.3 CLEANING AND PROTECTION

A. After installation, clean soiled sign surfaces according to manufacturer's written instructions. Protect signs from damage until acceptance by Owner.

END OF SECTION 10-1400
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Washroom accessories.
2. Shower room accessories.
3. Custodial accessories.

B. Related Sections include the following:

1. Division 09 Section "Tiling" for ceramic toilet and bath accessories.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include the following:

1. Construction details and dimensions.
2. Anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
3. Material and finish descriptions.
4. Features that will be included for Project.
5. Manufacturer's warranty.

B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.

1. Identify locations using room designations indicated on Drawings.
2. Identify products using designations indicated on Drawings.

C. Maintenance Data: For toilet and bath accessories to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. Source Limitations: For products listed together in the same articles in Part 2, provide products of same manufacturer unless otherwise approved by Architect.
1.5 COORDINATION

A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.

B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.6 WARRANTY

A. Special Mirror Warranty: Manufacturer's standard form in which manufacturer agrees to replace mirrors that develop visible silver spoilage defects and that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Stainless Steel: ASTM A 666, Type 304, 0.0312-inch minimum nominal thickness, unless otherwise indicated.

B. Brass: ASTM B 19 flat products; ASTM B 16, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.

C. Galvanized Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.

E. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper- and-theft resistant where exposed, and of galvanized steel where concealed.

F. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).

G. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.2 WASHROOM ACCESSORIES

A. Basis-of-Design Product: The design for accessories is based on products manufactured by Bobrick Washroom Equipment, Inc. and as indicated in drawings. Comparable equals by the following:

1. A & J Washroom Accessories, Inc.
2. American Specialties, Inc.
B. TOILET ACCESSORY SCHEDULE
 1. As scheduled on drawings

2.3 FABRICATION
 A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.
 B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
 B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to method in ASTM F 446.
 C. Security accessories shall be installed with recommended tamper resistant anchors and screws per manufacturer's recommendations.

3.2 ADJUSTING AND CLEANING
 A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
 B. Remove temporary labels and protective coatings.
 C. Clean and polish exposed surfaces according to manufacturer's written recommendations.

END OF SECTION 10-2800
SECTION 10-4413
FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fire protection cabinets for the following:
 a. Portable fire extinguishers.
 B. Secure and non-secure cabinets will be installed for this project.
 C. Related Sections:
 1. Division 10 Section "Fire Extinguishers."

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for fire protection cabinets.
 1. Fire Protection Cabinets: Include roughing-in dimensions, details showing mounting methods, relationships of box and trim to surrounding construction, door hardware, cabinet type, trim style, and panel style.
B. Maintenance Data: For fire protection cabinets to include in maintenance manuals.

1.4 QUALITY ASSURANCE
A. Fire-Rated, Fire Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire-resistance rating of walls where they are installed.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 COORDINATION
A. Coordinate size of fire protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
B. Coordinate sizes and locations of fire protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Aluminum: Alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated, and as follows:

2. Extruded Shapes: ASTM B 221.
3. Color as selected by Architect from full of available colors.

2.2 FIRE PROTECTION CABINET

A. Cabinet Type: Suitable for fire extinguisher.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. J. L. Industries, Inc., a division of Activar Construction Products Group;
 b. Kidde Residential and Commercial Division, Subsidiary of Kidde plc;
 c. Larsen's Manufacturing Company;
 d. Modern Metal Products, Division of Technico Inc.;

B. Cabinet Construction: Non-rated and 1-hour fire rated.

1. Non-Rated Cabinets: Construct fire-rated cabinets with double walls fabricated from 0.0428-inch- thick, cold-rolled steel sheet lined with minimum 5/8-inch- thick, fire-barrier material. Provide factory-drilled mounting holes.

C. Cabinet Material: Aluminum sheet.

1. Shelf: Same metal and finish as cabinet.

D. Semi-recessed Cabinet: Cabinet box partially recessed in walls of sufficient depth to suit style of trim indicated; with one-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend). Provide where walls are of insufficient depth for recessed cabinets but are of sufficient depth to accommodate semi-recessed cabinet installation.

1. Square-Edge Trim: 1-1/4- to 1-1/2-inch backbend depth.

E. Surface-Mounted Cabinet: Cabinet box fully exposed and mounted directly on wall with no trim. Provide where walls are of insufficient depth for semi-recessed cabinet installation.

F. Cabinet Trim Material: Steel sheet

G. Door Material: Steel sheet
H. Door Style: Fully glazed panel with frame.

I. Door Glazing: Tempered float glass (clear).

J. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 1. Provide manufacturer's standard.
 2. Provide manufacturer's standard hinge permitting door to open 180 degrees.

K. Accessories:
 1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.
 2. Break-Glass Strike: Manufacturer's standard metal strike, complete with chain and mounting clip, secured to cabinet.
 3. Lettered Door Handle: One-piece, cast-iron door handle with the word "FIRE" embossed into face.
 4. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle
 5. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as directed by Architect.
 a. Identify fire extinguisher in fire protection cabinet with the words "FIRE EXTINGUISHER".
 1) Location: Applied to cabinet door.
 2) Application Process: Silk-screened
 3) Lettering Color: Red.
 4) Orientation: Vertical.

L. Finishes:
 1. Manufacturer's standard baked-enamel paint for the following:
 a. Exterior of cabinet door and trim except for those surfaces indicated to receive another finish. Color as selected by Architect from full range of available colors.
 b. Interior of cabinet and door.
 2. Steel: Baked enamel or powder coat.

2.3 FABRICATION

A. Fire Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Provide factory-drilled mounting holes.
 3. Prepare doors and frames to receive locks.
 4. Install door locks at factory.
B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles selected.
 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
 2. Fabricate door frames of one-piece construction with edges flanged.
 3. Miter and weld perimeter door frames.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces of fire protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire protection cabinets after assembly.

D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.5 STEEL FINISHES

A. Surface Preparation: Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning"

B. Factory Prime Finish: Apply manufacturer's standard, fast-curing, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

C. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.

2.6 FABRICATION

A. Fire Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Provide factory-drilled mounting holes.
 3. Prepare doors and frames to receive locks.
 4. Install door locks at factory.
B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles selected.

1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
2. Fabricate door frames of one-piece construction with edges flanged.
3. Miter and weld perimeter door frames.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.7 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces of fire protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire protection cabinets after assembly.

D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.8 STEEL FINISHES

A. Surface Preparation: Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning"

B. Factory Prime Finish: Apply manufacturer's standard, fast-curing, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

C. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pre-treating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.

1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and partitions for suitable framing depth and blocking where cabinets will be installed.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Prepare recesses for fire protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

A. General: Install fire protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.

1. Fire Protection Cabinets: 54 inches above finished floor to top of cabinet.

B. Fire Protection Cabinets: Fasten cabinets to structure, square and plumb.

1. Unless otherwise indicated, provide recessed fire protection cabinets. If wall thickness is not adequate for recessed cabinets, provide semi-recessed fire protection cabinets.
2. Provide inside latch and lock for break-glass panels.
3. Fasten mounting brackets to inside surface of fire protection cabinets, square and plumb.

C. Identification: Apply vinyl lettering at locations indicated.

3.4 ADJUSTING AND CLEANING

A. Remove temporary protective coverings and strippable films, if any, as fire protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.

B. Adjust fire protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.

C. On completion of fire protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.

D. Touch up marred finishes, or replace fire protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire protection cabinet and mounting bracket manufacturers.

E. Replace fire protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 10-4413
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes portable, hand-carried fire extinguishers.
 B. Related Sections:
 1. Division 10 Section "Fire Extinguisher Cabinets."

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher.
 B. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.
 C. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE
 A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
 B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
 1. Provide fire extinguishers approved, listed, and labeled by FMG.

1.5 COORDINATION
 A. Coordinate type and capacity of fire extinguishers with fire protection cabinets to ensure fit and function.
1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Failure of hydrostatic test according to NFPA 10.
 b. Faulty operation of valves or release levers.

2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

A. Fire Extinguishers: Type, size, and capacity for each fire protection cabinet indicated.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire End & Croker Corporation.
 c. Kidde Residential and Commercial Division; Subsidiary of Kidde plc.
 d. Larsen's Manufacturing Company.

2. Valves: Manufacturer's standard.
3. Handles and Levers: Manufacturer's standard.
4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.

B. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 4-A:60-B:C, 10-lb nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fire extinguishers for proper charging and tagging.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install fire extinguishers in cabinets and locations indicated and in compliance with requirements of authorities having jurisdiction.
END OF SECTION 10-4416
SECTION 13 85 00
SEISMIC PROTECTION

PART 1 - GENERAL

1.1 SECTION INCLUDES
A. Seismic protection and restraints for mechanical/electrical equipment and systems.

1.2 PERFORMANCE REQUIREMENTS FOR SEISMIC RESTRAINTS
B. Project Conditions
1. Site Class as Defined in the IBC: C
2. S_{DS}, Design Spectral Acceleration at Short Periods: 0.469.
3. S_{D1}, Design Spectral Acceleration at One Second Period: 0.194.
4. Assigned Seismic Use Group or Building Category as Defined in the IBC: I (one).
5. Component Importance Factor Ip: determine in accordance with ASCE 7 for each component.
C. Design: Design seismic restraints in accordance with stated criteria. Design shall be by a Registered Professional Engineer.
D. Exclusion: Install seismic protection of water pipes for fire protection systems as specified in Section 21 10 00.
E. Exclusion: Install seismic protection of ceilings as specified in section 09 50 00.

1.3 SUBMITTALS
A. Product Data: Submit details including materials, configuration and fastenings for manufactured seismic restraint devices. Submit test data approved by ICBO confirming load capacity.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Include the following:
1. Seismic-Restraint Details: Detail fabrication, arrangement, locations, spacing and attachment of seismic restraints and snubbers. Show anchorage details.

C. Design Analysis for Seismic Restraints: Submit complete calculations for seismic restraints, stamped by a Registered Professional Engineer.

D. Component Certification: When ASCE 7 requires Component Certification for any particular component, submit manufacturer’s certificate of compliance indicating that the component complies with ASCE 7 requirements.

PART 2 - PRODUCTS

2.1 SEISMIC RESTRAINTS

A. Provide seismic restraints of type permitted by IBC and ASCE 7 and in accordance with the Contractor have approved design.

PART 3 - EXECUTION

3.1 SEISMIC RESTRAINT INSTALLATION

A. Install seismic restraints in accordance with IBC, ASCE 7 and Contractor’s approved design.

END OF SECTION 13 85 00
SECTION 22 0523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze angle valves.
2. Brass ball valves.
3. Bronze ball valves.
4. Iron ball valves.
5. Iron, single-flange butterfly valves.
7. Bronze lift check valves.
8. Bronze swing check valves.
10. Iron swing check valves with closure control.
13. Iron, plate-type check valves.
15. Iron gate valves.
16. Bronze globe valves.
17. Iron globe valves.
18. Lubricated plug valves.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.
1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:

1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
2. Handwheel: For valves other than quarter-turn types.
3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug-valve head.
5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:

1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:

1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Grooved: With grooves according to AWWA C606.
4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.
2.2 BRONZE ANGLE VALVES

A. Class 125, Bronze Angle Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve.
 b. Milwaukee Valve Company.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron bronze, or aluminum.

B. Class 125, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. NIBCO INC.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, Bronze Angle Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Stockham Division.
 b. Kitz Corporation.

2. Description:
 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem and Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron, bronze, or aluminum.

D. Class 150, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 BRASS BALL VALVES

A. One-Piece, Reduced-Port, Brass Ball Valves with Brass Trim:

 a. Kitz Corporation.

2. Description:

 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
i. Port: Reduced.

B. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. DynaQuip Controls.
 d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 e. Hammond Valve.
 f. Jamesbury; a subsidiary of Metso Automation.
 g. Jomar International, LTD.
 h. Kitz Corporation.
 i. Legend Valve.
 j. Marwin Valve; a division of Richards Industries.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Red-White Valve Corporation.
 n. RuB Inc.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

C. Two-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 d. Hammond Valve.
 e. Jamesbury; a subsidiary of Metso Automation.
 f. Kitz Corporation.
 g. Marwin Valve; a division of Richards Industries.
 h. Milwaukee Valve Company.
 i. RuB Inc.
2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

D. Two-Piece, Regular-Port, Brass Ball Valves with Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve.
 b. Jamesbury; a subsidiary of Metso Automation.
 c. Legend Valve.
 d. Marwin Valve; a division of Richards Industries.
 e. Milwaukee Valve Company.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.

E. Two-Piece, Regular-Port, Brass Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Jamesbury; a subsidiary of Metso Automation.
 b. Marwin Valve; a division of Richards Industries.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Brass or bronze.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Regular.

F. Three-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Jomar International, LTD.
 b. Kitz Corporation.
 c. Red-White Valve Corporation.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

G. Three-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Jomar International, LTD.
 b. Kitz Corporation.
 c. Marwin Valve; a division of Richards Industries.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Full.

2.4 BRONZE BALL VALVES

A. One-Piece, Reduced-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. NIBCO INC.

2. Description:

 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. One-Piece, Reduced-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. NIBCO INC.

2. Description:

 b. CWP Rating: 600 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Reduced.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
E. Two-Piece, Regular-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. DynaQuip Controls.
 f. Hammond Valve.
 g. Lance Valves; a division of Advanced Thermal Systems, Inc.
 h. Milwaukee Valve Company.
 i. NIBCO INC.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.

F. Two-Piece, Regular-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Regular.

G. Three-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. DynaQuip Controls.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corporation.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

H. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

j. Port: Full.

2.5 IRON BALL VALVES

A. Class 125, Iron Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kitz Corporation.
 d. Sure Flow Equipment Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Ends: Flanged.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel.
 i. Port: Full.

2.6 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Aluminum bronze.

B. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. Conbraco Industries, Inc.; Apollo Valves.
c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
d. Crane Co.; Crane Valve Group; Jenkins Valves.
e. Crane Co.; Crane Valve Group; Stockham Division.
f. DeZurik Water Controls.
g. Flo Fab Inc.
h. Hammond Valve.
i. Kitz Corporation.
j. Legend Valve.
k. Milwaukee Valve Company.
l. NIBCO INC.
m. Norriseal; a Dover Corporation company.
n. Red-White Valve Corporation.
o. Spence Strainers International; a division of CIRCOR International, Inc.
p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: NBR.
f. Stem: One- or two-piece stainless steel.
g. Disc: Aluminum bronze.
C. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Ductile-Iron Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. American Valve, Inc.
c. Conbraco Industries, Inc.; Apollo Valves.
d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
e. Crane Co.; Crane Valve Group; Center Line.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. DeZurik Water Controls.
h. Flo Fab Inc.
i. Hammond Valve.
j. Kitz Corporation.
k. Legend Valve.
l. Milwaukee Valve Company.
m. Mueller Steam Specialty; a division of SPX Corporation.
n. NIBCO INC.
o. Norriseal; a Dover Corporation company.
q. Sure Flow Equipment Inc.
r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Nickel-plated ductile iron.

D. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Ductile-Iron Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
b. American Valve, Inc.
c. Conbraco Industries, Inc.; Apollo Valves.
d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
e. Crane Co.; Crane Valve Group; Center Line.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. DeZurik Water Controls.
h. Flo Fab Inc.
i. Hammond Valve.

j. Kitz Corporation.

k. Legend Valve.

l. Milwaukee Valve Company.

m. Mueller Steam Specialty; a division of SPX Corporation.

n. NIBCO INC.

o. Norriseal; a Dover Corporation company.

q. Sure Flow Equipment Inc.

r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-67, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.

e. Seat: NBR.

f. Stem: One- or two-piece stainless steel.

g. Disc: Nickel-plated ductile iron.

E. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.

b. American Valve, Inc.

c. Conbraco Industries, Inc.; Apollo Valves.

d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.

e. Crane Co.; Crane Valve Group; Jenkins Valves.

f. Crane Co.; Crane Valve Group; Stockham Division.

g. DeZurik Water Controls.

h. Flo Fab Inc.

i. Hammond Valve.

j. Kitz Corporation.

k. Legend Valve.

l. Milwaukee Valve Company.

m. Mueller Steam Specialty; a division of SPX Corporation.

n. NIBCO INC.

o. Norriseal; a Dover Corporation company.

q. Spence Strainers International; a division of CIRCOR International, Inc.

r. Sure Flow Equipment Inc.

s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
a. Standard: MSS SP-67, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.

e. Seat: EPDM.

f. Stem: One- or two-piece stainless steel.

g. Disc: Stainless steel.

F. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valves and Controls; A div. of ABZ Manufacturing, Inc.
 b. American Valve, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; A div. of Cooper Cameron Corp.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Div.
 g. DeZurik Water Controls.
 h. Flo Fab Inc.
 i. Hammond Valve.
 j. Kitz Corporation.
 k. Legend Valve.
 l. Milwaukee Valve Company.
 m. Mueller Steam Specialty; a division of SPX Corporation.
 n. NIBCO INC.
 o. Norriseal; a Dover Corporation company.
 q. Spence Strainers International; a division of CIRCOR International, Inc.
 r. Sure Flow Equipment Inc.
 s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: NBR.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Stainless steel.

2.7 IRON, GROOVED-END BUTTERFLY VALVES

A. 175 CWP, Iron, Grooved-End Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 175 psig.
 c. Body Material: Coated, ductile iron.
 e. Disc: Coated, ductile iron.
 f. Seal: EPDM.

B. 300 CWP, Iron, Grooved-End Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. NIBCO INC.
 e. Shurjoint Piping Products.
 f. Tyco Fire Products LP; Grinnell Mechanical Products.
 g. Victaulic Company.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. NPS 8 and Smaller CWP Rating: 300 psig.
 c. NPS 10 and Larger CWP Rating: 200 psig.
 d. Body Material: Coated, ductile iron.
 e. Stem: Two-piece stainless steel.
 f. Disc: Coated, ductile iron.
 g. Seal: EPDM.

2.8 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Lift Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. Mueller Steam Specialty; a division of SPX Corporation.
 f. NIBCO INC.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: NBR, PTFE, or TFE.

2.9 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
Powell Valves.

j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: PTFE or TFE.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. American Valve, Inc.
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: PTFE or TFE.

2.10 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with MetalSeats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Legend Valve.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.

k. Sure Flow Equipment Inc.

l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

m. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-71, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Clear or full waterway.

d. Body Material: ASTM A 126, gray iron with bolted bonnet.

e. Ends: Flanged.

f. Trim: Bronze.

g. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.

b. Crane Co.; Crane Valve Group; Stockham Division.

2. Description:

a. Standard: MSS SP-71, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Clear or full waterway.

d. Body Material: ASTM A 126, gray iron with bolted bonnet.

e. Ends: Flanged.

f. Trim: Composition.

g. Seat Ring: Bronze.

h. Disc Holder: Bronze.

i. Disc: PTFE or TFE.

j. Gasket: Asbestos free.

C. Class 250, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Crane Co.; Crane Valve Group; Crane Valves.

a. Crane Co.; Crane Valve Group; Jenkins Valves.

b. Crane Co.; Crane Valve Group; Stockham Division.

c. Hammond Valve.

d. Milwaukee Valve Company.

e. NIBCO INC.

f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

3. Description:
a. Standard: MSS SP-71, Type I.
b. CWP Rating: 500 psig.
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Gasket: Asbestos free.

2.11 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. NIBCO INC.

2. Description:

a. Standard: MSS SP-71, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Gasket: Asbestos free.
h. Closure Control: Factory-installed, exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever- and Weight-Closure Control:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
h. Description:

i. Standard: MSS SP-71, Type I.
j. CWP Rating: 200 psig.
k. Body Design: Clear or full waterway.
l. Body Material: ASTM A 126, gray iron with bolted bonnet.
m. Ends: Flanged.
n. Trim: Bronze.
o. Gasket: Asbestos free.
2.12 IRON, GROOVED-END SWING CHECK VALVES

A. 300 CWP, Iron, Grooved-End Swing Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anvil International, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.

2. Description:

 a. CWP Rating: 300 psig.
 c. Seal: EPDM.
 d. Disc: Spring-operated, ductile iron or stainless steel.

2.13 IRON, CENTER-GUIDED CHECK VALVES

A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anvil International, Inc.
 b. APCO Willamette Valve and Primer Corporation.
 c. Crispin Valve.
 d. DFT Inc.
 e. Flo Fab Inc.
 f. GA Industries, Inc.
 g. Hammond Valve.
 h. Metraflex, Inc.
 i. Milwaukee Valve Company.
 j. Mueller Steam Specialty; a division of SPX Corporation.
 k. NIBCO INC.
 l. Spence Strainers International; a division of CIRCOR International, Inc.
 m. Sure Flow Equipment Inc.
 n. Val-Matic Valve & Manufacturing Corp.
 o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 b. CWP Rating: 200 psig.
d. Style: Compact wafer.
e. Seat: Bronze.

B. Class 125, Iron, Globe, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. DFT Inc.
d. Flomatic Corporation.
e. Hammond Valve.
f. Metraflex, Inc.
g. Milwaukee Valve Company.
h. Mueller Steam Specialty; a division of SPX Corporation.
i. NIBCO INC.
j. Spence Strainers International; a division of CIRCOR International, Inc.
k. Sure Flow Equipment Inc.
l. Val-Matic Valve & Manufacturing Corp.
m. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

b. CWP Rating: 200 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: Bronze.

C. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 300 psig.
d. Style: Compact wafer.
e. Seat: Bronze.

D. Class 150, Iron, Globe, Center-Guided Check Valves with Metal Seat:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

E. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 400 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: Bronze.

F. Class 250, Iron, Globe, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flomatic Corporation.
 e. Hammond Valve.
f. Metraflex, Inc.
g. Milwaukee Valve Company.
h. Mueller Steam Specialty; a division of SPX Corporation.
i. NIBCO INC.
j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 400 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

G. Class 300, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 2. Description:
 b. CWP Rating: 500 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: Bronze.

H. Class 300, Iron, Globe, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.
 2. Description:
 b. CWP Rating: 500 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.
I. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. DFT Inc.
d. Flo Fab Inc.
e. Hammond Valve.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Spence Strainers International; a division of CIRCOR International, Inc.
i. Sure Flow Equipment Inc.
j. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 200 psig.
d. Style: Compact wafer.
e. Seat: EPDM.

J. Class 125, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anvil International, Inc.
b. APCO Willamette Valve and Primer Corporation.
c. Crispin Valve.
d. DFT Inc.
e. GA Industries, Inc.
f. Hammond Valve.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Sure Flow Equipment Inc.
j. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 200 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: EPDM.
K. **Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:**

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: **EPDM.**

L. **Class 150, Iron, Globe, Center-Guided Check Valves with Resilient Seat:**

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: **EPDM.**

M. **Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:**

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
h. Sure Flow Equipment Inc.
i. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 400 psig.
d. Style: Compact wafer, spring loaded.
e. Seat: EPDM.

N. Class 250, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. DFT Inc.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 400 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: EPDM.

O. Class 300, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.
b. Crispin Valve.
c. Val-Matic Valve & Manufacturing Corp.

2. Description:

b. CWP Rating: 500 psig.
d. Style: Compact wafer, spring loaded.
e. Seat: EPDM.
P. Class 300, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 500 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM.

2.14 IRON, PLATE-TYPE CHECK VALVES

A. Class 125, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Flomatic Corporation.
 d. Mueller Steam Specialty; a division of SPX Corporation.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: Bronze.

B. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:
b. CWP Rating: 300 psig.
e. Seat: Bronze.

C. Class 250, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.

2. Description:
 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: Bronze.

D. Class 300, Iron, Dual-Plate Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 500 psig.
 e. Seat: Bronze.

E. Class 125, Iron, Single-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Sure Flow Equipment Inc.

2. Description:
b. CWP Rating: 200 psig.
d. Body Material: ASTM A 126, gray iron.
e. Seat: EPDM.

F. Class 125, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Cooper Cameron Valves TVB Techno.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. NIBCO INC.
 f. Spence Strainers International; a division of CIRCOR International, Inc.
 g. Sure Flow Equipment Inc.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM.

G. Class 150, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:

 b. CWP Rating: 300 psig.
 e. Seat: EPDM.

H. Class 250, Iron, Wafer, Single-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. CWP Rating: 300 psig.
 e. Seat: EPDM.
a. Sure Flow Equipment Inc.

2. Description:

 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM.

I. Class 250, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Sure Flow Equipment Inc.

2. Description:

 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM.

J. Class 300, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Val-Matic Valve & Manufacturing Corp.

2. Description:

 b. CWP Rating: 500 psig.
 e. Seat: EPDM.

2.15 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. American Valve, Inc.
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, RS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. American Valve, Inc.
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
k. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Hammond Valve.
 b. Kitz Corporation.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Powell Valves.
 f. Red-White Valve Corporation.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

D. Class 150, RS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.16 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Flo Fab Inc.
e. Hammond Valve.
f. Kitz Corporation.
g. Legend Valve.
h. Milwaukee Valve Company.
i. NIBCO INC.
j. Powell Valves.
k. Red-White Valve Corporation.
l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
m. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Flo Fab Inc.
e. Hammond Valve.
f. Kitz Corporation.
g. Legend Valve.
h. Milwaukee Valve Company.
i. NIBCO INC.
j. Powell Valves.
k. Red-White Valve Corporation.
l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
m. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

C. Class 250, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. NIBCO INC.

2. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 500 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

D. Class 250, OS&Y, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Powell Valves.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 500 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

2.17 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 j. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. NIBCO INC.
 d. Red-White Valve Corporation.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.18 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
i. Red-White Valve Corporation.

j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

k. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

B. Class 250, Iron Globe Valves:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 2. Description:

 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 500 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

2.19 LUBRICATED PLUG VALVES

A. Class 125, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. Description:

 a. Standard: MSS SP-78, Type II.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
d. Pattern: Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

B. Class 125, Regular-Gland, Lubricated Plug Valves with Flanged Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

C. Class 125, Cylindrical, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Homestead Valve; a division of Olson Technologies, Inc.
 b. Milliken Valve Company.
 c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

2. Description:
 a. Standard: MSS SP-78, Type IV.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

D. Class 125, Cylindrical, Lubricated Plug Valves with Flanged Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Homestead Valve; a division of Olson Technologies, Inc.
 b. Milliken Valve Company.
 c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

2. Description:
a. Standard: MSS SP-78, Type IV.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
d. Pattern: Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

E. Class 250, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Description:

 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 400 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

F. Class 250, Regular-Gland, Lubricated Plug Valves with Flanged Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Description:

 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 400 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

G. Class 250, Cylindrical, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Homestead Valve; a division of Olson Technologies, Inc.
 b. Milliken Valve Company.
 c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

2. Description:
a. Standard: MSS SP-78, Type IV.
b. CWP Rating: 400 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
d. Pattern: Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

H. Class 250, Cylindrical, Lubricated Plug Valves with Flanged Ends:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Homestead Valve; a division of Olson Technologies, Inc.
b. Milliken Valve Company.
c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

 2. Description:

a. Standard: MSS SP-78, Type IV.
b. CWP Rating: 400 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, Grade 40 cast iron with lubrication-sealing system.
d. Pattern Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball and butterfly valves.
 3. Throttling Service: Globe or butterfly valves.
 4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.
7. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125 bronze disc.
3. Ball Valves: One Piece, full Port, brass with brass trim.
4. Bronze Swing Check Valves: Class 125 bronze disc.
5. Bronze Gate Valves: Class 125 NRS.

B. Pipe NPS 2-1/2 and Larger:

1. Iron Ball Valves: Class 150.
3. Iron, Grooved-End Butterfly Valves: 175 CWP.
4. Iron Swing Check Valves: Class 125 metal seats.
5. Iron Swing Check Valves with Closure Control: Class 125, lever and spring weight.
6. Iron, Grooved-End Swing Check Valves: 300 CWP.
7. Iron, Center-Guided Check Valves: Class 125, metal seat.
8. Iron, Plate-Type Check Valves: Class 125; single plate; metal seat.
9. Iron Gate Valves: Class 125, NRS.

END OF SECTION 22-0523
SECTION 22 0529
HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Fiberglass strut systems.
6. Thermal-hanger shield inserts.
7. Fastener systems.
8. Pipe stands.
9. Pipe positioning systems.
10. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Fiberglass pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Powder-actuated fastener systems.
 5. Pipe positioning systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers. Include Product Data for components.
 2. Metal framing systems. Include Product Data for components.
 3. Fiberglass strut systems. Include Product Data for components.
 4. Pipe stands. Include Product Data for components.
 5. Equipment supports.

C. Welding certificates.

PART 2 - PRODUCTS

2.1 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Manufacturers:
 1. AAA Technology & Specialties Co., Inc.
 2. Bergen-Power Pipe Supports.
 4. Carpenter & Paterson, Inc.
 5. Empire Industries, Inc.
 6. ERICO/Michigan Hanger Co.
 7. Globe Pipe Hanger Products, Inc.
 8. Grinnell Corp.
 9. GS Metals Corp.
 11. PHD Manufacturing, Inc.
 12. PHS Industries, Inc.
 13. Piping Technology & Products, Inc.
14. Tolco Inc.
C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.2 TRAPEZE PIPE HANGERS
A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS
A. Clevis-Type, Fiberglass Pipe Hangers: Similar to MSS Type 1, steel pipe hanger except hanger is made of fiberglass and continuous-thread rod and nuts are made of polyurethane.
 1. Manufacturers:
 b. Champion Fiberglass, Inc.
 d. Seasafe, Inc.
 e. Unistrut Corp.; Tyco International, Ltd.
 f. Wesanco, Inc.

 B. Strap-Type, Fiberglass Pipe Hangers: Made of fiberglass loop with stainless-steel continuous-thread rod, nuts, and support hook.
 1. Manufacturers:
 a. Plasti-Fab, Inc.

2.4 METAL FRAMING SYSTEMS
A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
B. Manufacturers:
 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 3. GS Metals Corp.
5. Thomas & Betts Corporation.
6. Tolco Inc.
7. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer’s standard finish unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 FIBERGLASS STRUT SYSTEMS

A. Description: Shop- or field-fabricated pipe-support assembly, similar to MFMA-3, made of fiberglass channels and other components.

B. Manufacturers:

2. Champion Fiberglass, Inc.
3. Cope, T. J., Inc.; Tyco International Ltd.
4. Seasafe, Inc.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:

 a. Hilti, Inc.
 b. ITW Ramset/Red Head.
 c. Masterset Fastening Systems, Inc.
 d. MKT Fastening, LLC.
 e. Powers Fasteners.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:

 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

1. Manufacturers:
 a. MIRO Industries.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.

3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

1. Manufacturers:
 a. Portable Pipe Hangers.

2. Bases: One or more plastic.
3. Vertical Members: Two or more protective-coated-steel channels.
4. Horizontal Member: Protective-coated-steel channel.
5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.

B. Manufacturers:
 2. HOLDRITE Corp.; Hubbard Enterprises.
 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Fiberglass Pipe Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled fiberglass struts.

F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

G. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.

I. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.

J. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

L. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

M. Install lateral bracing with pipe hangers and supports to prevent swaying.

N. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

O. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
P. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

Q. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood inserts.

6. Insert Material: Length at least as long as protective shield.

7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 22 0529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules),
plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.
2.4 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Not Used:

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 a. Cold Water: Green.
 b. Hot Water: Red.

3. Letter Color:

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 22 0553
SECTION 22 0700
PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:

1. Insulation Materials:
 a. Calcium silicate.
 b. Cellular glass.
 c. Flexible elastomeric.
 d. Mineral fiber.
 e. Phenolic.
 f. Polyisocyanurate.
 g. Polyolefin.
 h. Polystyrene.

2. Insulating cements.
3. Adhesives.
5. Lagging adhesives.
7. Factory-applied jackets.
10. Field-applied jackets.
11. Tapes.
12. Securements.
13. Corner angles.

B. Related Sections include the following:
 1. Division 21 Section "Fire-Suppression Systems Insulation."
 2. Division 23 Section "HVAC Insulation."
A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:
1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.
8. Detail field application for each equipment type.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:

1. Sample Sizes:
 b. Sheet Form Insulation Materials: 12 inches square.
 d. Sheet Jacket Materials: 12 inches square.
 e. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical
products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
 b. One each of a 90-degree threaded, welded, and flanged elbow.
 c. One each of a threaded, welded, and flanged tee fitting.
 d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 e. Four support hangers including hanger shield and insert.
 f. One threaded strainer and one flanged strainer with removable portion of insulation.
 g. One threaded reducer and one welded reducer.
 h. One pressure temperature tap.
 i. One mechanical coupling.

2. Equipment Mockups: One tank or vessel.
3. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
4. Notify Architect seven days in advance of dates and times when mockups will be constructed.
5. Obtain Architect's approval of mockups before starting insulation application.
6. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
8. Demolish and remove mockups when directed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.
1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate:

1. Products: Subject to compliance with requirements, provide the following:

 a. Industrial Insulation Group (The); Thermo-12 Gold.
2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

4. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

G. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide the following:
 a. Cell-U-Foam Corporation; Ultra-CUF.
 b. Pittsburgh Corning Corporation; Foamglas Super K.

2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Board Insulation: ASTM C 552, Type IV.
5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

H. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Products: Subject to compliance with requirements, provide the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

I. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; All-Service Duct Wrap.
J. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000(Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation. ASJ requires field-applied adhesive and staples. ASJ with SSL does not require field-applied adhesive and staples, resulting in reduced installation labor.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Insulco, Division of MFS, Inc.; Triple I.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

 1. Products: Subject to compliance with requirements, provide the following:

C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Insulco, Division of MFS, Inc.; SmoothKote.
 c. Rock Wool Manufacturing Company; Delta One Shot.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-97.
 c. Marathon Industries, Inc.; 290.
 d. Mon-Eco Industries, Inc.; 22-30.
 e. Vimasco Corporation; 760. Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.

1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-96.
 b. Foster Products Corporation, H. B. Fuller Company; 81-33. Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide the following:
 a. Aeroflex USA Inc.; Aeroseal.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive. Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide the following:
 a. Dow Chemical Company (The); 739, Dow Silicone.
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

2.5 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-76.
 b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
 f. Vimasco Corporation; 750.

2. Joint Sealants for Polystyrene Products: Subject to compliance with requirements, provide the following:
a. Childers Products, Division of ITW; CP-70.
c. Marathon Industries, Inc.; 405.
d. Mon-Eco Industries, Inc.; 44-05.
e. Vimasco Corporation; 750.

3. Materials shall be compatible with insulation materials, jackets, and substrates.
4. Permanently flexible, elastomeric sealant.
5. Service Temperature Range: Minus 100 to plus 300 deg F.
6. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide the following:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.

 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
a. Products: Subject to compliance with requirements, provide the following:

1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

5. PVDC Jacket for Outdoor Applications: 6-mil- thick white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.

a. Products: Subject to compliance with requirements, provide the following:

1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

a. Products: Subject to compliance with requirements, provide the following:

1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric for Pipe Insulation: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. inch for covering pipe and pipe fittings.

1. Products: Subject to compliance with requirements, provide the following:

a. Vimasco Corporation; Elastafab 894.

1. Products: Subject to compliance with requirements, provide the following:

a. Childers Products, Division of ITW; Chil-Glas No. 5.

C. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of strands/sq. inch, in a Leno weave, for equipment and pipe.

1. Products: Subject to compliance with requirements, provide the following:

b. Vimasco Corporation; Elastafab 894.
D. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

1. Products: Subject to compliance with requirements, provide the following:

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide the following:
 a. Johns Manville; Zeston.
 c. Proto PVC Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide the following:

 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 b. Compac Corp.; 130.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 d. Venture Tape; 1506 CW NS.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:
1. Products: Subject to compliance with requirements, provide the following:

 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands. Wing seals are primarily used for fastening bands together. Closed seals are occasionally used for large, 84-inch- (2130-mm-) diameter applications and where used with springs. Wing seals are reusable; closed seals are not.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type closed seal.

 B. Insulation Pins and Hangers:

 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.

 a. Products: Subject to compliance with requirements, provide the following:

 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.

2.11 CORNER ANGLES

 A. PVC Corner Angles: 30 mils) thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

 B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

 C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 Not Used

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic.
with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.14 POLYSTYRENE INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation with tape or bands and tighten bands without deforming insulation materials. Orient longitudinal joints between half sections in 3 and 9 o'clock positions on the pipe.
 2. For insulation with factory-applied jackets with vapor barriers, do not staple longitudinal tabs but secure tabs with additional adhesive or tape as recommended by insulation material manufacturer and seal with vapor-barrier mastic.
 3. All insulation shall be tightly butted and free of voids and gaps at all joints. Vapor barrier must be continuous. Before installing jacket material, install vapor-barrier system.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, same thickness of adjacent pipe insulation, not to exceed 1-1/2-inch thickness.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polystyrene block insulation of same thickness as pipe insulation.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed section of polystyrene insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.15 Not Used

3.16 FINISHES

A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.17 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.18 Not Used

3.19 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.20 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1” and Smaller: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:

C. Flexible Elastomeric: 1 inch thick.

D. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be one of the following:
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

E. Flexible Elastomeric: 1 inch thick.

F. Condensate and Equipment Drain Water below 60 Deg F:

1. All Pipe Sizes: Insulation shall be the following:

 b. Flexible Elastomeric: 3/4 inch thick.

END OF SECTION 22 0700
SECTION 22 1116
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
2. Encasement for piping.
4. Flexible connectors.
5. Water meters furnished by utility company for installation by Contractor.
7. Escutcheons.
8. Sleeves and sleeve seals.
9. Wall penetration systems.

B. Related Section:

1. Not Used

1.3 PERFORMANCE REQUIREMENTS

A. Not Used

1.4 SUBMITTALS

A. Product Data: For the following products:

1. Specialty valves.
2. Transition fittings.
3. Dielectric fittings.
4. Flexible connectors.
5. Water meters.
7. Escutcheons.
8. Sleeves and sleeve seals.
9. Water penetration systems.

C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Domestic water piping.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic, potable domestic water piping and components.

C. Comply with NSF 61 for potable domestic water piping and components.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of water service.
 2. Do not proceed with interruption of water service without Owner's written permission.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper.

4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
5. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.
 b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

6. Copper Push-on-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) NVent LLC.
 b. Description: Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22; with stainless-steel teeth and EPDM-rubber O-ring seal in each end instead of solder-joint ends.

7. Copper-Tube Extruded-Tee Connections:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) T-DRILL Industries Inc.
 b. Description: Tee formed in copper tube according to ASTM F 2014.

8. Grooved-Joint Copper-Tube Appurtenances:
a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Anvil International.
2) Shurjoint Piping Products.
3) Victaulic Company.

b. Copper Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.

c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.

B. Soft Copper Tube: ASTM B 88, Type K, ASTM B 88, Type L water tube, annealed temper.

2. Copper Pressure-Seal-Joint Fittings:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Elkhart Products Corporation; Industrial Division.
2) NIBCO INC.
3) Viega; Plumbing and Heating Systems.

b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.

c. NPS 3 and NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

2.3 Not Used

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B grade, Standard Weight. Include ends matching joining method.

5. Grooved-Joint, Galvanized-Steel-Pipe Appurtenances:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Shurjoint Piping Products.
 3) Star Pipe Products.
 4) Victaulic Company.
 b. Galvanized, Grooved-End Fittings for Galvanized-Steel Piping: ASTM A 47/A 47M, malleable-iron casting; ASTM A 106/A 106M, steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 c. Grooved-End-Pipe Couplings for Galvanized-Steel Piping: AWWA C606 for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.

2.5 Not Used

2.6 Not Used

2.7 Not Used

2.8 PIPING JOINING MATERIALS
 A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
 B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
 C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
 D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
 E. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
 1. Use CPVC solvent cement that has a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
F. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.9 ENCASEMENT FOR PIPING
A. Standard: ASTM A 674 or AWWA C105.
B. Form: Tube.
C. Material: LLDPE film of 0.008-inch minimum thickness or high-density, cross-laminated PE film of 0.004-inch thickness.
D. Color: Black.

2.10 SPECIALTY VALVES
A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.11 TRANSITION FITTINGS
A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.
B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Cascade Waterworks Manufacturing.

b. Dresser, Inc.; Dresser Piping Specialties.

c. Ford Meter Box Company, Inc. (The).

d. JCM Industries.

e. Romac Industries, Inc.

f. Smith-Blair, Inc; a Sensus company.

g. Viking Johnson; c/o Mueller Co.

D. Plastic-to-Metal Transition Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Harvel Plastics, Inc.

 c. Spears Manufacturing Company.

2.12 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.

 c. EPCO Sales, Inc.

 d. Hart Industries International, Inc.

 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 f. Zurn Plumbing Products Group; Wilkins Water Control Products.

2. Description:

 a. Pressure Rating: 150 psig, minimum at 180 deg F.

 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.

 c. EPCO Sales, Inc.

 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig minimum.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Calpico, Inc.
 b. Lochinvar Corporation.

2. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
 d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Company.

2. Description:
2.13 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Flex Pression, Ltd.
4. Flex-Weld, Inc.
5. Hyspan Precision Products, Inc.
7. Metraflex, Inc.
8. Proco Products, Inc.
10. Unaflex, Inc.
11. Universal Metal Hose; a Hyspan company.

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
3. End Connections NPS 2-1/2) and Larger: Flanged steel nipple.

2.14 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.

D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.
E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.

F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.15 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.16 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

2.17 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.

H. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

J. Install seismic restraints on piping. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

K. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
L. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

M. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

N. Install piping adjacent to equipment and specialties to allow service and maintenance.

O. Install piping to permit valve servicing.

P. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

Q. Install piping free of sags and bends.

R. Install fittings for changes in direction and branch connections.

S. Install PEX piping with loop at each change of direction of more than 90 degrees.

T. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

U. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

V. Not Used

W. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Copper-Tubing, Push-on Joints: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

H. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

I. Copper-Tubing Grooved Joints: Roll groove end of tube. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for roll-grooved joints.

J. Ductile-Iron-Piping Grooved Joints: Cut groove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join ductile-iron pipe and grooved-end fittings according to AWWA C606 for ductile-iron-pipe, cut-grooved joints.

K. Steel-Piping Grooved Joints: Cut groove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

M. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
3. PVC Piping: Join according to ASTM D 2855.

N. PEX Piping Joints: Join according to ASTM F 1807.

O. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 Not Used

3.9 HANGER AND SUPPORT INSTALLATION

A. Not Used.

B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet: If Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
F. Install supports for vertical copper tubing every 10 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
2. NPS 1-1/2: 108 inches with 3/8-inch rod.
3. NPS 2: 10 feet with 3/8-inch rod.
4. NPS 2-1/2: 11 feet with 1/2-inch rod.
5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.

3.10 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
3. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.11 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:

1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
5. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

C. Not Used:

3.12 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Molded PE.
2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
3. Sleeves for Piping Passing through Gypsum-Board Partitions:
a. Steel pipe sleeves for pipes smaller than NPS 6.
b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Molded PE.

K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.13 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.14 WALL PENETRATION SYSTEM INSTALLATION

A. Install wall penetration systems in new, exterior concrete walls.

B. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.

3.15 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.

3.16 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.

2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

B. Piping Tests:

1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

C. Domestic water piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.17 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.18 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.
C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.19 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
C. Under-building-slab, domestic water, building service piping, NPS 3 and smaller pipe size, shall be one of the following:

1. Soft copper tube, ASTM B 88, Type K ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Galvanized-steel pipe and nipples; galvanized, gray-iron threaded fittings; and threaded joints.
2. Hard copper tube, ASTM B 88, Type L ASTM B 88, TypeM wrought copper solder-joint fittings; and soldered joints.
3. Hard copper tube, ASTM B 88, Type L or ASTM B 88, Type M; copper pressure-seal-joint fittings; and pressure-sealed joints.
4. Hard copper tube, ASTM B 88, Type L or ASTM B 88, Type M; copper push-on-joint fittings; and push-on joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L [ASTM B 88, Type M; wrought copper solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L or ASTM B 88, Type M; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L or ASTM B 88, Type; grooved-joint copper-tube appurtenances; and grooved joints.
4. Galvanized-steel pipe and nipples; galvanized, gray-iron threaded fittings; and threaded joints.
5. Galvanized-steel pipe; grooved-joint, galvanized-steel-pipe appurtenances; and grooved joints.

F. Not Used

G. Not Used

3.20 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

D. Not Used.

END OF SECTION 22 1116
SECTION 22 1119

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Backflow preventers.
5. Strainers.
6. Wall hydrants.
7. Water hammer arresters.
8. Air vents.
10. Trap-seal primer systems.

B. Related Sections include the following:

1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Division 22 Section "Domestic Water Piping" for water meters.
3. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 100 psi, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Not Used

B. Hose-Connection Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
 i. Zurn Plumbing Products Group; Light Commercial Operation.
 j. Zurn Plumbing Products Group; Wilkins Div.
 5. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
2.2 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings.

2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
 e. Zurn Plumbing Products Group; Wilkins Div.

4. Pressure Rating: Initial working pressure of 150 psig

2.4 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings.

2.5 HOSE BIBBS

A. Hose Bibbs:

4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
14. Include operating key with each operating-key hose bibb.
15. Include wall flange with each chrome- or nickel-plated hose bibb.

2.6 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.

2.7 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: Class 125.
5. Inlet: NPS 3/4 threaded or solder joint.
6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:

1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
2. Pressure Rating: 200-psig minimum CWP or Class 125.
5. Drain: NPS 1/8 side outlet with cap.

2.8 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
4. Type: Metal bellows.
5. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.9 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
1. Body: Bronze.
2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.

2.10 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts Industries, Inc.; Water Products Div.
5. Body: Bronze.
6. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
7. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
8. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Drainage-Type, Trap-Seal Primer Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
5. Material: Chrome-plated, cast brass.

2.11 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.

2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.

3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

D. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

E. Install balancing valves in locations where they can easily be adjusted.

F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install thermometers and water regulators if specified.

2. Install cabinet-type units recessed in or surface mounted on wall as specified.

G. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve.

H. Install water hammer arresters in water piping according to PDI-WH 201.
I. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

J. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

K. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

L. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Reduced-pressure-detector, fire-protection backflow-preventer assemblies.
10. Calibrated balancing valves.
11. Primary, thermostatic, water mixing valves.
14. Primary water tempering valves.
15. Outlet boxes.
17. Supply-type, trap-seal primer valves.
18. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 22 1119
SECTION 22 1316
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following for soil, waste, and vent piping inside the building:

1. Pipe, tube, and fittings.
2. Special pipe fittings.
B. Not Used

1.3 DEFINITIONS
B. EPDM: Ethylene-propylene-diene terpolymer rubber.
C. LLDPE: Linear, low-density polyethylene plastic.
D. NBR: Acrylonitrile-butadiene rubber.
E. PE: Polyethylene plastic.
F. PVC: Polyvinyl chloride plastic.
G. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

2. Not Used
B. Not Used
1.5 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.

B. Not Used:

C. Shop Drawings:
 1. Material and fittings

D. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.

B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.

1. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.

 a. Manufacturers:
 1) ANACO.
 2) Fernco, Inc.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.

 a. Manufacturers:
 1) ANACO.
 2) Clamp-All Corp.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.

3. Heavy-Duty, Shielded, Cast-Iron Couplings: ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve.

 a. Manufacturers:
 1) MG Piping Products Co.

D. Rigid, Unshielded Couplings: ASTM C 1461, sleeve-type, reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.

 1. Manufacturers:
2.5 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.

C. Pressure Fittings:

D. Grooved-Joint Systems:
 1. Manufacturers:
 a. Anvil International.
 b. Star Pipe Products; Star Fittings Div.
 c. Victaulic Company.
 d. Ward Manufacturing, Inc.
 2. Grooved-End, Steel-Piping Fittings: ASTM A47/A 47M, galvanized, malleable-iron casting; ASTM A 106, galvanized-steel pipe; or ASTM A536, galvanized, ductile-iron casting; with dimensions matching steel pipe.
 3. Grooved-End, Steel-Piping Couplings: AWWA C606, for steel-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

2.6 Not Used

2.7 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end, unless grooved or flanged ends are indicated.
 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end, unless grooved or flanged ends are indicated.
 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 2. Gaskets: AWWA C111, rubber.

C. Grooved-Joint Systems:
 1. Manufacturers:
 a. Victaulic Company.
 3. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

D. Flanges: ASME 16.1, Class 125, cast iron.

2.8 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Hard Copper Tube: ASTM B 88, Types L and M, water tube, drawn temper.
 2. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 3. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

C. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.
2.9 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Fernco, Inc.
 c. Logan Clay Products Company (The).
 d. Mission Rubber Co.
 e. NDS, Inc.
 f. Plastic Oddities, Inc.

2. Sleeve Materials:
 b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Mission Rubber Co.

C. Rigid, Unshielded, Nonpressure Pipe Couplings: ASTM C 1461, sleeve-type reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 a. ANACO.

D. Pressure Pipe Couplings: AWWA C219 metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.

1. Manufacturers:
 b. Dresser, Inc.; DMD Div.
 c. EBAA Iron Sales, Inc.
 d. Ford Meter Box Company, Inc. (The); Pipe Products Div.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

e. JCM Industries, Inc.
f. Romac Industries, Inc.
g. Smith-Blair, Inc.
h. Viking Johnson.

2. Center-Sleeve Material: Manufacturer’s standard.
3. Gasket Material: Natural or synthetic rubber.
4. Metal Component Finish: Corrosion-resistant coating or material.

E. Flexible Ball Joints: Ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include gasketed ball-joint section and ductile-iron gland, rubber gasket, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.

F. Expansion Joints: Two or three-piece, ductile-iron assembly consisting of telescoping sleeve(s) with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products; Star Fittings Div.

G. Wall-Penetration Fittings: Compound, ductile-iron coupling fitting with sleeve and flexing sections for up to 20-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Manufacturers:
 a. SIGMA Corp.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings couplings; and hubless-coupling joints.
 3. Steel pipe, drainage fittings, and threaded joints.
 4. Stainless-steel pipe and fittings, gaskets, and gasketed joints.
 5. Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, soil and waste piping NPS 5 shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings and hubless-coupling joints.
 3. Steel pipe, drainage fittings, and threaded joints.

D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
 3. Steel pipe, drainage fittings, and threaded joints.
 4. Stainless-steel pipe and fittings gaskets, and gasketed joints.
 5. Copper DWV tube, copper drainage fittings, and soldered joints.

 a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.

E. Aboveground, vent piping NPS 5 and larger shall be the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; standard shielded, stainless-steel couplings; and hubless-coupling joints.
 3. Steel pipe, drainage fittings, and threaded joints.

F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Extra-Heavy class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; [standard, shielded, stainless-steel] [heavy-duty shielded, stainless-steel] [heavy-duty shielded, cast-iron] [and] [rigid, unshielded] couplings; and hubless-coupling joints.
 3. Stainless-steel pipe and fittings, gaskets, and gasketed joints.
G. Underground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Extra-Heavy class, cast-iron soil piping; gaskets; and gasketed joints.
2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

3.3 PIPING INSTALLATION

A. Sanitary sewer piping outside the building is specified in Division 22 Section "Facility Sanitary Sewers."

B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.

D. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

E. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.

F. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

G. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

H. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
I. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

J. Install engineered soil and waste drainage and vent piping systems as follows:

2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer's written installation instructions.
3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

K. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

L. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.

D. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

E. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

F. Grooved Joints: Assemble joint with keyed coupling, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

G. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.
3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves: Install shutoff valve on each sewage pump discharge.
 1. Install gate or full-port ball valve for piping NPS 2 and smaller.
 2. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

D. Backwater Valves: Install backwater valves in piping subject to sewage backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type, unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Backwater valves are specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

D. Support vertical piping and tubing at base and at each floor.
E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6: 60 inches with 3/4-inch rod.
5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.

G. Install supports for vertical cast-iron soil piping every 15 feet.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:

1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Connect force-main piping to the following:

1. Sanitary Sewer: To exterior force main or sanitary manhole.
2. Sewage Pumps: To sewage pump discharge.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

4. Prepare reports for tests and required corrective action.
3.9 CLEANING

 A. Clean interior of piping. Remove dirt and debris as work progresses.

 B. Protect drains during remainder of construction period to avoid clogging with dirt
 and debris and to prevent damage from traffic and construction work.

 C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 22 1316
SECTION 22 1319
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following sanitary drainage piping specialties:

1. Backwater valves.
2. Cleanouts.
3. Floor drains.
4. Trench drains.
5. Channel drainage systems.
6. Air-admittance valves.
7. Roof flashing assemblies.
8. Through-penetration firestop assemblies.
10. Flashing materials.
13. Oil interceptors.

B. Related Sections include the following:

1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.

F. PP: Polypropylene plastic.

G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:

1. FOG disposal systems.
2. Grease interceptors.
4. Oil interceptors.

B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate size and location of roof penetrations.
PART 2 - PRODUCTS

2.1 BACKWATER VALVES

A. Horizontal, Cast-Iron Backwater Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, a comparable product by one of the following:

 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.

5. Size: Same as connected piping.

7. Cover: Cast iron with bolted access check valve.

9. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

2.2 CLEANOUTS

A. Exposed Metal Cleanouts

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, comparable product by one of the following:

 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 g. Josam Company; Blucher-Josam Div.
5. Size: Same as connected drainage piping
7. Closure: Countersunk.
8. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Comparable product by one of the following:
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Kusel Equipment Co.
 k. Josam Company; Blucher-Josam Div.
5. Size: Same as connected branch.

C. Cast-Iron Wall Cleanouts:
1. Basis-of-Design Product: Compliance comparable product by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
2.3 FLOOR DRAINS

A. Cast-Iron Floor Drains:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings. Materials: As recommended by system manufacturer.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ProSet Systems Inc.
 4. Size: Same as connected soil, waste, or vent stack.
 5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 7. Special Coating: Corrosion resistant on interior of fittings.

2.5 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. 0.0625-inch thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.
C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

PART 3 - EXECUTION

3.1 Not used

3.2 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.3 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.
SECTION 223400

FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Commercial, LP-gas, high-efficiency, storage, water heaters.
 2. Domestic-water heater accessories.

1.3 PERFORMANCE REQUIREMENTS

1.4 SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittal:
 1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with ASHRAE/IESNA 90.1, Section 7, "Service Water Heating."

C. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

D. Product Certificates: For each type of commercial, gas-fired, domestic-water heater, from manufacturer.

E. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

F. Source quality-control reports.

G. Field quality-control reports.
H. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

I. Warranty: Sample of special warranty.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA 90.1 Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 1) Storage Tank: Three years.
 2) Controls and Other Components: One year(s).
 b. Compression Tanks: Five years.
2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

A. Commercial, Gas-Fired, High-Efficiency, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AERCO International, Inc.
 b. Ajax Boiler Inc.
 c. American Water Heaters.
 e. Heat Transfer Products, Inc.
 f. Lochinvar Corporation.
 g. PVI Industries, LLC.
 h. RBI Water Heaters; a Mestek company.
 i. Rheem Manufacturing Company.
 j. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 k. State Industries.
 l. Weben-Jarco, Inc.

3. Description: Manufacturer’s proprietary design to provide at least 95 percent combustion efficiency at optimum operating conditions.

 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 (DN 50) and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 (DN 65) and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Lining: Glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.

5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and natural-gas fuel.
g. Temperature Control: Adjustable thermostat.
h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

6. Ducted Combustion Air & Flue: Required with combination air intake and five outlet assembly for rooftop installation.

B. Capacity and Characteristics: See plumbing equipment schedule.

C. Electrical Characteristics: See plumbing equipment schedule.

D. Minimum Vent Diameter: 4” diameter inlet & outlet.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AMTROL Inc.
 b. Flexcon Industries.
 c. Honeywell International Inc.
 d. Pentair Pump Group (The); Myers.
 e. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 f. State Industries.
 g. Taco, Inc.

2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 (DN 20) with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads as per code. Staff housing will have drain pans.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

E. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig (3.5-kPa), 2-psig (13.8-kPa), 5-psig (34.5-kPa) pressure rating as required to match gas supply.

G. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

H. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches (457 mm) above the floor.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.
3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install gas-fired, domestic-water heaters according to NFPA 54.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Division 23 Section "Facility Natural-Gas Piping."

C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

D. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
E. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

F. Fill domestic-water heaters with water.

G. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Division 22 Section "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Division 23 Section "Facility Natural-Gas Piping."

C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.
3.5 DEMONSTRATION

A. Engage a factory authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 223400
SECTION 22 4000
PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories.
 2. Flushometers.
 3. Toilet seats.
 4. Protective shielding guards.
 5. Fixture supports.
 6. Interceptors.
 7. Hot-water dispensers.
 8. Water closets.
 9. Urinals.
 10. Lavatories.
 11. Service sinks.
B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.

H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
3. Vitreous-China Fixtures: ASME A112.19.2M.
5. Water-Closet, Flushometer Tank Trim: ASSE 1037

H. Comply with the following applicable standards and other requirements specified for lavatory faucets:

1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
5. Hose-Connection Vacuum Breakers: ASSE 1011.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1. Disposers: ASSE 1008 and UL 430.
4. Floor Drains: ASME A112.6.3.
5. Grab Bars: ASTM F 446.
8. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY

A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS

A. Lavatory Faucets:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Chicago Faucets.
 c. Delta Faucet Company.
 d. Eljer.
 e. Elkay Manufacturing Co.
 g. Grohe America, Inc.
 h. Just Manufacturing Company.
 i. Kohler Co.
 j. Moen, Inc.
 l. Sayco; a Briggs Plumbing Products, Inc. Company.
 m. Speakman Company.
 n. T & S Brass and Bronze Works, Inc.
 o. Zurn Plumbing Products Group; Commercial Brass Operation.

2.2 FLUSHOMETERS

A. Flushometers as noted on drawings.
2.3 **TOILET SEATS**

A. Toilet Seats as noted on drawings.

2.4 **FIXTURE SUPPORTS**

1. As noted on drawings.

B. Water-Closet Supports: As noted on drawings.

C. Urinal Supports: As noted on drawings.

D. Lavatory Supports:

1. Description: Type I, lavatory carrier with exposed arms and tie rods for wall-mounting, lavatory-type fixture. Include steel uprights with feet.

2.5 **HOT-WATER DISPENSERS**

A. Hot-Water Dispensers, See Drawings:

2.6 **WATER CLOSETS**

A. Water Closets: As noted on drawings.

2.7 **URINALS**

A. Urinals: As noted on drawings.

2.8 **LAVATORIES**

A. Lavatories: As noted on drawings.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install wall-mounting fixtures with tubular waste piping attached to supports.

D. Install floor-mounting, back-outlet water closets attached to building floor substrate and wall bracket and onto waste fitting seals.

E. Install fixtures level and plumb according to roughing-in drawings.

F. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

G. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

H. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

I. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

J. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.

K. Install toilet seats on water closets.

L. Install trap-seal liquid in dry urinals.
M. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

N. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

O. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

P. Install shower flow-control fittings with specified maximum flow rates in shower arms.

Q. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

R. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.

S. Install dishwasher air-gap fitting at each sink indicated to have air-gap fitting. Connect inlet hose to dishwasher and outlet hose to disposer.

T. Install hot-water dispensers in back top surface of sink or in countertop with spout over sink.

U. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

V. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.

D. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.
END OF SECTION 22 4000
SECTION 23 0000

BASIC MECHANICAL REQUIREMENTS

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Basic Mechanical Requirements specifically applicable to Division 23 Sections, in addition to Division 01 - General Requirements.

1.2 RELATED DOCUMENTS:

A. THE UNIFORM GENERAL CONDITIONS, SUPPLEMENTARY GENERAL CONDITIONS, and DIVISION 01 of the Specifications apply to the work specified in this Section.

B. All work covered by this Section of these Specifications shall be accomplished in accordance with all applicable provisions of the Contract Documents and any addenda or directives which may be issued herewith, or otherwise.

1.3 GENERAL:

A. The Contractor shall execute all work hereinafter specified or indicated on accompanying Drawings. Contractor shall provide all equipment necessary and usually furnished in connection with such work and systems whether or not mentioned specifically herein or on the Drawings.

B. The Contractor shall be responsible for fitting his material and apparatus into the building and shall carefully lay out his work at the site to conform to the structural conditions, to avoid all obstructions, to conform to the details of the installation and thereby to provide an integrated satisfactory operating installation.

C. The Mechanical, Electrical, and associated Drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every pipe or conduit in its exact location. These details are subject to the requirements of standards referenced elsewhere in these specifications, and structural and architectural conditions. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the separate trades in order to avoid interference between the various phases of work. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. All exposed work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.

D. When the mechanical and electrical Drawings do not give exact details as to the elevation of pipe, conduit and ducts, the Contractor shall physically arrange the systems to fit in the space available at the elevations intended with proper grades for the functioning of the system involved. Piping, exposed conduit and the duct
systems are generally intended to be installed true and square to the building construction, and located as high as possible against the structure in a neat and workmanlike manner. The Drawings do not show all required offsets, control lines, pilot lines and other location details. Work shall be concealed in all finished areas.

1.4 DEFINITIONS: (Note: These definitions are included here to clarify the direction and intention of this specification. The list given here is not by any means complete. For further clarification as required, contractor shall contact the designated owner’s representative.)

A. CONCEALED / EXPOSED: ~ areas are those areas which cannot be seen by the building occupants. Exposed areas are all areas which are exposed to view by the building occupants, including under counters, inside cabinets and closets, plus all mechanical rooms.

B. General Requirements: The provisions of requirements of other Division 01 sections apply to entire work of contract and, where so indicated, to other elements which are included in project. Basic contract definitions are included in the General Conditions.

C. Indicated: The term "indicated" is a cross reference to graphic representations, notes or schedules on drawings, to other paragraphs or schedules in the Specifications, and to similar means of recording requirements on contract documents. Where terms such as "shown", "noted", "scheduled", and "specified" are used in lieu of "indicated", it is for the purpose of helping reader locate the cross reference, and no limitation of location is intended except as specifically noted.

D. Directed, requested, etc.: Where not otherwise explained, terms such as "directed", "requested", "authorized", "selected", "approved", "required", "accepted", and "permitted" mean directed by Architect/Engineer, "requested by Architect/Engineer" and similar phrases. However, no such implied meaning will be interpreted to extend Architect's/Engineer's responsibility into Contractor's area of construction supervision and job safety.

E. And/Or: Where "and/or" is used in these Specifications or on the Drawings, it shall mean "that situations exist where either one or both conditions occur or are required and shall not be interpreted to permit an option on the part of the Contractor.

F. Approve: Where used in conjunction with Architect's/Engineer's response to submittals, requests, applications, inquiries, reports and claims by Contractor, the meaning of term "approved" will be held to limitations to Architect's/Engineer's responsibilities and duties as specified in General and Supplementary Conditions. In no case will "approval" by Architect/Engineer be interpreted as a release of Contractor from responsibilities to fulfill requirements of contract documents or to extend Architect's/Engineer's responsibility into Contractor's area of construction supervision and job safety.
G. As required: Where "as required" is used in these Specifications or on the drawings, it shall mean "that situations exist that are not necessarily described in detail or indicated that may cause the contractor certain complications in performing the work described or indicated. These complications entail the normal coordination activities expected of the Contractor where multiple trades are involved and new or existing construction causes deviations to otherwise simplistic approaches to the work to be performed. The term shall not be interpreted to permit an option on the part of the Contractor to achieve the end result."

H. Furnish:
 1. The term "furnish" is used to mean "supply and deliver to project site, ready for unloading, unpacking, assemble, installation, and similar operations."
 2. Where "furnish" applies to work for which the installation is not otherwise specified, "furnish" in such case shall mean "furnish and install."

I. Install: The term "install" is used to describe operations at project site including "unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning and similar operation."

J. Provide: The term "provide" means "to furnish and install, complete and ready for intended use."

1.5 PERMITS, UTILITY CONNECTIONS AND INSPECTIONS:

A. General: Refer to DIVISION 01 for construction phasing and time increments.

B. Fees and Costs: If, during the course of the construction, a need arises to buy utilities, the Contractor shall pay all fees attendant thereto. If City or privately owned utility piping or electrical cable needs to be extended, relocated, or terminated, the Contractor will pay all permits and construction/inspection fees associated with that particular work.

C. All work performed on this project is under the authority of the local officials and local construction fees or construction permits will be required except as may be required for new service taps, or new or modified connections to City controlled services. If inspections by City personnel are specifically required by this document, then the Contractor is responsible for any fees or permits in connection to those requirements.

D. Compliance: The Contractor shall comply in every respect with all requirements of National Fire Protection Association, local Fire Department regulations and utility company requirements. In no case does this relieve the Contractor of the responsibility of complying with these Specifications and Drawings where specified conditions are of higher quality than the requirements of the above-specified authorities. Where requirements of the Specifications and Drawings are more lenient than the requirements of the above authorities having
jurisdiction, the Contractor shall make installations in compliance with the requirements of the above authorities with no extra compensation.

1.6 CONTRACT DOCUMENTS:

A. All dimensional information related to new structures shall be taken from the appropriate Drawings. All dimensional information related to existing facilities shall be taken from actual measurements made by the Contractor on the site.

B. The interrelation of the Specifications, the Drawings, and the schedules are as follows: The Specifications determine the nature and setting of the several materials, the Drawings establish the quantities, dimensions and details, and the schedules give the performance characteristics. If the Contractor requires additional clarification, he shall request it in writing, following the contractually prescribed information flow requirements.

C. Should the Drawings or Specifications conflict within themselves, or with each other, the better quality, or greater size or quantity of work or materials shall be performed or furnished.

1.11 ALLOWANCES

A. Cash Allowance: Refer to Division 01 of the Construction Documents for information and requirements.

1.12 ALTERNATES

A. Alternates quoted on Bid Forms will be reviewed and accepted or rejected at the Owner's option. Accepted Alternates will be identified in Owner-Contractor Agreement.

B. Coordinate related work and modify surrounding work as required.

C. Schedule of Alternates: See "Special Conditions" and Bid Form.

D. Any Alternate Proposals are summarized in Division 01 of the Specifications. The Contractor is directed to refer to all Sections of the Specifications and Drawings for this project to determine the exact extent and scope of the various Alternate Proposals as each pertains to the work of all trades.

1.13 SUBMITTALS

A. Refer to Uniform General Conditions.

B. Submit shop drawings and product data grouped to include complete submittals of related systems, products, and accessories in a single submittal.

C. Mark dimensions and values in units to match those specified.
D. Submit Fabrication Drawings whenever (1) equipment proposed varies in physical size and arrangement from that indicated on the Drawings, thus causing rearrangement of equipment space, (2) where tight spaces require extreme coordination between ductwork, piping, conduit, and other equipment, (3) where called for elsewhere in these Specifications; and (4) where specifically requested by the Architect/Engineer. Fabrication Drawings shall be made at no additional charge to the Owner or the Architect/Engineer.

E. All required Fabrication Drawings, except as noted otherwise, shall be prepared at a scale of not less than 1/4" = 1'-0". Fabrication Drawings for ductwork, air handling units, and sections in Mechanical Rooms shall be drawn at a minimum scale of 3/8" = 1'-0". Submit three blueline prints of each Fabrication Drawing to the Architect/Engineer for review. Reproduction and submittal of the Construction Documents is not acceptable. The Architect/Engineer will review the drawing and return one print with comments.

1.14 SUBSTITUTION OF MATERIALS AND EQUIPMENT:

A. Refer to General Conditions for substitution of materials and equipment.

B. General: Within thirty days after the date of contract award or work order, whichever is later, and before purchasing or starting installation of materials or equipment, the Contractor shall submit for review, a complete list of suppliers, contractors and manufacturers for all materials and equipment which will be submitted for incorporation into the project. The list shall be arranged in accordance with the organization of the Specifications. This initial list shall include the manufacturer's name and type or catalog number as required to identify the quality of material or equipment proposed. This list will be reviewed by the Engineer and the Owner and will be returned to the Contractor with comments as to which items are acceptable without further submittal data and which items will require detailed submittal data for further review and subsequent approval. The initial list shall be submitted as herein specified. Materials and equipment requiring detailed submittal data shall be submitted with sufficient data to indicate that all requirements of these Specifications have been met and samples shall be furnished when requested. All manufacturer's data used as part of the submittal shall have all inapplicable features crossed out or deleted in a manner that will clearly indicate exactly what is to be furnished.

C. It is not the intent of the Drawings and/or Specifications to limit products to any particular manufacturer nor to discriminate against an "APPROVED EQUAL" product as produced by another manufacturer. Some proprietary products are mentioned to set a definite standard for acceptance and to serve as a reference in comparison with other products. When a manufacturer's name appears in these Specifications, it is not to be construed that the manufacturer is unconditionally acceptable as a provider of equipment for this project. The successful manufacturer or supplier shall meet all of the provisions of the appropriate specification(s).

D. The specified products have been used in preparing the Drawings and Specifications and thus establish minimum qualities with which substitutes must
at least equal to be considered acceptable. The burden of proof of equality rests with the Contractor. The decision of the designer is final.

E. When requested by the Architect/Engineer, the Contractor shall provide a sample of the proposed substitute item. In some cases, samples of both the specified item and the proposed item shall be provided for comparison purposes.

F. Timeliness: The burden of timeliness in the complete cycle of submittal data, shop Drawings, and sample processing is on the Contractor. The Contractor shall allow a minimum of six (6) weeks time frame for review of each submission by the office of the design discipline involved after receipt of such submissions by that design discipline. The Contractor is responsible for allowing sufficient time in the construction schedule to cover the aforementioned cycles of data processing, including time for all resubmittal cycles on unacceptable materials, equipment, etc. covered by the data submitted. Construction delays and/or lack of timeliness in the above regard are the responsibility of the Contractor and will not be considered in any request for scheduled construction time extensions and/or additional costs to the Owner.

G. All equipment installed on this project shall have local representation, local factory authorized service, and a local stock of repair parts.

H. Acceptance of materials and equipment will be based on manufacturer's published data and will be tentative subject to the submission of complete shop Drawings indicating compliance with the contract documents and that adequate and acceptable clearances for entry, servicing, and maintenance will exist. Acceptance of materials and equipment under this provision shall not be construed as authorizing any deviations from the Specifications, unless the attention of the Architect/Engineer has been directed in writing to the specific deviations. Data submitted shall not contain unrelated information unless all pertinent information is properly identified.

I. Certification: The Contractor shall carefully examine all data forwarded for approval and shall sign a certificate to the effect that the data has been carefully checked and found to be correct with respect to dimensions and available space and that the equipment complies with all requirements of the Specifications.

J. Physical Size of Equipment: Space is critical; therefore, equipment of larger sizes than shown, even though of specified manufacturer, will not be acceptable unless it can be demonstrated that ample space exists for proper installation, operation, and maintenance.

K. Materials and Equipment Lists: Eight (8) copies of the list of materials and equipment, the name of manufacturer, trade name, type, and catalog number shall be submitted to the Architect/Engineer. The lists shall be accompanied by eight (8) sets of pictorial and descriptive data derived from the manufacturers' catalogs, sales literature, or incorporated in the Shop Drawings.

L. Should a substitution be accepted, and should the substitute material prove defective, or otherwise unsatisfactory for the service intended within the
guarantee period, this material or equipment shall be replaced with the material or equipment specified at no additional cost to the Owner.

1.15 MATERIALS AND WORKMANSHIP:

A. All materials, unless otherwise specified, shall be new, free from all defects, suitable for the intended use, and of the best quality of their respective kinds. Materials and equipment shall be installed in accordance with the manufacturer's recommendations and the best standard practice for the type of work involved. All work shall be executed by mechanics skilled in their respective trades, and the installations shall provide a neat, precise appearance. Materials and/or equipment damaged in shipment or otherwise damaged prior to installation shall not be repaired at the job site but shall be replaced with new materials and/or equipment.

B. The responsibility for the furnishing of the proper equipment and/or material and seeing that it is installed as intended by the manufacturer, rests entirely upon the Contractor who shall request advice and supervisory assistance from the representative of specific manufacturers during the installation.

1.16 FLAME SPREAD PROPERTIES OF MATERIALS:

A. Materials and adhesives incorporated in this project shall conform to NFPA Standard 255, "Method of Test of Surface Burning Characteristics of Building Materials" and NFPA 90. The classification shall not exceed a flame spread rating of 25 for all materials, adhesives, finishes, etc., specified for each system, and shall not exceed a smoke developed rating of 50.

1.17 REGULATORY REQUIREMENTS

A. The "Authority Having Jurisdiction" over the project described by these documents is the Owner, as an Agency of the State of New Mexico. As such, it is required that the installation shall meet the minimum standards prescribed in the latest editions of the following listed codes and standards, which are made a part of these Specifications. All referenced codes and standards shall be those current at the date of issue of the design documents.

B. National Fire Protection Association Standards (NFPA):

1. NFPA No. 13, Sprinkler System, Installation
2. NFPA No. 14, Standpipes and Hose Systems
3. NFPA No. 54, Gas Appliances, Piping, National Fuel Gas Code
4. NFPA No. 90A, Air Conditioning Systems

C. American Gas Association Publications (AGA): Directory of Approved Gas Appliances and Tested Accessories

D. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Codes
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

E. Air Conditioning and Refrigeration Institute Standards (ARI): All standards related to refrigeration and air conditioning equipment and piping furnished under these Specifications.

F. Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA): All current editions of applicable manuals and standards (See Sections 23 31 00.UT and 23 33 00.UT).

G. Air Moving and Conditioning Association (AMCA): All current editions of applicable manuals and standards.

I. American Water Works Association (AWWA): All current editions of applicable manuals and standards.

J. National Electrical Manufacturers' Association (NEMA): All current editions of applicable manuals and standards.

K. Uniform Plumbing Code – Current Edition

L. Uniform Mechanical Code – Current Edition

M. International Building Code

N. Occupational Safety and Health Act (OSHA)

P. ADA and ANSI Standards: Per Federal ADA requirements.

Q. Fire Marshal Regulations

R. State Energy Code

S. Refer to Specification Sections hereinafter bound for additional Codes and Standards.

T. All materials and workmanship shall comply with all applicable state and national codes, Specifications, and industry standards. In all cases where Underwriters' Laboratories, Inc. have established standards for a particular type material, such material shall comply with these standards. Evidence of compliance shall be the UL "label" or "listing" under Re-Examination Service.

U. The Contract Documents are intended to comply with the aforementioned rules and regulations; however, some discrepancies may occur. Where such discrepancies occur, the Contractor shall immediately notify the Architect/Engineer in writing of said discrepancies and apply for an interpretation. Should the discovery and notification occur after the execution of a contract, any additional work required for compliance with said regulations shall be paid for as covered by Division 01 of these Contract Documents, providing no work of
fabrication of materials has been accomplished in a manner of noncompliance. Should the Contractor fabricate and/or install materials and/or workmanship in such a manner that does not comply with the applicable codes, rules and regulations, the Contractor who performed such work shall bear all costs arising in correcting these deficiencies to comply with said rules and regulations.

1.18 GENERAL MATERIALS AND EQUIPMENT REQUIREMENTS:

A. Storage at Site: The Contractor shall not receive material or equipment at the job site until there is suitable space provided to properly protect equipment from rust, drip, humidity, and dust damage.

B. Capacities shall be not less than those indicated but shall be such that no component or system becomes inoperative or is damaged because of startup or other overload conditions.

C. Conformance with Agency Requirements: Where materials or equipment are specified to be approved, listed, tested, or labeled by the Underwriters' Laboratories, Inc., or constructed and/or tested in accordance with the standards of the American Society of Mechanical Engineers or the Air Moving and Conditioning Association, the Contractor shall submit proof that the items furnished under this Section of the Specifications conform to such requirements. The label of the Underwriters Laboratories, Inc., applied to the item will be acceptable as sufficient evidence that the items conform to such requirements. The ASME stamp or the AMCA label will be acceptable as sufficient evidence that the items conform to the respective requirements.

D. Nameplates: Each major component of equipment shall have the manufacturer's name, address, and catalog number on a plate securely attached to the item of equipment. All data on nameplates shall be legible at the time of Final Inspection.

E. Prevention of Rust: Standard factory finish will be acceptable on equipment specified by model number; otherwise, surfaces of ferrous metal shall be given a rust inhibiting coating. The treatment shall withstand 200 hours in salt spray fog test, in accordance with Method 6061 of Federal Standard No. 141. Immediately after completion of the test, the specimen shall show no signs of wrinkling or cracking and no signs of rust creepage beyond 1/8" on either side of the scratch mark. Where rust inhibitor coating is specified hereinafter, any treatment that will pass the above test is acceptable unless a specific coating is specified except that coal tar or asphalt type coating will not be acceptable unless so stated for a specific item. Where steel is specified to be hot-dip galvanized, mill-galvanized sheet steel may be used provided all raw edges are painted with a zinc-pigmented paint conforming to Military Specification MIL-P-26915.

F. Protection from Moving Parts: Belts, pulleys, chains, gears, couplings, projecting set screws, keys, and other rotating parts shall be fully enclosed or properly guarded for personnel protection.
G. Verification of Dimensions: The Contractor shall be responsible for the coordination and proper relation of his work to the building structure and to the work of all trades. The Contractor shall visit the premises and become thoroughly familiar with all details of the work and working conditions, to verify all dimensions in the field, and to advise the Architect/Engineer of any discrepancy before performing any work. Adjustments to the work required in order to facilitate a coordinated installation shall be made at no additional cost to the Owner or the Architect/Engineer.

1.19 PROJECT/SITE CONDITIONS

A. Install Work in locations shown on Drawings, unless prevented by Project conditions.

B. Prepare drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other Sections. Obtain permission of Architect/Engineer before proceeding.

1.20 MANUFACTURER'S RECOMMENDATIONS

A. The manufacturer's published directions shall be followed in the delivery, storage, protection, installation, piping, and wiring of all equipment and material. The Contractor shall promptly notify the Architect/Engineer, in writing, of any conflict between the requirements of the Contract Documents and the manufacturers' directions, and shall obtain the Architect/Engineer's instructions before proceeding with the work. Should the Contractor perform any such work that does not comply with the manufacturers' directions or such instructions from the Architect/Engineer, he shall bear all costs arising in connection with the deficiencies.

1.21 SPACE AND EQUIPMENT ARRANGEMENT:

A. The size of mechanical and electrical equipment indicated on the Drawings is based on the dimensions of a particular manufacturer. While other manufacturers may be acceptable, it is the responsibility of the Contractor to determine if the equipment he proposes to furnish will fit in the space. Fabrication Drawings shall be prepared when required by the Architect/Engineer or Owner to indicate a suitable arrangement.

B. All equipment shall be installed in a manner to permit access to all surfaces. All valves, motors, drives, filters, and other accessory items shall be installed in a position to allow removal for service without disassembly of another part.

1.22 LARGE APPARATUS:

A. Any large piece of apparatus which is to be installed in any space in the building, and which is too large to permit access through stairways, doorways, or shafts shall be brought to the job and placed in the space before the enclosing structure is completed. Following placement in the space, such apparatus shall be thoroughly, completely protected from damage as hereinafter specified.
1.23 PROTECTION:

A. The Contractor shall at all times take such precautions as may be necessary to properly protect all materials and equipment from damage from the time of delivery until the completion of the work. This shall include the erection of all required temporary shelters and supports to adequately protect any items stored in the open on the site from the weather, the ground and surrounding work; the cribbing of any items above the floor of the construction; and the covering of items in the incomplete building with tarpaulins or other protective covering; the installation of electric heaters in electrical switchgear and similar equipment to prevent moisture damage. Failure on the part of the Contractor to comply with the above will be sufficient cause for the rejection of the items in question.

B. Take particular care not to damage the building structure in performing work. All finished floors, step treads, and finished surfaces shall be covered to prevent any damage by workmen or their tools and equipment during the construction of the building.

C. Equipment and materials shall be protected from rust both before and after installation. Any equipment or materials found in a rusty condition at the time of final inspection must be cleaned of rust and repainted as specified elsewhere in these Specifications.

1.24 COOPERATION BETWEEN TRADES AND WITH OTHER CONTRACTORS:

A. Each trade, subcontractor, and/or Contractor must work in harmony with the various other trades, subcontractors and/or Contractors on the job as may be required to facilitate the progress to the best advantage of the job as a whole. Each trade, subcontractor, and/or Contractor must pursue its work promptly and carefully so as not to delay the general progress of the job. This Contractor shall work in harmony with Contractors working under other contracts on the premises.

1.25 ELECTRICAL WIRING OF MOTORS AND EQUIPMENT:

A. The Contractor shall note that the electrical design and Drawings are based on the equipment scheduled and indicated on the Drawings, and should any mechanical equipment be provided requiring changes to the electrical design, the required electrical changes shall be made at no cost to the Owner.

B. The Electrical Trades shall provide all interconnecting wiring for the installation of all power. The Electrical Trades shall provide all disconnect switches as required for proper operation, as indicated on the Drawings or required by applicable code. All combination starters, individual starters, and other motor starting apparatus not specifically scheduled or specified as provided by the equipment manufacturer under the scope of Division 23, shall be provided under the scope of Division 26.
C. The Mechanical Trades shall provide complete wiring diagrams indicating power wiring and interlock wiring. Diagrams shall be submitted to the Architect/Engineer for review within thirty (30) days after the submittals for equipment have been reviewed. Diagrams shall be based on accepted equipment and shall be complete full phase and interlock control Drawings, not a series of manufacturer's individual diagrams. After these diagrams have been reviewed by the Architect/Engineer, copies shall be transmitted to the Electrical Trades by the Contractor. They shall be followed in detail. See Section 15E, TEMPERATURE CONTROLS, for additional clarification.

1.26 SUPERVISION:

A. Each Contractor and subcontractor shall keep a competent superintendent or foreman on the job at all times. (Refer to the Uniform General Conditions for additional information concerning supervision.)

B. It shall be the responsibility of each superintendent to study all Drawings and familiarize himself with the work to be done by other trades. He shall coordinate his work with other trades and before material is fabricated or installed, make sure that his work will not cause an interference with another trade. Where interferences are encountered, they shall be resolved at the job site by the superintendents involved. Where interferences cannot be resolved without major changes to the Drawings, the matter shall be referred to the A/E for ruling.

1.27 SITE OBSERVATION:

A. Site observation by the Architect/Engineer is for the express purpose of verifying compliance by the Contractor with the Contract Documents, and shall not be construed as construction supervision nor indication of approval of the manner or location in which the work is being performed as being a safe practice or place.

1.28 PRECEDENCE OF MATERIALS

A. The specifications determine the nature and setting of materials and equipment. The drawings establish quantities, dimensions and details.

B. The installation precedence of materials shall be as follows. Note that if an interference is encountered, this shall guide the contractor in the determination of which trade shall be given the "Right-of-Way".

Building lines
Structural Members
Soil and Drain Piping
Condensate Drains
Vent Piping
Supply, Return, and Outside Air Ductwork
Exhaust Ductwork
HVAC Water and Steam Piping
Steam Condensate Piping
Fire Protection Piping
Natural Gas Piping
Domestic Water (Cold and Hot)
Refrigerant Piping
Electrical Conduit

1.29 CONNECTIONS FOR OTHERS:

A. The Mechanical Contractor shall rough in for and make all gas, water, steam, sewer, etc. connections to all fixtures, equipment, machinery, etc., provided by others in accordance with detailed roughing-in Drawings provided by the equipment suppliers, by actual measurements of the equipment connections, or as detailed.

B. After the equipment is set in place, this Contractor shall make all final connections and shall provide all required pipe, fittings, valves, traps, etc.

C. Provide all air gap fittings required, using materials hereinbefore specified. In each service line connected to an item of equipment or piece of machinery, provide a shutoff valve. On each drain not provided with a trap, provide a suitable trap.

D. All pipe fittings, valves, traps, etc., exposed in finished areas and connected to chrome plated lines provided by others shall be chrome plated to match.

E. Provide all sheet metal ductwork, transition pieces, etc., required for a complete installation of vent hoods, fume hoods, etc., provided by others.

1.30 INSTALLATION METHODS:

A. Where to Conceal: All pipes, conduits, etc., shall be concealed in pipe chases, walls, furred spaces, or above the ceilings of the building unless otherwise indicated.

B. Where to Expose: In mechanical rooms, janitor's closets tight against pan soffits in exposed "Tee" structures, or storage spaces, but only where necessary, piping may be run exposed. All exposed piping shall be run in the most aesthetic, inconspicuous manner, and parallel or perpendicular to the building lines.

C. Support: All piping, ducts and conduits shall be adequately and properly supported from the building structure by means of hanger rods or clamps to walls as herein specified.

D. Maintaining Clearance: Where limited space is available above the ceilings below concrete beams or other deep projections, pipe and conduit shall be sleeved through the projection where it crosses, rather than hung below them in a manner to provide maximum above-floor clearance. Sleeves shall be as herein specified. Approval shall be obtained from the Architect/Engineer for each penetration.
E. All pipe, conduits, etc., shall be cut accurately to measurements established at the building and shall be worked into place without springing or forcing. All ducts, pipes and conduits run exposed in machinery and equipment rooms shall be installed parallel to the building lines, except that piping shall be sloped to obtain the proper pitch. Piping, ducts and conduits run in furred ceilings, etc., shall be similarly installed, except as otherwise shown. Conduits in furred ceilings and in other concealed spaces shall be neatly grouped and racked indicating good workmanship. All conduit and pipe openings shall be kept closed until the systems are closed with final connections.

1. All piping not directly buried in the ground shall be considered as "interior piping".

2. Prior to the installation of any ceiling material, gypsum, plaster, or acoustical board, the Contractor shall notify the construction inspector so that arrangement can be made for an inspection of the above-ceiling area about to be "sealed" off. The Contractor shall give as much advance notice as possible no less than 10 working days.

3. All above-ceiling areas will be subject to a formal inspection before ceiling panels are installed, or installation is otherwise concealed from view. All mechanical and electrical work at and above the ceiling, including items supported by the ceiling grid, such as air inlets or outlets and lighting fixtures, shall be complete and installed in accordance with contract requirements, including power to lighting fixtures, fans, and other powered items. Adequate lighting shall be provided to permit thorough inspection of all above-ceiling items. The inspection will include representatives of the following: General Contractor and each Subcontractor having work above the ceiling, Architect/Engineer, Physical Plant, Resident Construction Manager's Construction Inspector(s), the Resident Construction Manager and Office of Facilities Planning and Construction (OFPC). Areas to be included and time of inspection shall be coordinated with the Construction Inspector.

4. The purpose of this inspection is to verify the completeness and quality of the installation of the air conditioning systems, the electrical systems, the plumbing systems, and any other special above ceiling systems such as pneumatic tube, vacuum systems, fire sprinkler piping and cable tray systems. The ceiling supports (tee bar or lath) shall be in place so that access panel and light fixture locations are identifiable and so that clearances and access provisions may be evaluated.

5. No ceiling materials may be installed until the resulting deficiency list from this inspection is worked off and the Construction Inspector has given approval.

1.31 RECORDS FOR OWNER:

A. The Contractor shall maintain a set of "blueline" prints in the Field Office for the sole purpose of recording "installed" conditions. Daily note all changes made in
these Drawings in connection with the final installation including exact dimensioned locations of all new underground utilities, services and systems and all uncovered existing active and inactive piping outside the building.

B. At Contract completion the Contractor shall provide a set of reproducible photographic mylar drawings, plus the photo negatives of the revised drawings. The contractor shall transfer the information from the "blueline" prints maintained as described above, and turn over this neatly marked set of reproducible Drawings representing the "as installed" work to the Architect/Engineers for verification and subsequent transmittal to the Owner. The Contractor shall refer to Division 01 of these Specifications, and to the Uniform General Conditions, for additional information. These Drawings shall include as a minimum:

1. Addendum written drawing changes.
2. Addendum supplementary drawings.
3. Accurate, dimensioned locations of all underground utilities, services and systems.
4. Identification of equipment work shown on Alternates as to whether alternates were accepted and work actually installed.
5. Change Order written drawing changes.

C. Electronic Media:

1. In lieu of the drawings described above in 1.33B, the contractor shall submit one set of blueline prints, one set of vellum reproducables, and one set of discs containing all the drawings in AUTOCAD 2008 format.

D. "As installed" mylars shall bear a stamp, "stick on decal", or lettered title block generally located in lower right hand corner of Drawing entitled "AS INSTALLED DRAWING" with Company name of the installing trade Subcontractor and with a place for the date and the name of the responsible company representative.

E. In addition to the above, the Contractor shall accumulate during the progress of the job the following data, in duplicate, prepared in a neat brochure or packet folder and turn over to the Architect/Engineer for review, and subsequent delivery to the Owner.

1. All warranties and guarantees and manufacturers' directions on equipment and material covered by the Contract.
2. Two sets of operating instructions for heating and cooling and other mechanical and electrical systems. Operating instructions shall also include recommended preventative maintenance and seasonal changeover procedures.
3. Valve tag charts and diagrams specified herein.
4. Approved wiring diagrams and control diagrams representing "as installed" conditions.
5. Copies of approved Shop Drawings.
6. Any and all other data and/or drawings required as submittals during construction.
7. Repair parts list of all major items and equipment including name, address and telephone number of local supplier or agent.

F. All of the above data shall be submitted to the Architect/Engineer for approval, and shall be corrected as instructed by the Architect/Engineer prior to submission of the final request for payment.

1.32 CUTTING AND PATCHING:

A. General: Cut and patch walls, floors, etc., resulting from work in existing construction or by failure to provide proper openings or recesses in new construction.

B. Methods of cutting: Openings cut through concrete and masonry shall be made with masonry saws and/or core drills and at such locations acceptable to the Architect/Engineer. Impact-type equipment shall not be used except where specifically acceptable to the Architect/Engineer. Openings in precast concrete slabs for pipes, conduits, outlet boxes, etc., shall be core drilled to exact size.

C. Restoration: All openings shall be restored to "as-new" condition under the appropriate Specification Section for the materials involved, and shall match remaining surrounding materials and/or finishes.

D. Masonry: Where openings are cut through masonry walls, provide and install lintels or other structural supports to protect the remaining masonry. Adequate supports shall be provided during the cutting operation to prevent any damage to the masonry occasioned by the operation. All structural members, supports, etc., shall be of the proper size and shape, and shall be installed in a manner acceptable to the Architect/Engineer.

E. Plaster: All mechanical work in areas containing plaster shall be completed prior to the application of the finish plaster coat. Cutting of finish plaster coat will not be permitted.

F. Special Note: No cutting, boring, or excavating which will weaken the structure shall be undertaken.

1.33 ROOF PENETRATIONS AND FLASHING:

A. Pipe, conduit and duct sleeves, pitch pockets, and flashings compatible with the roofing installation shall be provided and installed by a qualified contractor for all roof penetrations. This shall be the responsibility of the General Contractor.

1.34 EXCAVATION, TRENCHING AND BACKFILL:

A. Excavation (See Divisions 00 and 01 for special requirements related to excavation and trenching.):

1. The Mechanical and Electrical subcontractors shall perform all excavations of every description, for their particular installations and of
whatever substances encountered, to the depths indicated on the Drawings and/or required for the installation of piping, conduit, utility systems, etc. All exterior lines shall be installed with a minimum cover of 24", unless otherwise indicated. Generally, more cover shall be provided if grade will permit. All excavation materials not required for backfill or fill shall be removed and wasted as acceptable to the Construction Inspector. All excavations shall be made only by open cut. The banks of trenches shall be kept as nearly vertical as possible and where required, shall be properly sheeted and braced. Trenches shall be not less than 12" wider nor more than 16" wider than the outside edges of the pipe to be laid therein, and shall be excavated true to line so that a clear space not less than 6" nor more than 8" in width is provided on each side of the pipe. For sewers, the maximum width of trench specified applies to the width at and below the level may be made as wide as necessary for sheeting and bracing, and the proper installation of the work.

2. The bottom of trenches shall be accurately graded to provide proper fall and uniform bearing and support for each section of the pipe on undisturbed soil or 2" of sand fill at every point along its entire length, except for portions of the pipe sections where it is necessary to excavate for bell holes and for the proper sealing of pipe joints. Bell holes shall be dug after the trench bottom has been graded. Where inverts are not shown, grading shall be determined by the National Plumbing Code for the service intended and the size used. Bell holes for lead pipe joints shall be 12" in depth below the trench bottom and shall extend from a point 6" back of the face of the bell. Such bell holes shall be of sufficient width to provide ample room for caulking. Bell holes for sewer tile and water pipe shall be excavated only to an extent sufficient to permit accurate work in the making of the joints and to insure that the pipe, for a maximum of its length, will rest upon the prepared bottom of the trench. Depressions for joints other than bell-and-spigot shall be made in accordance with the recommendations of the joint manufacturer for the particular type of joint used. In general, grading for electrical ductbanks and conduits shall be from building to manhole, and from a high point between manholes to each manhole. Special pipe beds shall be provided as specified hereinafter.

3. The lower 4" of the pipe trenches measuring from an overhead line set parallel to the grade line of the sewer shall be excavated only a few feet in advance to the pipe laying, by men especially skilled in this type of work. Where damage is likely to result from withdrawing sheeting, the sheeting shall be left in place. Except at locations where excavation of rock from the bottom of trenches is required, care shall be taken not to excavate below the depths required. Where rock excavation is required, the rock shall be excavated to a minimum overdepth of 6" below the trench depths specified. The overdepth rock excavation and all excess trench excavation shall be backfilled with sand. Whenever wet or otherwise unstable soil is incapable of properly supporting the pipe is encountered in the trench bottom, such soil shall be removed to a depth
and for the trench lengths required, and then backfilled to trench bottom grade, as hereinafter specified, with sand.

4. All grading in the vicinity of excavation shall be controlled to prevent surface ground water from flowing into the excavations. Any water accumulated in the excavations shall be removed by pumping or other acceptable method. During excavation, material suitable for backfilling shall be stacked in an orderly manner a sufficient distance back from edges of trenches to avoid overloading and prevent slides or cave-ins. Material unsuitable for backfilling shall be wasted and removed from the job site as directed by the Construction Inspector.

5. All shoring and sheeting required to perform and protect the excavations and to safeguard employees and/or adjacent structures shall be provided.

6. Excavate as required under the building in order that all piping, ductwork, etc., shall clear the ground a minimum of 12" for a distance of 24" on either side. Edges of such excavations shall slope at an angle of not over 45 degrees with the horizontal unless otherwise approved by the Construction Inspector. The bottom of such excavation shall be graded to drain in a manner acceptable to the Construction Inspector.

7. Trenches for cast iron drain, storm water and sewer lines inside the building shall be properly excavated, following, in general, the procedures set out for exterior lines. Where floors are to be poured over these lines, they shall be backfilled, tamped and settled with water. Where no flooring is to cover the lines, they shall be backfilled to form a level grade.

8. All surplus materials removed in these trenching operations becomes the property of the contractor, and shall be disposed of at the expense of the contractor, at a legal disposal site, off of the campus.

B. Backfilling:

1. Trenches shall not be backfilled until all required tests are performed and until the piping, utilities systems, etc., as installed are certified by the Owner's inspector to conform to the requirements specified hereinafter. The trenches shall be carefully backfilled with sand to a depth of 12 inches above the top of the pipe. The next layer and subsequent layers of backfill may be excavated materials approved for backfilling, consisting of earth, loam, sandy clay, sand and gravel, soft shale, or other approved materials free from large clods of earth or stones larger than 1 1/2" in diameter, flooded until the pipe has cover of not less than one foot. The remainder of the backfill material shall then be thrown into the trenches, moistened, and tamped or flooded in one foot layers. Blasted rock, broken concrete or pavement, and large boulders shall not be used as backfill material. Any trenches improperly backfilled, or where settlement occurs, shall be reopened to the depth required for proper compaction, then refilled and mounded over, and smoothed off.
2. Backfill under concrete slabs-on-fill shall be as specified above, shall be gravel, or shall be other such materials more suitable for the application. Installation and compaction shall be as required for compatibility with adjacent materials.

C. Opening and Reclosing Pavement and Lawns: Where excavation requires the opening of existing walks, streets, drives, other existing pavement, or lawns, such surfaces shall be cut as required to install new lines and to make new connections to existing lines. The sizes of the cut shall be held to a minimum, consistent with the work to be accomplished. After the installation of the new work is completed and the excavation has been backfilled and flooded, the area shall be patched, using materials to match those cut out. The patches shall thoroughly bond with the original surfaces and shall be level with them, and shall meet all the requirements established by the authorities having jurisdiction over such areas.

D. Excavation in Vicinity of Trees: All trees including low hanging limbs within the immediate area of construction shall be adequately protected to a height of at least 5 ft. to prevent damage from the construction operations and/or equipment. All excavation within the outermost limb radius of all trees shall be accomplished with extreme care. All roots located within this outermost limb radius shall be brought to the attention of the Construction Inspector before they are cut or damaged in any way. The Construction Inspector will give immediate instructions for the disposition of same. All stumps and roots encountered in the excavation, which are not within the outermost limb radius of existing trees, shall be cut back to a distance of not less than 18" from the outside of any concrete structure or pipeline. No chips, parts of stumps, or loose rock shall be left in the excavation. Where stumps and roots have been cut out of the excavation, clean compacted dry bank sand shall be backfilled and tamped.

1.35 ACCESS DOORS:

A. General: This Contractor shall provide wall or ceiling access doors for unrestricted access to all concealed items of mechanical equipment or devices.

B. Doors: Access doors mounted in painted surfaces shall be of Milcor (Inland-Ryerson Construction Products Company) manufacture, Style K for plastered surfaces and Style M or DW for non-plastered surfaces. The Style K doors shall be set so that the finished surface of the door is even with the finished surface of the adjacent finishes. Access doors mounted on tile surfaces shall be of similar construction as noted above, except they shall be of stainless steel materials. Access doors shall be a minimum of 12" x 12" in size.

1.36 OPERATION PRIOR TO COMPLETION:

A. When any piece of mechanical equipment is operable and it is to the advantage of the Contractor to operate the equipment, he may do so, providing that he properly supervises the operation, and has the Construction Inspector's written permission to do so. The warranty period shall, however, not commence until
such time as the equipment is operated for the beneficial use of the Owner, or
date of substantial completion, whichever occurs first.

B. Regardless of whether or not the equipment has or has not been operated, the
Contractor shall properly clean the equipment, install clean filter media, properly
adjust, and complete all deficiency list items before final acceptance by the
Owner. The date of acceptance and performance certification will be the same
date.

1.37 EXISTING FACILITIES:

A. The Contractor shall be responsible for loss or damage to the existing facilities
caused by him and his workmen, and shall be responsible for repairing or
replacing such loss or damage. The Contractor shall send proper notices, make
necessary arrangements, and perform other services required for the care,
protection and in service maintenance of all plumbing, heating, air conditioning,
and ventilating services for the new and existing facilities. The Contractor shall
erect temporary barricades, with necessary safety devices, as required to protect
personnel from injury, removing all such temporary protection upon completion of
the work.

B. The Contractor shall provide temporary or new services to all existing facilities as
required to maintain their proper operation when normal services are disrupted
as a result of the work being accomplished under this project.

C. Where existing construction is removed to provide working and extension access
to existing utilities, Contractor shall remove doors, piping, conduit, outlet boxes,
wiring, light fixtures, air conditioning ductwork and equipment, etc., to provide this
access and shall reinstall same upon completion of work in the areas affected.

D. Where partitions, walls, floors, or ceilings of existing construction are indicated to
be removed, all Contractors shall remove and reinstall in locations approved by
the Architect/Engineer all devices required for the operation of the various
systems installed in the existing construction. This is to include but is not limited
to temperature controls system devices, electrical switches, relays, fixtures,
piping, conduit, etc.

E. Outages of services as required by the new installation will be permitted but only
at a time approved by the Owner. The Contractor shall allow the Owner two
weeks in order to schedule required outages. The time allowed for outages will
not be during normal working hours unless otherwise approved by the Owner.
All costs of outages, including overtime charges, shall be included in the contract
amount.

1.38 DEMOLITION AND RELOCATION:

A. The Contractor shall modify, remove, and/or relocate all materials and items so
indicated on the Drawings or required by the installation of new facilities. All
removals and/or dismantling shall be conducted in a manner as to produce
maximum salvage. Salvage materials shall remain the property of the Owner,
and shall be delivered to such destination or otherwise disposed of as directed by the Owner. Materials and/or items scheduled for relocation and which are damaged during dismantling or reassembly operations shall be repaired and restored to good operative condition. The Contractor may, at his discretion, and upon the approval of the Owner, substitute new materials and/or items of like design and quality in lieu of materials and/or items to be relocated.

B. All items which are to be relocated shall be carefully removed in reverse to original assembly or placement and protected until relocated. The Contractor shall clean and repair and provide all new materials, fittings, and appurtenances required to complete the relocations and to restore to good operative order. All relocations shall be performed by workmen skilled in the work and in accordance with standard practice of the trades involved.

C. When items scheduled for relocation and/or reuse are found to be in damaged condition before work has been started on dismantling, the Contractor shall call the attention of the Owner to such items and receive further instructions before removal. Items damaged in repositioning operations are the Contractor's responsibility and shall be repaired or replaced by the Contractor as approved by the Owner, at no additional cost to the Owner.

D. Service lines and wiring to items to be removed, salvaged, or relocated shall be removed to points indicated on the Drawings, specified, or acceptable to the Owner. Service lines and wiring not scheduled for reuse shall be removed to the points at which reuse is to be continued or service is to remain. Such services shall be sealed, capped, or otherwise tied-off or disconnected in a safe manner acceptable to the Owner. All disconnections or connections into the existing facilities shall be done in such a manner as to result in minimum interruption of services to adjacent occupied areas. Services to existing areas or facilities which must remain in operation during the construction period shall not be interrupted without prior specific approval of the Owner as hereinbefore specified.

1.39 CHECKING AND TESTING MATERIALS AND/OR EQUIPMENT:

A. Before the work is accepted, an authorized representative of the manufacturer of the installed materials and/or equipment shall personally inspect the installation and operation of his materials and/or equipment to determine that it is properly installed and in proper operating order. The qualifications of the representative shall be appropriate to the technical requirements of the installation. The qualifications of the representative shall be submitted to the owner for approval. The decision of the owner concerning the appropriateness of the representative shall be final. Testing and checking shall be accomplished during the course of the work where required by work being concealed, and at the completion of the work otherwise. In addition, the Contractor shall submit to the Architect/Engineer a signed statement from each representative certifying as follows: "I certify that the materials and/or equipment listed below have been personally inspected by the undersigned authorized manufacturer's representative and is properly installed and operating in accordance with the manufacturer's recommendations".
B. Check inspections shall include plumbing equipment, heating, air conditioning, insulation, ventilating equipment, controls, mechanical equipment and such other items hereinafter specified or specifically designated by the Architect/Engineer.

1.43 TESTS:

A. The Contractor shall make, at no additional cost to the Owner, any tests deemed necessary by the inspection departments having jurisdiction, and in the National Fire Protection Association, ASTM, etc. Standards listed. The Contractor shall provide all equipment, materials, and labor for making such tests. Reasonable amounts of fuel and electrical energy costs for system tests will be paid by the Owner. Fuel and electrical energy costs for system adjustment and tests which follow beneficial occupancy by the Owner will be borne by the Owner.

B. Additional tests specified hereinafter under the various Specification Sections shall be made.

C. The Construction Inspector shall be notified in writing at least 10 working days prior to each test and other Specification requirements requiring action on the part of the Construction Inspector. All equipment shall be placed in operation and tested for proper automatic control requirements before the balancing agency starts their work.

D. Maintain Log of Tests as hereinafter specified.

E. See Specifications hereinafter for additional tests and requirements.

1.44 LOG OF TESTS:

A. All tests shall have pertinent data logged by the Contractor at the time of testing. Data shall include date, time, personnel, description, and extent of system tested, test conditions, test results, specified results, and other pertinent data. Data shall be delivered to the Architect/Engineer as specified under "Requirements for Final Acceptance". All Test Log entries shall be legibly signed by the Project Contractor or his authorized job superintendent.

1.45 COOPERATION AND CLEANUP:

A. It shall be the responsibility of each trade to cooperate fully with the other trades on the job to help keep the job site in a clean and safe condition. At the end of each day's work, each trade shall properly store all of his tools, equipment and materials and shall clean his debris from the job. Upon the completion of the job, each trade shall immediately remove all of his tools, equipment, any surplus materials and all debris caused by that portion of the work.

1.46 CLEANING AND PAINTING:

A. All equipment, piping, conduit, ductwork, grilles, insulation, etc., furnished and installed in exposed areas under Divisions 23 and 26 of these Specifications and as hereinafter specified shall be cleaned, prepared, and painted according to the
following specification. In the event of a conflict between the specifications referenced, the provisions of this specification shall prevail only for Division 23 and Division 26 work.

B. All purchased equipment furnished by the mechanical and electrical subcontractors shall be delivered to the job with a suitable factory protective finish with the colors hereinafter specified. The following materials shall not be painted: copper, galvanized metal, stainless steel, fiberglass, PVC, and PVDF.

C. Before painting, materials and equipment surfaces shall be thoroughly cleaned of cement, plaster, and other foreign materials, and all oil and grease spots shall be removed. Such surfaces shall be carefully wiped and all cracks and corners scraped out. Exposed metal work shall be carefully brushed down with the steel brushes to remove rust and other spots and left smooth and clean.

D. Color of finish painting in Mechanical Rooms shall be painted in accordance with the following outline table. For painting purposes, the equipment and piping inside of built-up air handling units shall be painted the same as if they were within the walls of a Mechanical Room. Two coats shall be applied with a light tint first coat and deep color for final coat. Colors shall be as follows:
Part 2: Products

2.1 Year 2000 Performance Warranty

For purposes of this warranty, the following definitions shall apply:

A. "Accurately" shall be defined to include:

1. Calculations correctly performed using four digit year processing;

2. Functionality on-line, batch, including but not limited to, entry, inquiry, maintenance and updates support four digit year processing;

3. Interfaces and reports must support four digit year processing;

4. Successful translation into year 2000 with valid date (e.g. CC/YY/MM/DD) without human intervention. Additional representations for week, hour, minute and second, if required, complies with the international standard ISO 8601:1988, "Data elements and interchange formats - Information
exchange Representation of dates and time." When ordinal dates are used, the ISO standard format CCYYDDD is used;

5. Processing with four digit year after transition to any date beyond the year 2000 without human intervention;

6. Correct results in forward and backward date calculations spanning century boundaries;

7. Correct leap year calculations; and

8. Correct forward and backward date calculations spanning century boundaries, including conversion of previous years stored, recorded or entered as two digits.

B. "Date integrity" shall mean all manipulations of time-related data (dates, durations, days of week, etc.) will produce desired results for all valid date values within the application domain.

C. "Explicit century" shall mean date elements in interfaces and data storage permit specifying century to eliminate date ambiguity.

D. "Extraordinary actions" shall be defined to mean any action outside the normal documented processing steps identified in the product's reference documentation.

E. "General integrity" shall mean no value for current date will cause interruptions in desired operation- especially from the 20th to 21st centuries.

F. "Implicit century" shall mean for any data element without century, the correct century is unambiguous for all manipulations involving that element.

G. "Product" or "products" shall be defined to include, but is not limited to, any supplied or supported hardware, software, firmware and/or micro code.

H. "Valid date" shall be defined as a date containing a four digit year, a two digit month and a two digit day., or the ISO 8601:1988, Data elements - Information Exchange - Representation of dates and times". When ordinal dates are used, ISO standard format of CCYYDDD is used.

I. The contractor warrants that product(s) delivered and installed under this contract shall be able to accurately process valid date data when used in accordance with the product documentation provided by the contractor and require no extraordinary actions on the part of the Owner or its personnel. Products under this Contract possess general integrity, date integrity, explicit and implicit century capabilities. If the Contract requires that specific products must perform as a system in accordance with the foregoing warranty, then the warranty shall apply to those listed products as a system. The duration of this warranty and the remedies available the Owner for breach of this warranty shall be as defined in, and subject to, the terms and conditions contained in this Contract; provided, that notwithstanding any provision to the contrary in such
commercial warranty or warranties, the remedies available to the Owner under this warranty shall include repair or replacement of any supplied product whose non-compliance is discovered and made known to the contractor in writing within one year after final acceptance, as that term is defined elsewhere in the contract. Nothing in this warranty shall be considered to limit any rights or remedies the Owner may otherwise have under this contract with respect to defects other than Year 2000 performance.

J. Prior to final acceptance the Owner may require demonstration of correct system operation without manual intervention before and after roll over between the following dates:

Dec 31, 1998 - Jan 1, 1999 Tests for use of 9's as control code errors
Sep 9, 1999 - Sep 10, 1999 "
Dec 31, 1999- Jan 1, 2000 Tests century digits rollover
Feb 28, 2000 - Feb 29, 2000 Tests recognition of leap year
Feb 29, 2000 - Mar 1, 2000 "
Mar 31, 2000 - Apr 1, 2000 "
Apr 30, 2000 - May 1, 2000 "
Dec 31, 2000 - Jan 1, 2001 Tests millennium rollover
Feb 28, 2001 - Mar 1, 2001 Tests recognition of no leap year
Dec 31, 2009 - Jan 1, 2010 Tests normal decade rollover
Dec 31, 2027 - Jan 1, 2028 "

END OF SECTION 23 0000
SECTION 23 0513

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.
2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.

1. For motors with 2:1 speed ratio, consequent pole, single winding.
2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:

1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 0513
SECTION 23 0553
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Stencils.
 6. Valve tags.
 7. Warning tags.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Brass, 0.032-inch Stainless steel, 0.025-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: White.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.

2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.

2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 1. Size: Approximately 4 by 7 inches.
 2. Fasteners: Reinforced grommet and wire or string.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.
3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting"

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

3.4 DUCT LABEL INSTALLATION

A. Install [plastic-laminated] [self-adhesive] duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.
 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and flow direction, may be provided instead of plastic-laminated duct labels, at Installer's option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.
3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 23 0553
SECTION 23 0593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Balancing Air Systems:

 a. Constant-volume air systems.
 b. Exhaust Systems.

1.3 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.

D. TABB: Testing, Adjusting, and Balancing Bureau.

E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

A. Qualification Data: Within 15 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. Certified TAB reports.
E. Sample report forms.

F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.

B. TAB Conference: Meet with Architect Construction Manager on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner’s operations.

1.7 COORDINATION

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems’ designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air
systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine operating safety interlocks and controls on HVAC equipment.

K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:

1. Permanent electrical-power wiring is complete.
2. Automatic temperature-control systems are operational.
3. Equipment and duct access doors are securely closed.
4. Balance, smoke, and fire dampers are open.
5. Isolating and balancing valves are open and control valves are operational.
6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."
3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.
3.7 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent
4. Cooling-Water Flow Rate: Plus or minus 10 percent

3.8 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.9 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

a. Unit identification.
b. Location.
c. Make and type.
d. Model number and unit size.
e. Manufacturer's serial number.
f. Unit arrangement and class.
g. Discharge arrangement.
h. Sheave make, size in inches, and bore.
i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
a. Total air flow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Filter static-pressure differential in inches wg.
f. Preheat-coil static-pressure differential in inches wg.
g. Cooling-coil static-pressure differential in inches wg.
h. Heating-coil static-pressure differential in inches wg.
i. Outdoor airflow in cfm.
j. Return airflow in cfm.
k. Outdoor-air damper position.
l. Return-air damper position.
m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
a. System identification.
b. Location.
c. Coil type.
d. Number of rows.
e. Fin spacing in fins per inch o.c.
f. Make and model number.
g. Face area in sq. ft.
h. Tube size in NPS
i. Tube and fin materials.

j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

a. Air flow rate in cfm.

b. Average face velocity in fpm.

c. Air pressure drop in inches wg.

d. Outdoor-air, wet- and dry-bulb temperatures in deg F.

e. Return-air, wet- and dry-bulb temperatures in deg F.

f. Entering-air, wet- and dry-bulb temperatures in deg F.

g. Leaving-air, wet- and dry-bulb temperatures in deg F.

h. Water flow rate in gpm (L/s).

i. Water pressure differential in feet of head or psig.

j. Entering-water temperature in deg F.

k. Leaving-water temperature in deg F.

l. Refrigerant expansion valve and refrigerant types.

m. Refrigerant suction pressure in psig.

n. Refrigerant suction temperature in deg F.

o. Inlet steam pressure in psig.

G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:

a. System identification.

b. Location.

c. Make and type.

d. Model number and unit size.

e. Manufacturer's serial number.

f. Fuel type in input data.

g. Output capacity in Btu/h.

h. Ignition type.

i. Burner-control types.

j. Motor horsepower and rpm.

k. Motor volts, phase, and hertz.

l. Motor full-load amperage and service factor.

m. Sheave make, size in inches, and bore.

n. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):

a. Total air flow rate in cfm.

b. Entering-air temperature in deg F.

c. Leaving-air temperature in deg F.

d. Air temperature differential in deg F.

e. Entering-air static pressure in inches wg.

f. Leaving-air static pressure in inches wg.

g. Air static-pressure differential in inches wg.
h. Low-fire fuel input in Btu/h
i. High-fire fuel input in Btu/h.
j. Manifold pressure in psig.
k. High-temperature-limit setting in deg F.
l. Operating set point in Btu/h.
m. Motor voltage at each connection.
n. Motor amperage for each phase.
o. Heating value of fuel in Btu/h.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Air flow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Air flow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling-unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft.
g. Indicated air flow rate in cfm.
h. Indicated velocity in fpm.
i. Actual air flow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

K. Instrument Calibration Reports:

1. Report Data:

a. Instrument type and make.
b. Serial number.
c. Application.
d. Dates of use.
e. Dates of calibration.

3.10 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating
according to the final test and balance readings documented in the final report.

2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 c. Verify that balancing devices are marked with final balance position.
 d. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.

2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Architect.

3. Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.11 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 0593
SECTION 23 0700
HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Mineral fiber.

2. Fire-rated insulation systems.
3. Adhesives.
4. Sealants.
5. Factory-applied jackets.
7. Field-applied cloths.
8. Field-applied jackets.
10. Securements.
11. Corner angles.

B. Related Sections:
1. Division 22 Section "Plumbing Insulation."
2. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.
8. Detail field application for each equipment type.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.

1. Sample Sizes:
 b. Sheet Form Insulation Materials: 12 inches square.
 d. Sheet Jacket Materials: 12 inches square.
 e. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
b. One each of a 90-degree threaded, welded, and flanged elbow.
c. One each of a threaded, welded, and flanged tee fitting.
d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
e. Four support hangers including hanger shield and insert.
f. One threaded strainer and one flanged strainer with removable portion of insulation.
g. One threaded reducer and one welded reducer.
h. One pressure temperature tap.
i. One mechanical coupling.

2. Ductwork Mockups:

a. One 10-foot section each of rectangular and round straight duct.
b. One each of a 90-degree mitered round and rectangular elbow, and one each of a 90-degree radius round and rectangular elbow.
c. One rectangular branch takeoff and one round branch takeoff from a rectangular duct. One round tee fitting.
d. One rectangular and round transition fitting.
e. Four support hangers for round and rectangular ductwork.

3. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.

4. Notify Architect seven days in advance of dates and times when mockups will be constructed.

5. Obtain Architect's approval of mockups before starting insulation application.

6. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.

8. Demolish and remove mockups when directed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of
insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Industrial Insulation Group (The); Thermo-12 Gold.

2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

4. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.
G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; All-Service Duct Wrap.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. tested and certified to provide a 1-hour fire rating by a NRTL acceptable to authority having jurisdiction.

1. Products: Subject to compliance with requirements, provide the following:
 a. Johns Manville; Super Firetemp M.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a [1] [2]-hour fire rating by a NRTL acceptable to authority having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 d. Thermal Ceramics; FireMaster Duct Wrap.
 e. 3M; Fire Barrier Wrap Products.
 f. Unifrax Corporation; FyreWrap.
 g. Vesuvius; PYROSCAT FP FASTR Duct Wrap.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:

A18.04 HVAC INSULATION 23 0700 - 5
2.4 SEALANTS

A. Joint Sealants:

B. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:

 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
 f. <Insert manufacturer's name; product name or designation.>

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).

5. Color: Aluminum.

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:

 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.

a. Sheet and roll stock ready for shop or field sizing
b. Finish and thickness are indicated in field-applied jacket schedules.
c. Moisture Barrier for Indoor Applications: [1-mil-thick, heat-bonded polyethylene and kraft paper] [3-mil-thick, heat-bonded polyethylene and kraft paper] [2.5-mil-thick Polysurlyn].
d. Moisture Barrier for Outdoor Applications: [3-mil-thick, heat-bonded polyethylene and kraft paper] [2.5-mil-thick Polysurlyn].
e. Factory-Fabricated Fitting Covers:

1) Same material, finish, and thickness as jacket.
2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
3) Tee covers.
4) Flange and union covers.
5) End caps.
6) Beveled collars.
7) Valve covers.
8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
9) Tee covers.
10) Flange and union covers.
11) End caps.
12) Beveled collars.
13) Valve covers.
14) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 TAPES

A. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:

a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
b. Compac Corp.; 120.
c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
d. Venture Tape; 3520 CW.
e. <Insert manufacturer’s name; product name or designation.>

2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.
2.7 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (thick, 1/2 inch wide with closed seal.
3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with closed seal.

2.8 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.

2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.

 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.

2. Testing agency labels and stamps.

3. Nameplates and data plates.

5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping"firestopping and fire-resistive joint sealers.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at
these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal
seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not overcompress insulation during installation.

e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

 A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

 A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

 B. Insulate duct access panels and doors to achieve same fire rating as duct.

 C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.9 FIELD QUALITY CONTROL

 A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

 B. Perform tests and inspections.
C. **Tests and Inspections:**

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 **DUCT INSULATION SCHEDULE, GENERAL**

A. **Plenums and Ducts Requiring Insulation:**

1. Indoor, concealed supply and outdoor air.

B. **Items Not Insulated:**

1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

END OF SECTION 23 0700
SECTION 231126

FACILITY LIQUEFIED-PETROLEUM GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.
7. Storage containers.
8. Transport truck unloading facility specialties.
10. Vaporizers.
11. Air mixers.
12. Mechanical sleeve seals.
14. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. LPG: Liquefied-petroleum gas.
1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. For Piping Containing Only Vapor:
 a. Piping and Valves: 125 psig unless otherwise indicated.

2. For Piping Containing Liquid:
 a. Piping between Shutoff Valves: 350 psig unless otherwise indicated.
 b. Piping Other Than Above: 250 psig unless otherwise indicated.
 c. Valves and Fittings: 250 psig unless otherwise indicated.

3. Minimum Operating Pressure of Service Meter: 10 psig.

B. LPG System Pressure within Buildings: One pressure range. 0.5 psig.

C. LPG System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig and is reduced to secondary pressure of 0.5 psig or less.

D. LPG System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig and is reduced to secondary pressure of more than 0.5 but not more than 2 psig.

E. LPG System Pressures within Buildings: Three pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig and is reduced to secondary pressures of more than 0.5 psig but not more than 2 psig and is reduced again to pressures of 0.5 psig or less.

F. Delegated Design: Design restraints and anchors for LPG piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

G. Seismic Performance: Vaporizers and storage container supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 SUBMITTALS

A. Product Data: For each type of the following:

1. Piping specialties.
2. Corrugated stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.

4. Pressure regulators. Indicate pressure ratings and capacities.

5. Service meters. Indicate pressure ratings and capacities. Include bypass fittings and meter bars.

6. Dielectric fittings.

7. Storage containers.

8. Transport truck unloading specialties.

10. Vaporizers.

11. Air mixers.

12. Mechanical sleeve seals.

B. Shop Drawings: For facility LPG piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.

2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.

C. Delegated-Design Submittal: For LPG piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of seismic restraints.

2. Design Calculations: Calculate requirements for selecting seismic restraints.

D. Coordination Drawings: Plans and details, drawn to scale, on which LPG piping is shown and coordinated with other installations, using input from installers of the items involved.

E. Site Survey: Plans, drawn to scale, on which LPG piping is shown and coordinated with other services and utilities.

F. Qualification Data: For qualified professional engineer.

G. Seismic Qualification Certificates: Submit certification that vaporizer, air mixer, storage container supports, accessories, and components will withstand seismic forces defined in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

H. Welding certificates.

I. Field quality-control reports.

J. Operation and Maintenance Data: For LPG equipment and accessories to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing LPG piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store pipes and tubes with protective PE coating to avoid damaging coating and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.8 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing LPG Service: Do not interrupt LPG service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of LPG supply according to requirements indicated:

 1. Notify Architect no fewer than two days in advance of proposed interruption of LPG service.
2. Do not proceed with interruption of LPG service without Architect's written permission.

1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedules 40 and 80, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground, and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

6. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1) Dresser Piping Specialties; Division of Dresser, Inc.
2) Smith-Blair, Inc.

b. Stainless-steel flanges and tube with epoxy finish.
c. Buna-nitrile seals.
d. Stainless-steel bolts, washers, and nuts.
e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. OmegaFlex, Inc.
 b. Parker Hannifin Corporation; Parflex Division.
 c. Titeflex.
 d. Tru-Flex Metal Hose Corp.

3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.
5. Striker Plates: Steel, designed to protect tubing from penetrations.
6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.
7. Operating-Pressure Rating: 5 psig.

C. Aluminum Tubing: Comply with ASTM B 210 and ASTM B 241/B 241M.

1. Aluminum Alloy: Alloy 5456 is prohibited.
2. Protective Coating: Factory-applied coating capable of resisting corrosion on tubing in contact with masonry, plaster, insulation, water, detergents, and sewerage.
 a. Copper-alloy fittings.
Santa Fe County
Madrid Fire Station
Additions and Renovations
NCA Project No.: A18.04

D. Drawn-Temper Copper Tube: Comply with ASTM B 88, Type K.
 b. Bolts and Nuts: ASME B18.2.1, carbon steel or stainless steel.
 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.

E. Annealed-Temper Copper Tube: Comply with ASTM B 88, Type K.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.
 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.

F. Tin-Lined Copper Tube: ASTM B 280, seamless, annealed, with interior tin-plated lining.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.

G. PE Pipe: ASTM D 2513, SDR 11.
 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B with corrosion-protective coating covering. Vent casing aboveground.
 c. Aboveground Portion: PE transition fitting.
d. Outlet shall be threaded or flanged or suitable for welded connection.

e. Tracer wire connection.

f. Ultraviolet shield.

g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.

b. Outlet shall be threaded or flanged or suitable for welded connection.

c. Bridging sleeve over mechanical coupling.

d. Factory-connected anode.

e. Tracer wire connection.

f. Ultraviolet shield.

g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

5. Plastic Mechanical Couplings, NPS 1-1/2 and Smaller: Capable of joining PE pipe to PE pipe.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following.

1) Lyall, R. W. & Company, Inc.
2) Mueller Co.; Gas Products Div.
3) Perfection Corporation; a subsidiary of American Meter Company.

b. PE body with molded-in, stainless-steel support ring.

c. Buna-nitrile seals.

d. Acetal collets.

e. Electro-zinc-plated steel stiffener.

6. Plastic Mechanical Couplings, NPS 2 and Larger: Capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Lyall, R. W. & Company, Inc.
2) Mueller Co.; Gas Products Div.
3) Perfection Corporation; a subsidiary of American Meter Company.

b. Fiber-reinforced plastic body.

c. PE body tube.

d. Buna-nitrile seals.
7. Steel Mechanical Couplings: Capable of joining plain-end PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Dresser Piping Specialties; Division of Dresser, Inc.
 2) Smith-Blair, Inc.

b. Stainless-steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Factory-installed anode for steel-body couplings installed underground.

2.2 PIPING SPECIALTIES

A. Flexible Piping Joints:

 1. Approved for LPG service.
 2. Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 3. Minimum working pressure of 250 psig and 250 deg F operating temperature.
 4. Flanged- or threaded-end connections to match equipment connected and shall be capable of minimum 3/4-inch misalignment.
 5. Maximum 36-inch length for liquid LPG lines.

B. Appliance Flexible Connectors:

 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.

C. Quick-Disconnect Devices: Comply with ANSI Z21.41.

 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.
D. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with 50 percent free area.

E. Basket Strainers:
 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with 50 percent free area.
 4. CWP Rating: 125 psi.

F. T-Pattern Strainers:
 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 2. End Connections: Grooved ends.
 3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with 57 percent free area.
 4. CWP Rating: 750 psig.

G. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for LPG.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
B. Metallic Valves, NPS 2 and Smaller for Liquid Service: Comply with ASME B16.33 and UL 842.

1. CWP Rating: 250 psig.
5. Listing by CSA or agency acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Valves 1-1/4 inch and larger shall be suitable for LPG service, with "WOG" indicated on valve body.

C. General Requirements for Metallic Valves, NPS 2 and Smaller for Vapor Service: Comply with ASME B16.33.

1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inch to NPS 2 shall have initials "WOG" permanently marked on valve body.

D. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.

1. CWP Rating: 125 psig.
2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

E. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
3. **Ball:** Chrome-plated brass.
4. **Stem:** Bronze; blowout proof.
5. **Seats:** Reinforced TFE; blowout proof.
6. **Packing:** Separate packnut with adjustable-stem packing threaded ends.
7. **Ends:** Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
8. **CWP Rating:** 600 psig.
9. **Listing:** Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. **Service:** Suitable for LPG service with "WOG" indicated on valve body.

F. **Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:** MSS SP-110.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
2. **Body:** Bronze, complying with ASTM B 584.
3. **Ball:** Chrome-plated bronze.
4. **Stem:** Bronze; blowout proof.
5. **Seats:** Reinforced TFE; blowout proof.
6. **Packing:** Threaded-body packnut design with adjustable-stem packing.
7. **Ends:** Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
8. **CWP Rating:** 600 psig.
9. **Listing:** Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. **Service:** Suitable for LPG service with "WOG" indicated on valve body.

G. **Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim:** MSS SP-110.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
2. **Body:** Bronze, complying with ASTM B 584.
3. **Ball:** Chrome-plated bronze.
4. **Stem:** Bronze; blowout proof.
5. Seats: Reinforced TFE.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for LPG service with "WOG" indicated on valve body.

H. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for LPG service with "WOG" indicated on valve body.

I. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Xomox Corporation; a Crane company.

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with LPG.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for LPG service with "WOG" indicated on valve body.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flowserve.
 b. Homestead Valve; a Division of Olson Technologies, Inc.
 d. Milliken Valve Company.
 e. Mueller Co.; Gas Products Div.
 f. R&M Energy Systems; a subsidiary of Robbins & Myers, Inc.

2. Body: Cast iron, complying with ASTM A 126 Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with LPG.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for LPG service with "WOG" indicated on valve body.

K. PE Ball Valves: Comply with ASME B16.40.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kerotest Manufacturing Corp.
 b. Lyall, R. W. & Company, Inc.
 c. Perfection Corporation; a subsidiary of American Meter Company.

2. Body: PE.
3. Ball: PE.
5. Seats and Seals: Nitrile.
6. Ends: Plain or fusible to match piping.
7. CWP Rating: 80 psig.
8. Operating Temperature: Minus 20 to plus 140 deg F Operator: Nut or flat head for key operation.
9. Include plastic valve extension.
10. Include tamperproof locking feature for valves where indicated on Drawings.

L. Valve Boxes:
1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

A. Hydrostatic Relief Valves: Comply with NFPA 58.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 c. Murray Equipment, Inc.
 d. Sherwood; a division of Harsco Corporation.

5. Spring: Stainless steel.
7. Brass body and stainless-steel, spring-operated valve with resilient rubber disc seat and protective cap.
8. Factory set and tested.
9. Listing: Valves listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Valve shall reseat after relieving pressure.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. ASCO.
 b. ASCO Power Technologies, LP; Division of Emerson.
 c. ASCO Valve Canada; Division of Emerson Electric Canada Limited.
 d. Dungs, Karl, Inc.
 e. Eaton Corporation; Controls Div.
 f. Eclipse Combustion, Inc.
2.6 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for LPG.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 d. Invensys.
 e. Richards Industries; Jordan Valve Div.

3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
7. Orifice: Aluminum; interchangeable.
9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet and no pressure sensing piping external to the regulator.
10. Pressure regulator shall maintain discharge pressure setting downstream and not exceed 150 percent of design discharge pressure at shutoff.
12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:

 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.

3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
7. Orifice: Aluminum; interchangeable.
9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet and no pressure sensing piping external to the regulator.
10. Pressure regulator shall maintain discharge pressure setting downstream and not exceed 150 percent of design discharge pressure at shutoff.
12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.

9. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
10. Maximum Inlet Pressure: 1 psig (6.9 kPa)

2.7 SERVICE METERS

A. Diaphragm-Type Service Meters: Comply with ANSI B109.1

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Actaris.
b. American Meter Company.
c. Invensys.

7. Compensation: Continuous temperature and pressure.
8. Meter Index: Cubic feet.
9. Meter Case and Index: Tamper resistant.
11. Maximum Inlet Pressure: 100 psig
12. Pressure Loss: Maximum 0.5-inch wg.
13. Accuracy: Maximum plus or minus 1.0 percent.

B. Rotary-Type Service Meters: Comply with ANSI B109.3.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. American Meter Company.
 b. Invensys.

5. Impellers: Polished aluminum.
7. Compensation: Continuous temperature and pressure.
8. Meter Index: Cubic feet.
9. Tamper resistant.
11. Maximum Inlet Pressure: 100 psig
12. Accuracy: Maximum plus or minus 2.0 percent.

C. Turbine Meters: Comply with ASME MFC-4M.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. American Meter Company.
 b. Invensys.

3. Housing: Cast iron or welded steel.
4. Connection Threads or Flanges: Steel.
5. Turbine: Aluminum or plastic.
7. Compensation: Continuous temperature and pressure.
8. Meter Index: Cubic feet.
9. Tamper resistant.
11. Maximum Inlet Pressure: 100 psig.
12. Accuracy: Maximum plus or minus 2.0 percent.

D. Service-Meter Bars:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Lyall, R. W. & Company, Inc.
 e. Mueller Co.; Gas Products Div.
 f. Perfection Corporation; a subsidiary of American Meter Company.
3. Malleable- or cast-iron frame for supporting service meter.
4. Include offset swivel pipes, meter nuts with o-ring seal, and factory- or field-installed dielectric unions.
5. Omit meter offset swivel pipes if service-meter bar dimensions match service-meter connections.

E. Service-Meter Bypass Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Williamson, T. D., Inc.
3. Ferrous, tee, pipe fitting with capped side inlet for temporary LPG supply.
4. Integral ball-check bypass valve.

2.8 DIELECTRIC FITTINGS

A. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 f. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for LPG.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

B. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 d. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for LPG.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

C. Dielectric-Flange Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

3. Companion-flange assembly for field assembly.
4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
5. Insulating materials suitable for LPG.
6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

2.9 STORAGE CONTAINERS

A. Description: Factory fabricated, complying with requirements in NFPA 58 and ASME Boiler and Pressure Vessel Code and bearing the ASME label. Tanks shall be rated for 250-psig minimum working pressure.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. American Welding & Tank.
 b. Hanson, Roy E. Jr. Mfg.
 c. Trinity Industries, Inc.
 d. United Industries Group, Inc.

3. Liquid outlet and vapor inlet and outlet connections shall have shutoff valves with excess-flow safety shutoff valves and bypass and back-pressure check valves with smaller than 0.039-inch drill-size hole to equalize pressure. Liquid-fill connection shall have backflow check valve.

 a. Connections: Color-code and tag valves to indicate type.

 1) Liquid fill and outlet, red.
 2) Vapor inlet and outlet, yellow.

4. Level gage shall indicate current level of liquid in the container. Gages shall also indicate storage container contents; e.g., "Butane," "50-50 LPG Mix," or "Propane."

5. Pressure relief valves, type and number as required by NFPA 58, connected to vapor space and having discharge piping same size as relief-valve outlet and long enough to extend at least 84 inches directly overhead. Identify relief valves as follows:

 a. Discharge pressure in psig.
 b. Rate of discharge for standard air in cfm.
 c. Manufacturer's name.
 d. Catalog or model number.

6. Container pressure gage.

7. For outdoor installation, exposed metal surfaces mechanically cleaned, primed, and painted for resistance to corrosion.

8. Ladders for access to valves more than 72 inches aboveground.
9. Stainless-Steel Nameplate: Attach to aboveground storage container or to adjacent structure for underground storage container.
 a. Name and address of supplier or trade name of container.
 b. Water capacity in gallons and liters.
 c. Design pressure in psig (kPa).
 d. Statement, "This container shall not contain a product having a vapor pressure in excess of <Insert maximum pressure in psig at 100 deg F."
 e. Outside surface area in sq. ft. (sq. m).
 f. Year of manufacture.
 g. Shell thickness in inches (mm).
 h. Overall length in feet (m).
 i. OD in feet (m).
 j. Manufacturer's serial number.
 k. ASME Code label.

10. Felt support pads and two concrete or painted-steel saddles per storage container. Corrosion protection required at container-to-felt contact.
11. Tie straps for each saddle.
12. Straps and anchors for tie-down slab.
14. Container connections and valves protected in manway at top of storage container.
15. Manway equipped with ventilation louvers.

2.10 TRANSPORT TRUCK UNLOADING FACILITY

A. Description: Comply with requirements in NFPA 58.

1. Support structure consisting of a minimum 6-inch steel channel or 6-by-4-inch rectangular steel tubing, a minimum of 36 inches above and below grade.
2. Liquid-fill and vapor-return, quick-disconnect fittings.
3. Liquid and vapor shutoff valves with hydrostatic relief valves mounted between the quick-disconnect fittings and shutoff valves.
5. Backflow check valve in liquid-fill line.
6. Remote emergency shutoff valve station with underground cable to the vapor emergency shutoff valve.

2.11 PUMPS

A. Description: Factory-assembled and -tested, duplex, positive-displacement, belt drive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Blackmer; a Dover Resources company.
 b. Corken, Inc.; a unit of IDEX Corporation.

B. Pump Construction:

1. **Casing:** Ductile-iron casing with threaded gage tappings at inlet and outlet.
2. **Internal Pressure Relief Valve:** For pump protection in addition to the external pressure relief valves.
3. **Impeller:** Carbon or composite vane in cast-iron rotor.
4. **Pump Shaft:** Carbon steel.
5. **Seal:** Mechanical with Buna-N o-ring.
6. **Pump Bearings:** Ball bearings with grease fittings.
7. **Baseplate:** Bent carbon-steel channel or structural channel.

C. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. **Motor Sizes:** Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. **Controllers, Electrical Devices, and Wiring:** Comply with requirements for electrical devices and connections specified in Division 26 Sections.
3. **Motor Speeds:** Single.
4. **Bearings:** Permanently lubricated ball bearings.
5. **Class I, Division 1, Group D requirements per NFPA 70.**

D. Factory-Installed Piping and Specialties:

1. **Pipe:** ASTM A 53/A 53M, Type E or S, Grade B; Schedule 40 black steel with welded fittings and joints or Schedule 80 for threaded malleable-iron fittings and joints.
2. **Piping Specialties for Each Pump:**
 a. Bypass valve.
 b. Isolation valves.
 c. Unions for each connection.
 d. Check valve.
 e. Basket strainer.
 f. Pressure gages for suction and discharge connections.
 g. Hydrostatic relief valve.
 h. Pilot-operated, pressure-regulating valve.

E. Braided-jacket flexible connectors for suction and discharge connections.
F. Pump and Piping Finish: For outdoor installation, exposed metal surfaces mechanically cleaned, primed, and painted for resistance to corrosion.

G. Controls:

1. Explosion-proof controls enclosure.
3. Pressure-activated start and stop.
4. Lag pump starts if lead pump fails.
5. Audible and visual indication of pump failure.

2.12 VAPORIZERS

A. Description: Factory-fabricated, -assembled, and -tested vaporizer with heat exchanger sealed pressure-tight, built on a steel base; including insulated jacket, flue-gas vent, liquid fuel supply and vapor connections, and controls. Assembly shall be FMG labeled and comply with NFPA 58 and NFPA 70.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Algas-SDI.
 c. Ely Energy, Inc.
 d. Ransome Manufacturing; a division of Meeder Equipment Company.

B. Fabricate base and attachment to vaporizers with reinforcement strong enough to resist vaporizer movement during a seismic event when steel base is anchored to a concrete base.

C. Casing:

1. Mineral-fiber insulation, a minimum of 2 inches thick, surrounding the heat exchanger.
2. Integral one-piece skid with forklift access holes.
3. Lifting lugs on top of vaporizer.
4. Flue rain cap and bird screen.
5. Sheet metal jacket with screw-fastened closures and baked-enamel protective finish.
6. Mounting base to secure boiler to concrete base.

D. LPG Liquid and Vapor Circuit Specialties:
1. Y-type strainer with drain valve at inlet.
2. Vaporizer coil safety pressure relief valve.
3. Vaporizer coil blowdown valve.
4. Vapor outlet isolation valve.
5. Pressure gages, a minimum of 2-1/2 inches in diameter, at liquid inlet and vapor discharge. Gages shall have operating-temperature ranges so normal operating range is at approximately 50 percent of full range.
6. Inlet safety solenoid valve to close with off-normal operation alarm.
8. Liquid carryover or float-type safety shutoff switch.
9. LPG Vapor Filter: Steel shell designed and manufactured per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1; factory mounted on vaporizer discharge. Shells larger than 5 inches shall be ASME "U" stamped. Fill with stainless-steel, woven-mesh coalescing element to remove 99 percent of particles larger than 10 microns. 250-psig minimum working pressure. Finish with corrosion-resistant coating for an exterior application. Include factory-mounted and -piped, differential pressure gage with gage cocks in and out, and minimum NPS 3/4 full-port, ball-type drain valve.

E. Direct-Type, Direct-Fired Heat Exchanger:

1. Description: ASME-rated and -stamped, LPG, vaporizer coil contained in an enclosure insulated with at least 2-inch-thick, mineral-fiber board enclosure with a burner.
 a. Gas Train: Control devices and burner control sequence shall be FMG labeled. Include shutoff valve, high- and low-pressure safety switches, pressure regulator, and main- and pilot-control valves.
 b. Pilot: Standing pilot with 100 percent main-valve and pilot safety shutoff.
3. Burner Operating Controls:
 a. Controls shall maintain safe operating conditions. Mechanical burner safety controls limit operation of the burner.
 b. High-Pressure Cutoff: Manual reset stops burner if operating conditions rise above maximum design pressure.
 c. Operating Vapor-Pressure Control: Factory piped and mounted to control burner.

F. Indirect-Type, Direct-Fired Heat Exchanger:

1. Description: ASME-rated and -stamped, LPG, vaporizer vessel with a replaceable, immersion-type, electric heating element.
2. Heating Element Operating Controls:
 a. Operating controls shall maintain safe operating conditions. Safety controls limit operation of the element. Microprocessor-based control system integrates safety and operating controls.
b. Operating Vapor-Pressure Control: Factory wired and mounted to control heating element.

c. High-Pressure Cutoff: Manual reset stops burner if operating conditions rise above maximum design pressure.

d. Alarm Bell and Rotary Beacon: Factory mounted on control panel with silence switch; shall sound alarm for out-of-normal conditions.

e. Control Transformer: 115-V maximum control voltage.

2.13 AIR MIXERS

A. Description: Factory-fabricated, -assembled, -calibrated, and -tested[blower-assisted] air mixer with surge tank, built on a steel base; including vapor supply and discharge connections, and controls. Assembly shall be FMG labeled and comply with NFPA 58 and NFPA 70.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

a. Algas-SDI.
c. Ely Energy, Inc.
d. Ransome Manufacturing; a division of Meeder Equipment Company.

B. Fabricate base and attachment to mixers with reinforcement strong enough to resist air mixer movement during a seismic event when steel base is anchored to a concrete base.

C. Mounting Skid, Panels, and Surge Tank:

1. Integral one-piece skid with forklift access holes.

2. Lifting lugs on top of air mixer.

4. Mounting base to secure boiler to concrete base.

5. Control Compartment Enclosure: NEMA 250, Type 4, enclosure housing control panels.

6. ASME-stamped surge tank with venturi, isolation valves, excess-flow safeties, and safety relief valves.

D. Blower: Positive-displacement, rotary-lobe type.

1. Motor: Single speed, with permanently lubricated ball bearings. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

E. LPG Circuit Specialties:
1. Venturi solenoid valves.
2. Venturi nozzles, minimum of 3, for minimum of 10:1 turndown capacity.
3. Venturi silencers.
4. Mist filter and strainer with pressure differential gage, and blowdown ball valve.
5. Inlet and outlet isolation valves.
6. Pressure gages, a minimum of 2-1/2 inches in diameter, at inlet and discharge. Gages shall have operating-temperature ranges so normal operating range is at approximately 50 percent of full range.

F. Air-Mixer Controls:
1. Controls shall maintain safe operating conditions. The following safety controls limit the operation of the air mixer. All safety controls are manual reset.
 a. Low-inlet-vapor pressure.
 b. High- or low-discharge pressure.
2. Alarm Bell and Rotary Beacon: Factory mounted on control panel with silence switch; shall sound alarm for out-of-normal conditions.
3. Control Transformer: 115-V maximum control voltage.

G. Mount on common skid with vaporizer.

H. Capacities and Characteristics:
2. Air Mixer:
 a. Outlet Pressure: 20 psig.
 b. Test Pressure: 30 psig.
3. Entering LPG:
 a. Temperature: 90 deg F.
 b. Inlet Pressure: 20 psig.
4. Mixed Gas:
 c. Specific Gravity: 1.3.

2.14 SLEEVES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.15 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe and sleeve.

3. Pressure Plates Carbon steel.

4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one nut and bolt for each sealing element.

2.16 ESCUTCHEONS

A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to fit around pipe or tube, and OD that completely covers opening.

B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Escutcheons: With set screw.

1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.

1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Escutcheons: With set screw and chrome-plated finish.

F. Split-Plate, Stamped-Steel Escutcheons: With concealed, and chrome-plated finish.

G. One-Piece, Floor-Plate Escutcheons: Cast-iron floor plate.
H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.17 GROUT
A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi, 28-day compressive strength.

2.18 LABELING AND IDENTIFYING
A. Detectable Warning Tape: Acid- and alkali-resistant PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for LPG piping system to verify actual locations of piping connections before equipment installation.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK
A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.3 PREPARATION
A. Close equipment shutoff valves before turning off LPG to premises or piping section.
B. Inspect LPG piping according to NFPA 58 and the International Fuel Gas Code to determine that LPG utilization devices are turned off in piping section affected.
C. Comply with NFPA 58 and the International Fuel Gas Code requirements for prevention of accidental ignition.

3.4 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 58 and the International Fuel Gas Code requirements for installation and purging of LPG piping.

B. Install underground, LPG piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

1. If LPG piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, LPG piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:

1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
3. Replace pipe having damaged PE coating with new pipe.

E. Copper Tubing with Protective Coating:

1. Apply joint cover kits over tubing to cover, seal, and protect joints.
2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.

F. Install fittings for changes in direction and branch connections.

G. Joints for connection to inlets and outlets on vaporizers, air mixers, regulators, and valves may be flanged or threaded to match the equipment.

H. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.

I. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

J. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe
and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

K. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.5 INDOOR PIPING INSTALLATION

A. Comply with NFPA 54, the International Fuel Gas Code for installation and purging of LPG piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install LPG piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Install escutcheons for penetrations of interior walls, ceilings, and floors.

1. New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 c. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
d. Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.

e. Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.

f. Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.

g. Piping in Unfinished Service Spaces: One-piece, stamped-steel type with set screw or spring clips.

h. Piping in Equipment Rooms: One-piece, cast-brass type.

i. Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.

j. Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

2. Existing Piping:

a. Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.

b. Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and spring clips.

c. Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.

d. Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and set screw.

e. Piping in Unfinished Service Spaces: Split-casting, cast-brass type with polished chrome-plated finish.

f. Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed or exposed-rivet hinge and set screw or spring clips.

g. Piping in Equipment Rooms: Split-casting, cast-brass type.

h. Piping in Equipment Rooms: Split-plate, stamped-steel type with set screw or spring clips.

i. Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for materials.

M. Verify final equipment locations for roughing-in.

N. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

O. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where readily accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

P. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

Q. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

R. Concealed Location Installations: Except as specified below, install concealed LPG piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

 1. Above Accessible Ceilings: LPG piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 2. In Floors: Install LPG piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 3. In Floor Channels: Install LPG piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 5. Prohibited Locations:
 a. Do not install LPG piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install LPG piping in solid walls or partitions.

S. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

T. Connect branch piping from top or side of horizontal piping.

U. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
V. Do not use LPG piping as grounding electrode.

W. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

X. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.6 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.

C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies. Comply with requirements in Division 05 Section "Metal Fabrications" for pipe bollards.

3.7 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves aboveground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.

3.8 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full ID of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Ch. 22, "Pipe and Tube."

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for LPG service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.9 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

D. Install hangers for horizontal, drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2 and NPS 5/8: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and NPS 7/8: Maximum span, 84 inches; minimum rod size, 3/8 inch.
4. NPS 1: Maximum span, 96 inches; minimum rod size, 3/8 inch.

E. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod, 3/8 inch.

3.10 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install LPG piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliances and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.11 TRANSPORT TRUCK UNLOADING FACILITY

A. Install transport truck unloading in a cast-in-place concrete base, 48 inches square by 36 inches deep. Set top of concrete base at least 6 inches above finished grade.
B. Install remote emergency shutoff station with cable release in an accessible location, a minimum of 25 feet and a maximum of 100 feet away from transport truck unloading.

C. Install at least two 6-inch- (150-mm-) diameter metal bollards set in and filled with concrete on both sides of transport truck unloading. Bollard length shall be at least 48 inches above and below grade, with concrete encasement a minimum of 12 inches in diameter.

3.12 STORAGE CONTAINER INSTALLATION

A. Fill storage container to at least 80 percent capacity with propane.

B. Install piping connections with swing joints or flexible connectors to allow for storage container settlement and for thermal expansion and contraction.

C. Ground containers according to NFPA 780. Grounding is specified in Division 26 Section "Lightning Protection for Structures."

D. Set storage containers in felt pads on concrete or steel saddles. Install corrosion protection at container-to-felt contact.

E. Install tie-downs over storage containers on saddles with proper tension.

F. Set concrete saddles on dowels set in concrete base. Anchor steel saddles to concrete base.

G. Set storage container on concrete ballast base large enough to offset buoyancy of empty storage container immersed in water.

H. Install tie-down straps over container anchored in ballast base and repair damaged coating.

I. Backfill with a minimum coverage for underground or mounded storage containers according to NFPA 58.

J. Backfill with pea gravel as required in Division 31 Section "Earth Moving."

K. Install cathodic protection for storage container. Cathodic protection is specified in Division 26 Section "Cathodic Protection."

3.13 PUMP INSTALLATION

A. Install pumps with access space for periodic maintenance including removal of motors, impellers, and accessories.

B. Set pumps on and anchored to concrete base.

C. Install suction piping with minimum fittings and change of direction.
D. Connect liquid suction to container, supply to vaporizer, and return line to container.

3.14 VAPORIZER INSTALLATION

A. Install vaporizer with access space for periodic maintenance.
B. Set vaporizers on and anchor to concrete base.
C. Connect liquid line from pump set, and vapor supply to distribution piping.
D. Install backup connection from vapor space of container to inlet of pressure-regulating valve at vaporizer discharge to bypass the vaporizer during maintenance. Install shutoff valves to change source from vaporizer to storage container.

3.15 AIR MIXER WITH VAPORIZER INSTALLATION

A. Install air mixer with vaporizer with access space for periodic maintenance.
B. Set air mixer with vaporizer on and anchor to concrete base.
C. Connect liquid line from pump set, and mixed gas supply to distribution piping.
D. Install backup connection from vapor space of container to inlet of pressure-regulating valve at vaporizer discharge to bypass vaporizer during maintenance. Install shutoff valves to change source from vaporizer to storage container.
E. Replace filters at Substantial Completion if air mixer was operated during construction.

3.16 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.17 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior LPG piping.
B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components with factory-applied paint or protective coating.
1. Alkyd System: MPI EXT 5.1D.
 d. Color: Gray.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components with factory-applied paint or protective coating.

1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex flat.
 d. Color: Gray.

2. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd flat.
 d. Color: Gray.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.18 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete
3.19 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge LPG according to NFPA 58 and NFPA 54 and the International Fuel Gas Code and requirements of authorities having jurisdiction.

C. LPG piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.20 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain LPG equipment.

3.21 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
Retain and revise applicable piping applications. Coordinate with materials specified in Part 2.

A. Aboveground, branch piping NPS 1 shall be the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 3. Annealed-temper copper tube with wrought-copper fittings and brazed joints.
 4. Aluminum tube with flared fittings and joints.
 5. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.
 3. Drawn-temper copper tube, Type L with wrought-copper fittings and brazed joints.

C. Underground, below building, piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Schedule 40, steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
E. Containment Conduit Vent Piping: Schedule 40, steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.22 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Aboveground, branch piping NPS 1 shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 3. Annealed-temper copper tube, Type L with wrought-copper fittings and brazed joints.
 4. Aluminum tube with flared fittings and joints.
 5. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with steel welding fittings and welded joints.
 3. Drawn-temper copper tube, Type L with wrought-copper fittings and brazed joints.

C. Underground, below building, piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Schedule 40, steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Schedule 40, steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.23 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 5 PSIG

Retain and revise applicable piping applications. Coordinate with materials specified in Part 2.

A. Aboveground Piping: Maximum operating pressure more than 5 psig.

B. Aboveground, Branch Piping: Schedule 40, steel pipe with steel welding fittings and welded joints.

C. Aboveground, distribution piping shall be one of the following:
 1. Schedule 40, steel pipe with steel welding fittings and welded joints.
2. Drawn-temper copper tube, Type L with wrought-copper fittings and brazed joints.

D. Underground, below building, piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.

F. Containment Conduit Vent Piping: Schedule 40, steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.24 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.

B. Underground Vapor Piping:
 1. PE valves.
 2. NPS 2 and Smaller: Bronze, lubricated plug valves.
 3. NPS 2-1/2 and Larger: Cast-iron, lubricated plug valves.

3.25 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Aboveground Liquid Piping:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

C. Valves for pipe NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

D. Distribution piping valves for pipe NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

E. Distribution piping valves for pipe NPS 2-1/2 and larger shall be one of the following:

1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.
3. Cast-iron, nonlubricated plug valve.

F. Valves in branch piping for single appliance shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 23 1126
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Single-wall rectangular ducts and fittings.
2. Single-wall round ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.
7. Seismic-restraint devices.

B. Related Sections:
1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Nonmetal Ducts" for fibrous-glass ducts, thermoset fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
4. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
1.4 SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, and vibration isolation.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

D. Welding certificates.

E. Field quality-control reports.
1.5 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet
metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

F. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

G. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

H. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.

2. Tape Width: 3 inches.

5. Mold and mildew resistant.

6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.

7. Service: Indoor and outdoor.

8. Service Temperature: Minus 40 to plus 200 deg F.

9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.

10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.

2. Solids Content: Minimum 65 percent.

5. Mold and mildew resistant.

6. VOC: Maximum 75 g/L (less water).

7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.

8. Service: Indoor or outdoor.

9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.

2. Base: Synthetic rubber resin.

4. Solids Content: Minimum 60 percent.

5. Shore A Hardness: Minimum 60.

7. Mold and mildew resistant.

8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

9. VOC: Maximum 395 g/L.

10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.

11. Service: Indoor or outdoor.

12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.4 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electroplated, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."
3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems: HVAC air distribution system.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Test for leaks before applying external insulation.

5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

6. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.
8. Furnish extra set of filters and belts for each air handling unit.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

END OF SECTION 23 3113
SECTION 23 3300
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Backdraft and pressure relief dampers.
 2. Barometric relief dampers.
 4. Control dampers.
 5. Fire dampers.
 6. Ceiling dampers.
 7. Smoke dampers.
 8. Combination fire and smoke dampers.
 9. Corridor dampers.
 10. Flange connectors.
 11. Duct silencers.
 12. Turning vanes.
 14. Duct-mounted access doors.
 15. Flexible connectors.
 16. Flexible ducts.
 17. Duct security bars.
 18. Duct accessory hardware.

B. Related Sections:
 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Duct security bars.
 f. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a [No. 2] <Insert finish designation> finish for concealed ducts and <Insert finish designation> finish for exposed ducts.

D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

1. Air Balance Inc.; a division of Mestek, Inc.
2. American Warming and Ventilating; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Greenheck Fan Corporation.
6. Lloyd Industries, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. Potterff; a division of PCI Industries, Inc.
10. Ruskin Company.
11. SEMCO Incorporated.
B. Description: Gravity balanced.

D. Maximum System Pressure: 1-inch wg.

E. Frame: 0.052-inch-thick, galvanized sheet steel with welded corners.

F. Blades: Multiple single-piece blades, [center-pivoted,] maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Vinyl foam Extruded vinyl, mechanically locked or Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: Nonferrous metal.
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Aluminum.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.
 6. Screen Mounting: Rear mounted.
 7. Screen Material: Galvanized steel.
 8. Screen Type: Bird.
 9. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering
products that may be incorporated into the Work include, but are not limited to, the following:

a. Air Balance Inc.; a division of Mestek, Inc.
b. American Warming and Ventilating; a division of Mestek, Inc.
c. Flexmaster U.S.A., Inc.
d. McGill AirFlow LLC.
e. METALAIRE, Inc.
f. Nailor Industries Inc.
g. Pottorff; a division of PCI Industries, Inc.
h. Ruskin Company.
i. Trox USA Inc.
j. Vent Products Company, Inc.

2. Standard leakage rating.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
e. METALAIRE, Inc.
f. Nailor Industries Inc.
g. Potterff; a division of PCI Industries, Inc.
h. Ruskin Company.
i. Trox USA Inc.
j. Vent Products Company, Inc.

2. Standard leakage rating[, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames: Hat-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Aluminum.

C. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.4 FIRE AND SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
4. Nailor Industries Inc.
5. Ruskin Company.
B. Type: Static and dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

G. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.

H. Smoke Detector: Integral, factory wired for single-point connection.

I. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

J. Blades: Roll-formed, horizontal, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

K. Leakage: Class I or Class II, see wall rating.

L. Rated pressure and velocity to exceed design airflow conditions.

M. Mounting Sleeve: Factory-installed, 0.052-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

N. Master control panel for use in dynamic smoke-management systems.

O. Damper Motors: Modulating action.

P. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in
3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

Electrical Connection: 115 V, single phase, 60 Hz.

Accessories:
1. Auxiliary switches for signaling, fan control or [position indication.
2. Test and reset switches mounted.

2.5 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Flame Gard, Inc.
3. 3M.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.6 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.
D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

 1. Minimum Weight: 16 oz./sq. yd.
 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 3. Service Temperature: Minus 67 to plus 500 deg F.

 1. Minimum Weight: 14 oz./sq. yd.
 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 3. Service Temperature: Minus 67 to plus 500 deg F.

I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch (6-mm) movement at start and stop.
2.7 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.

B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

C. Noninsulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire.

1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
3. Temperature Range: Minus 20 to plus 175 deg F.

D. Noninsulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 210 deg F.

E. Noninsulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 210 deg F.

F. Noninsulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 100 to plus 435 deg F.

G. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
H. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
 3. Temperature Range: Minus 20 to plus 175 deg F.

I. Insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.

J. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation aluminized vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.

K. Insulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil; fibrous-glass insulation; aluminized vapor-barrier film.
 1. Pressure Rating: 8-inch wg positive or negative.
 3. Temperature Range: Minus 20 to plus 250 deg F.

L. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.8 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch- diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.

I. Connect ducts to duct silencers with flexible duct connectors or rigidly.

J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.

7. At each change in direction and at maximum 50-foot spacing.

8. Upstream from turning vanes.

9. Upstream or downstream from duct silencers.

10. Control devices requiring inspection.

11. Elsewhere as indicated.

K. Install access doors with swing against duct static pressure.

L. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

M. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

N. Install flexible connectors to connect ducts to equipment.

O. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

P. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

Q. Connect diffusers or light troffer boots to ducts[directly or] with maximum 60-inch lengths of flexible duct clamped or strapped in place.

R. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

S. Install duct test holes where required for testing and balancing purposes.

T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 3300
SECTION 23 3423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Utility set fans.
2. Centrifugal roof ventilators.
3. Axial roof ventilators.
4. Upblast propeller roof exhaust fans.
5. Centrifugal wall ventilators.
6. Ceiling-mounting ventilators.
7. In-line centrifugal fans.
8. Propeller fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:

1. Certified fan performance curves with system operating conditions indicated.
2. Certified fan sound-power ratings.
3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
4. Material thickness and finishes, including color charts.
5. Dampers, including housings, linkages, and operators.
6. Roof curbs.
7. Fan speed controllers.
B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.

B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Belts: 1 set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide [the product indicated on Drawings] <Insert manufacturer's name; product name or designation> or a comparable product by one of the following:

 1. Greenheck
 2. Hartzell Fan, Inc.
 3. JencoFan; Div. of Breidert Air Products.
 4. Loren Cook Company.
 5. Madison Manufacturing.
 7. Penn Ventilation.

D. Description: Direct and Belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and accessories.
E. Housing: Fabricated of steel with side sheets fastened with a deep lock seam or welded to scroll sheets.
 1. Housing Discharge Arrangement: Adjustable to eight standard positions.

F. Fan Wheels: Single-width, single inlet; welded to cast-iron or cast-steel hub and spun-steel inlet cone, with hub keyed to shaft.
 1. Blade Type: Backward inclined.

G. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.

H. Shaft Bearings: Prelubricated and sealed, self-aligning, pillow-block-type ball bearings with ABMA 9, L_{50} of 200,000 hours.

I. Belt Drives: Factory mounted, with final alignment and belt adjustment made after installation.
 1. Service Factor Based on Fan Motor Size: 1.5.
 2. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 3. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.

J. Accessories:
 1. Inlet and Outlet: Flanged.
 2. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 4. Access Door: Gasketed door in scroll with latch-type handles.
 5. Scroll Dampers: Single-blade damper installed at fan scroll top with adjustable linkage.
 6. Inlet Screens: Removable wire mesh.
 9. Discharge Dampers: Assembly with parallel blades constructed of two plates formed around and to shaft, channel frame, sealed ball bearings, with blades linked outside of airstream to single control lever of same material as housing.
 10. Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.

K. Coatings: Color-match enamel.
2.2 CEILING-MOUNTING VENTILATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

1. American Coolair Corp.
2. Ammerman; General Resource Corp.
3. Breidert Air Products.
5. Carnes Company HVAC.
7. Greenheck.
8. JencoFan; Div. of Breidert Air Products.
9. Loren Cook Company.
10. NuTone Inc.
11. Penn Ventilation.

D. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.

E. Housing: Steel, lined with acoustical insulation.

F. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

G. Grille: Plastic, louvered grille with flange on intake and thumbscrew attachment to fan housing.

H. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

I. Accessories:

1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
4. Motion Sensor: Motion detector with adjustable shutoff timer.
5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
6. Filter: Washable aluminum to fit between fan and grille.
8. Manufacturer's standard roof jack or wall cap, and transition fittings.

J. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

K. Enclosure Type: Totally enclosed, fan cooled.

2.3 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Support units using elastomeric mounts having a static deflection of 1 inch. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

1. Secure vibration and seismic controls to concrete bases using anchor bolts cast in concrete base.

C. Install floor-mounting units on concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

D. Install floor-mounting units on concrete bases designed to withstand, without damage to equipment, the seismic force required by code. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

E. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.

F. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

G. Support suspended units from structure using threaded steel rods and elastomeric hangers having a static deflection of 1 inch. Vibration-control
3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.
B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 23 3423
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Round ceiling diffusers.
2. Rectangular and square ceiling diffusers.
3. Perforated diffusers.
4. Louver face diffusers.
5. Linear bar diffusers.
6. Linear slot diffusers.
7. Ceiling-integral continuous diffusers.
8. Light troffer diffusers.
10. Linear floor diffuser plenums.
11. Drum louvers.
12. Modular core supply grilles.
13. Continuous tubular diffusers.
14. Linear bar grilles.

B. Related Sections:

1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.

C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.

D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers:

1. Manufacturers: available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Carnes.
 b. Krueger.
 c. Price Industries.
 d. Titus.

3. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, color selected by Architect
5. Face Size: 24 by 24 inches, 12 by 12 inches.
7. Pattern: Fixed, or Adjustable –see schedule.
9. Accessories:
 a. Equalizing grid.
 b. Plaster ring.
 c. Safety chain.
 d. Wire guard.
2.2 REGISTERS AND GRILLES

A. Adjustable Bar Grille:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product name or comparable product by one of the following:
 a. Carnes.
 b. Krueger.
 c. Price Industries.
 d. Titus.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as

e. Sectorizing baffles.

f. Operating rod extension.
practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 3713
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Specifications throughout all Divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them.

1.02 SUMMARY

A. Perform all Work required to provide a fully packaged air-cooled, direct expansion (DX) air conditioning (AC) unit. The packaged AC unit shall perform to manufacturer’s product data, installation instructions, Start-up instructions and maintenance information indicated by all Specification Sections, and Contract Documents with supplementary items necessary for proper operation.

B. Air-cooled AC unit shall consist of hermetic scroll compressor component utilizing R-401A or 407C, evaporator coil, air-cooled condenser coil, condenser fans, supply fan, vibration isolation assemblies, and microprocessor control center.

1.03 REFERENCE STANDARDS

A. The latest published edition of a reference shall be applicable to this Project unless identified by a specific edition date.

B. All reference amendments adopted prior to the effective date of this Contract shall be applicable to this Project.

C. All materials, installation and workmanship shall comply with the applicable requirements and standards addressed within the following references:

11. AMCA Publication 311 - Certified Ratings Program.
1.04 QUALITY ASSURANCE

A. The design of the unit shall be AGA and ARI certified as combination heating-cooling units for rooftop installation.

B. Unit construction shall comply with ASHRAE 15 safety code, NEC, and UL applicable codes.

C. Cooling capacity ratings shall be in accordance with ARI standard 210/240, most recent edition.

D. In no case shall the air cooled packaged DX air conditioning unit selected have an EER or SEER (if cooling capacity is less than 65,000 Btu/hr) less than that specified in Table 6.8.1A of AHRAE 90.1.

E. Insulation and adhesive shall meet NFPA 90A requirements.

1.05 SUBMITTALS

A. Product Data:

1. Provide literature that indicates dimensions, weight, loading, clearances, capacities, gauges, thickness, and finishes of materials, electrical characteristics and connections.

2. Rigging, installation, testing, Start-up and operating instructions, maintenance data including type and quantity of oil and refrigerant change (pounds), parts lists, and troubleshooting guide.

3. Data on energy input versus cooling load output from 100 percent to 20 percent of full load with constant entering condenser air temperature.

4. Information about control and wiring diagrams.

5. Product test data on sound power levels for both fan inlet and outlet at the rated design capacity.

6. Operating data such as fans speeds, compressor LRA and RA, sound levels

7. Product data on special condenser coating.

8. Product data on all condenser fan accessories such as controls.

1.06 DELIVERY, STORAGE AND HANDLING

A. Deliver, store, protect and handle products to the Project Site under provisions of Division 01 and Division 20.

B. Accept products on Site in factory-fabricated protective containers or coverings, with factory-installed shipping skids and lifting lugs. Inspect for damage.

C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.
D. Check and maintain equipment on monthly basis to ensure equipment is being stored in accordance with manufacturer’s recommended practices. Storage record shall be maintained that indicates above requirements have been met.

1.07 EXTRA MATERIALS

A. Provide an additional replacement set of 2-inch thick pleated filters arranged for approximate filter face velocity of 300 feet per minute (fpm); maximum 350 fpm.

1.08 WARRANTY

A. Units shall be furnished with full coverage warranty against defects in materials. Warranty on the complete unit shall be for one year from the Substantial Completion date. On the compressors, warranty shall be for five (5) years from the Substantial Completion date.

PART 2 - PRODUCTS

2.01 GENERAL

A. All materials shall meet or exceed all applicable referenced standards, federal, state and local requirements, and conform to codes and ordinances of authorities having jurisdiction.

B. Factory assembled air-cooled packaged DX air conditioning unit using a refrigerant charge as noted on the drawings with the following construction:

1. Compressors and unit controls contained within single isolated compartment.
2. Scroll compressors installed on sheet metal deck with rubber isolation mounts for quiet efficient operation.
3. Compressor isolation valves.
4. DX coil(s).
5. Condenser coil(s) with protective coating on fins.
6. Stainless steel evaporator coil support.
7. Stainless steel drain pan.
8. Blower motor(s) installed on rubber isolation mounts for quiet efficient operation.
9. Direct drive condenser fan(s).
10. Bottom access return and supply air.
11. Air filters with multiple options, efficiencies and monitoring devices.
12. Roof sloped for proper drainage.
13. Single point power connection.
14. Thermostatic expansion valves on DX coils.
17. Run test report, wiring diagram, installation manual and Start-up form in control access compartment.
18. GFI convenience outlets.
19. Weather-resistant finish paint coating which passes 2,000 hour salt spray test.

C.

D. Compressor shall have load capacity ratings per the requirements ARI 210/240.

E. Unit efficiency shall be in compliance with the requirements of the International Energy Conservation Code AHSRAE 90.
2.02 MANUFACTURERS

A. York, Inc.
B. Trane, Inc.
C. Carrier, Inc.

2.03 COMPRESSORS

A. Each scroll compressor shall be fitted with crankcase heater, vibration isolators, refrigerant dryer, external connections for external oil level control if multiple compressors are required, motor winding protection, high and low pressure cutouts, plus any other protective or operating device or fitting required and provided as standard by the compressor manufacturer. Compressors shall be designed for continuous or cycling operation at the specified design conditions without detrimental effect.

2.04 FANS, MOTORS, AND DRIVES

A. Indoor airflow and external static pressure capabilities shall be no less than the values indicated on the Drawings. Internal static pressure shall include a minimum allowance for 2-inch pleated type filters.
B. All fan(s) and motor(s) shall be in compliance with the fan power limitation in Table 6.5.3.1 of ASHRAE 90.1
C. Outdoor fans shall be direct drive, shaft mounted propeller type, statically and dynamically balanced. Outdoor fan motor(s) shall be TEFC weather resistant with permanently lubricated bearings.
D. Indoor fans shall be direct drive, shaft mounted centrifugal type, statically and dynamically balanced. Indoor fan motor(s) shall be TEFC with sealed lubricated bearings.

2.05 AIR FILTERS

A. Front frame loaded filters shall be easily accessible for removal through access panels or doors.
B. Filters shall be MERV 8 efficiency in accordance with ASHRAE Standard 52.2. Furnish additional filter casings and filters per the Drawings.

2.06 COILS AND CAPACITY CONTROL

A. Coils shall be standard construction copper tubes with aluminum fins. All copper work shall be brazed. Coils shall be factory pressure tested.
B. Indoor coils shall be capable of the performance indicated on the Drawings with no "blow-off" of condensate.
C. Indoor coils shall be equipped with a sloped, corrosion resistant condensate pan terminating at a condensate drain located outside the unit cabinet.
D. Units smaller than 7.5 tons nominal capacity shall not be required to have part-load refrigeration capability. Each unit of 7.5 to 18 tons refrigeration capacity shall have minimum two (2) stages of cooling.
E. The refrigeration system shall be equipped with filter dryers on the liquid lines and service valves with gauge port connections on the discharge and suction lines.

F. UV lighting shall be located on the downstream airside of the cooling coil. UV light density shall have the intensity to preclude algae growth in the drip pan and dirt build-up on coil tubes and fins.

2.07 GAS HEAT EXCHANGER

A. Units shall be equipped with a natural gas burning heat exchanger of corrosion resistant components to provide efficient heating operation. Burner shall be designed for natural gas supply at seven (7) inches water column manifold pressure.

B. Burner shall be equipped with electronic or spark ignition, flame sensor, manual shut-off, and A.G.A. approved controls.

C. The induced draft blower shall pre-purge and shall be provided with a proving switch to prevent burner operation if blower is not in operation.

D. Units with a heating input rating in excess of 150,000 BTUH shall be equipped with gas valves with minimum two-stages of capacity.

E. A.G.A. thermal efficiency for the heat exchanger shall minimum 80 percent.

F. Limit switch shall shutdown the burner in case operating controls fail.

2.08 ELECTRICAL REQUIREMENTS

A. The unit shall be designed for the electrical service designated on the Drawings.

B. Arrange electrical cabinet for connecting electrical service at one point only.

C. Power and control wiring of the unit shall be factory installed complete within the unit. Provide correctly identified suitable lugs and terminal strips for field connection to electrical power and external controls.

D. Factory equip unit with motor starters for each of the motor driven components.

2.09 CONTROLS

A. Factory package controls from equipment manufacturer.

B. CO2 Monitoring controls.

2.10 ACCESSORIES

A. Roof Curb:

1. Furnish one complete roof curb for each packaged unit, designed for weatherproof installation. Curb shall be furnished approved by unit manufacturer.

2. Supply and return ducts shall connect through the curbed opening with flexible connections to the bottom of the A/C unit, unless shown otherwise on the Drawings.

3. Curb shall comply with National Roofing Contractors Association requirements.

4. Slope of roof curb shall match roof slope to provide for level support of packaged unit.
5. Contractor shall be responsible for coordination of curb, supply and return ducts, and weatherproofing of the entire installation.

B. On units of nominal cooling capacity 15 tons and higher, supply and install a 14-inch minimum height vibration isolation roof curb fabricated to the National Roofing Contractor’s Association. The curb shall be fabricated of aluminum upper and lower sections incorporating vibration isolation springs with a minimum of 1-inch deflection. Provide a continuous weather resistant skirt or seal to cover the spring assembly.

C. Outside air intake assembly, including low-leak dampers, weather hood, and motorized open/closed actuators.

D. Where applicable per AHSRAE 90.1 (Climate Zones), units shall be equipped with economizers as specified on the Drawings. Economizers shall include a fully modulating 100 percent outside air damper that is mechanically interlocked with a return air damper.

1. Where designated on the Drawings, units shall be equipped with a powered exhaust fan and necessary controls to prevent pressurization of the building during economizer operation.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Installation shall meet or exceed all applicable federal, state and local requirements, referenced standards and conform to codes and ordinances of authorities having jurisdiction.

B. All installation shall be in accordance with manufacturer's published recommendations.

C. Gas/electric packaged air conditioning units shall be installed according to manufacturer's recommendations to be completely weatherproof. Protect the roof from damage during installation. Secure factory touch-up paint to repair scratches and minor damage to equipment prior to Start-up.

D. Power wiring to the units, including externally mounted service disconnect switch, shall be furnished and installed under Division 26. Installing Contractor shall be provided with the manufacturer’s Shop Drawings as required for power wiring installation.

E. Controls for conditioned spaces shall be as required under Division 25, Building Automation System. Control wiring shall be under Division 23. Actual pulling of wires may be accomplished by subcontract or Division 26 Contractor; however, Division 25 shall retain responsibility for correctness of wiring, connections, and full operation of the control system.

3.02 TESTING

A. Equipment shall be cycled through all heating, cooling, and ventilation cycles to ensure proper operation of all components and controls prior to test and balance.

B. At time of Start-up, manufacturer's representative shall visit the Project Site and verify that unit installation and performance is satisfactory, and to make any adjustments or settings to unit operating and safety controls that may be required.
C. Include Start-up checkout service of at least one working day for one service technician, including a written report of operational check provided to the Owner. Owner's Representative may require that the Start-up service be performed with Owner's attendance and on-site review.

D.

E. Clean filters shall be placed within the unit at the time of Substantial Completion.

END OF SECTION 23 6213
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Propeller unit heaters with electric-resistance heating coils.

1.3 DEFINITIONS
A. BAS: Building automation system.
B. CWP: Cold working pressure.
C. PTFE: Polytetrafluoroethylene plastic.
D. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS
A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
B. LEED Submittal:
 1. Product Data for Prerequisite EQ 1: Documentation indicating that units comply with ASHRAE 62.1-2004, Section 5 - "Systems and Equipment."
C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Plans, elevations, sections, and details.
 2. Location and size of each field connection.
 3. Details of anchorages and attachments to structure and to supported equipment.
4. Equipment schedules to include rated capacities, operating characteristics, furnished specialties, and accessories.
5. Location and arrangement of piping valves and specialties.
6. Location and arrangement of integral controls.

D. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which unit heaters will be attached.
3. Method of attaching hangers to building structure.
4. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
5. Perimeter moldings for exposed or partially exposed cabinets.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

PART 2 - PRODUCTS

2.1 PROPELLER UNIT HEATERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Airtherm; a Mestek Company.
2. Engineered Air Ltd.
4. Rosemex Products.
5. Ruffneck Heaters; a division of Lexa Corporation.
6. Trane.

B. Description: An assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louvers.

C. Comply with UL 2021.

D. Comply with UL 823.

E. Cabinet: Removable panels for maintenance access to controls.

F. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.

G. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

H. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

I. Electric-Resistance Heating Elements: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch (4 mm). Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F (288 deg C) at any point during normal operation.

2. Wiring Terminations: Stainless-steel or corrosion-resistant material.

J. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

K. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Type: Permanently lubricated, multispeed.

L. Control Devices:

1. Unit-mounted or Wall-mounting thermostat, see drawings.

M. Capacities and Characteristics: See mechanical equipment schedule.
A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Berko Electric Heating; a division of Marley Engineered Products.
2. Chromalox, Inc.; a division of Emerson Electric Company.
3. Indeeco.
4. Markel Products; a division of TPI Corporation.
5. Marley Electric Heating; a division of Marley Engineered Products.
6. Ouellet Canada Inc.
7. QMark Electric Heating; a division of Marley Engineered Products.
8. Trane.

B. Description: An assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.

C. Cabinet:

1. Front Panel: Stamped-steel with removable panels fastened with tamperproof fasteners.
2. Finish: Baked enamel over baked-on primer with manufacturer's standard color, applied to factory-assembled and -tested wall and ceiling heaters before shipping.

D. Surface-Mounting Cabinet Enclosure: Steel with finish to match cabinet.

E. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware, and limit controls for high temperature protection.

F. Controls: Wall or Unit-mounted thermostat. Low-voltage relay with transformer kit.

G. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

H. Capacities and Characteristics: See mechanical equipment schedule.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Examine roughing-in for electrical connections to verify actual locations before unit heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Division 07 Section "Joint Sealants."

B. Install cabinet unit heaters to comply with NFPA 90A.

C. Install propeller unit heaters level and plumb.

D. Suspend ceiling heaters from structure in ceiling with seismic restraints as specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

E. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

F. Install new filters in each unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.

D. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."

E. Comply with safety requirements in UL 1995.

F. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

A. Adjust initial temperature set points.

3.6 DEMONSTRATION

A. Engage a factory authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 238239
PART 1 - GENERAL

1.1 WORK INCLUDED

A. The work covered by this Section consists of furnishing all plant, labor, equipment, appurtenances and material in performing all operations, hauling, placing, spreading, watering, processing, compacting and shaping earth sections, within the building limits, complete in place in accordance with the Project Manual and Drawings.

1.2 RELATED WORK ELSEWHERE

A. Under-Slab Vapor Retarder – Section 07 26 00

B. General foundation notes on Drawings. In case of conflict or omission, the general foundation notes shall govern.

1.3 SUBSURFACE SOIL DATA

A. Subsurface soil investigations have been made and the results are available for examination by the Contractor. This is not a warranty of conditions, the Contractor is expected to examine the site and determine for himself the character of materials to be encountered.

B. No additional allowance will be made for rock removal, site clearing and grading, filling, compaction, disposal, or removal of any unclassified materials.

1.4 REFERENCES

A. ASTM International

1. ASTM D 1556-07 Standard Test Method for Density of Soil in Place by the Sand-Cone Method

2. ASTM D 1557-09 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))

3. ASTM D 4318-10 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

4. ASTM D 6938-10 Standard Test Method for In-Place Density and Water Content of Soil and Soil-
1.5 SUBMITTALS

A. Submit copies of materials certificates and test results for materials in accordance with type of tests, frequencies and remarks as outlined in the sampling and testing schedule.

1.6 TESTING AND INSPECTION

A. General: The Owner shall employ the services of a registered, licensed Geotechnical Engineer to observe all controlled earthwork soil testing. The testing laboratory shall provide continuous on-site observation by experienced personnel during construction of fill material. The Contractor shall notify the testing laboratory at least two working days in advance of any field operations of controlled earthwork, or of any resumption of operations after stoppages.

B. Report of Field Density Tests

1. The Geotechnical Engineer shall submit, daily, the results of field density tests required by these specifications.

C. Costs of Tests and Inspection

1. The cost of testing, inspecting and engineering, as specified in this section of the specifications, shall be borne by the Owner.

D. Lines and Grades: Alignment and grade of all elements shall be made on true tangents and curves. Grades shall conform to the elevations indicated on Drawings, with minor adjustments, to provide a smooth approach at building lines, at connections to existing paving and to provide proper drainage. Correct irregularities at no cost to the Owner.

1.7 WEATHER LIMITATIONS

A. Controlled fill shall not be constructed when the atmospheric temperature is below 35 degrees F. When the temperature falls below 35 degrees, it shall be the responsibility of the Contractor to protect all areas of completed work against any detrimental effects of ground freezing by methods approved by the testing laboratory. Any areas that are damaged by freezing shall be reconditioned, reshaped, and compacted by the Contractor in conformance with the requirements of this specification without additional cost to the Owner.

PART 2 - PRODUCTS

2.1 STRUCTURAL FILL MATERIAL
A. Material shall consist of soils that conform to the following physical characteristics:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq. Openings</td>
<td>By Weight</td>
</tr>
<tr>
<td>6 inch</td>
<td>100</td>
</tr>
<tr>
<td>4 inch</td>
<td>85 – 100</td>
</tr>
<tr>
<td>¾ inch</td>
<td>70-100</td>
</tr>
<tr>
<td>No. 4</td>
<td>50 - 100</td>
</tr>
<tr>
<td>No. 200</td>
<td>10 max.</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 PREPARATION

A. Clearing and Grubbing: Prior to placing structural fill all borrow areas and areas to receive structural fill shall be stripped of vegetation and deleterious materials. Strippings shall be hauled offsite or stockpiled for subsequent use in landscaped areas or non-structural fill areas as designated by the Owner or his representative and approved by the Geotechnical Engineer.

3.2 CONSTRUCTION AREA TREATMENT

A. Site Preparation - Fill Areas: Prior to placing structural fill the areas to be filled shall be scarified to a depth of ten inches and moisture conditioned as described below. The area to be filled shall then be compacted to a minimum of 95 percent of maximum density as determined in accordance with ASTM D 1557. Any soft or "spongy" areas shall be removed as directed by the Geotechnical Engineer and replaced with structural fill as described herein.

B. Site Preparation - Cut Areas: Following excavation to rough grade all building and pavement areas shall be scarified to a depth of ten inches and moisture conditioned as described below. All building and paved areas shall be compacted to a minimum of 95 percent of maximum density as determined by ASTM D 1557.

3.3 EQUIPMENT AND METHODS

A. In areas not accessible to heavy equipment, distribute by and compact with hand operated vibratory compactors.

3.4 BORROW

A. The Contractor shall provide sufficient material for fill to the lines, elevations and cross sections as shown on the contract drawings from borrow areas.

B. The Contractor shall obtain from the Owners of said borrow areas the right to excavate material, shall pay all royalties and other charges involved, and shall
pay all expenses in developing the source including the cost of right-of-way required for hauling the material.

3.5 COMPACCIÓN

A. Fill shall be spread in layers not exceeding 10 inches, watered as necessary, and compacted. Moisture content at time of compaction shall plus 3 percent/minus 2 percent of optimum moisture. A density of not less than 95 percent of maximum dry density shall be obtained within the building pads.

B. Optimum moisture content and maximum dry density for each soil type used shall be determined in accordance with ASTM D 1557.

C. Compaction of the fill shall be by mechanical means only. Where vibratory compaction equipment is used, it shall be the Contractor's responsibility to ensure that the vibrations do not damage nearby buildings or other adjacent property. Where vibratory compaction is not possible, pneumatic rolling equipment shall be used.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PERCENT COMPACCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural & granular fill in construction area</td>
<td>95</td>
</tr>
<tr>
<td>Subgrade below structural fill</td>
<td>95</td>
</tr>
<tr>
<td>Structural fill under exterior walls</td>
<td>95</td>
</tr>
<tr>
<td>Miscellaneous backfill</td>
<td>90</td>
</tr>
</tbody>
</table>

3.6 MOISTURE CONTROL

A. The material, while being compacted, shall be within the moisture range of 3 percent above to 2 percent below optimum, well distributed throughout the layer.

3.7 DENSITY REQUIREMENTS

A. Density of undisturbed soils, in-place fill and backfill shall be determined in accordance with the procedures of ASTM D 1556 or ASTM D 6938. If tests indicate that the density of in-place soil is less than required, the material shall be scarified, moistened or dried as necessary to obtain proper moisture content and recompacted as necessary to achieve the proper densities. Sufficient density tests shall be made and reports submitted by the Testing Laboratory indicating all cut and fill areas were compacted and graded in accordance with the requirements.

3.8 SLOPE PROTECTION & DRAINAGE

A. Berming and grading shall be done as may be necessary to prevent surface water from flowing into and out of the construction area. Any water accumulating therein shall be removed by pumping or by other methods.

3.9 SOIL EROSION PROTECTION
A. The Contractor shall ensure that no soil erodes or blows from the site into public right-of-way or onto private property.

B. The Contractor shall promptly clean up any material which erodes or blows into the public right-of-way or onto private property.

3.10 PRESERVATION OF PROPERTY

A. Provide temporary fences, barricades, coverings, or other protections to preserve existing items indicated to remain and to prevent injury or damage to persons or property. Apply protections to adjacent properties as required.

B. Restore damaged work to condition existing prior to start of work, unless otherwise directed.

3.11 EXISTING UTILITIES

A. The Contractor shall verify the location of any utility lines, pipelines, or underground utility lines in or near the area of the work in advance of and during Earthwork. The Contractor is fully responsible for any and all damage caused by failure to locate, identify and preserve any and all existing utilities, pipelines and underground utility lines. Repair damaged utilities to the satisfaction of the utility owner at no expense to the Owner.

B. Should uncharted or incorrectly charted piping or other utilities be encountered during grading, consult the Architect immediately for directions as to procedures.

C. Cooperate with the Owner and public or private utility companies in keeping service and facilities in operation.

3.12 WASTE

A. Dispose of all waste off Owner's property.

B. Burning of waste will not be permitted.

3.13 AIR POLLUTION

A. Use water sprinkling, temporary enclosures, and other suitable methods to limit dust and dirt air pollution. Comply with governing regulations pertaining to environmental protection.
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>TEST FOR</th>
<th>FREQUENCY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GROUND</td>
<td>Compaction in accordance with ASTM D 1556 or ASTM D 6938</td>
<td>1 per 500 square yards of surface</td>
<td>Conduct a minimum of 2 tests on each section.</td>
</tr>
<tr>
<td>EMBANKMENT AND/OR SUBGRADE</td>
<td>Soil Conditions Moisture-Density in accordance with ASTM D 1557</td>
<td>Test 1 per soil classification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compaction control in accordance with ASTM D 1556 or ASTM D 6938</td>
<td>1 per each lift every 300 square yards of surface</td>
<td>Immediately after placing, Conduct a minimum of 2 tests per section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 per each lift for each 100 cubic yards of fill</td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 31 23 11
SECTION 32-1313
CONCRETE PAVING

PART 1 GENERAL

1.1 WORK INCLUDED
 A. Furnish and install Portland cement concrete paving as shown on the drawings, as specified herein, and as needed for a complete and proper installation.

1.2 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 31000-Earthwork.

1.3 REFERENCES
 A. ACI 301 - Specifications for Structural Concrete for Buildings.
 B. ACI 304 - Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete.
 C. ANSI/ASTM A185 - Welded Steel Wire Fabric for Concrete Reinforcement.
 D. ANSI/ASTM D1751 - Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction.
 E. ASTM C33 - Concrete Aggregates.
 F. ASTM C94 - Ready Mix Concrete.
 G. ASTM C150 - Portland Cement
 H. ASTM C260 - Air Entraining Admixtures for Concrete.

1.4 QUALITY ASSURANCE
 A. Perform work in accordance with ACI 301.
 B. Obtain cementitious materials from same source throughout.

1.5 SUBMITTALS
 A. As specified in the General Conditions and pertinent provisions of Section 01300.

1.6 REGULATORY REQUIREMENTS
 A. Conform to applicable standards for paving work on public property.

1.7 ENVIRONMENTAL REQUIREMENTS
 A. Do not place concrete when base surface temperature is less than 40 degrees F, or surface is wet or frozen, unless appropriate admixtures have been previously approved.
PART 2 PRODUCTS

2.1 FORM MATERIALS
 A. Form Materials: Conform to ACI 301.

2.2 REINFORCEMENT
 A. Reinforcing Steel and Wire Fabric: Type specified in Section 03200.

2.3 CONCRETE MATERIALS
 A. Concrete Materials: As specified in Section 03300.

2.4 CONCRETE MIX
 A. Mix concrete in accordance with ACI 304. Deliver concrete in accordance with ASTM C94.
 B. Select proportions for normal weight concrete in accordance with ACI 301 Method 1.
 C. Provide concrete to the following criteria:
 1. Compressive Strength: 4000 psi @ 28 days.
 2. Slump: 3 to 5 inches.
 3. Maximum Aggregate Size: 1 inch.
 4. Air Content Range: 4 to 6 percent.
 D. Use accelerating admixtures in cold weather only when approved by Architect/Engineer. Use of admixtures will not relax cold weather placement requirements.
 E. Use calcium chloride only when approved by Architect/Engineer.
 F. Use set retarding admixtures during hot weather only when approved by Architect/Engineer.

2.5 SOURCE QUALITY CONTROL
 A. Provide mix design under provisions of Section 01300.
 B. Submit proposed mix design of each class of concrete to appointed firm for review prior to commencement of work.
 C. Test samples in accordance with ACI 301.

PART 3 EXECUTION

3.1 EXAMINATION
 A. Verify compacted subgrade is acceptable and ready to support paving and imposed loads.
B. Verify gradients and elevations of base are correct.

3.2 PREPARATION

A. Moisten base to minimize absorption of water from fresh concrete.
B. Coat surfaces of manhole and catch basin frames with oil to prevent bond with concrete pavement.
C. Notify Architect minimum 24 hours prior to commencement of concreting operations.

3.3 FORMING

A. Place and secure forms to correct location, dimension, and profile.
B. Assemble formwork to permit easy stripping and dismantling without damaging concrete.
C. Place joint filler vertical in position, in straight lines. Secure to formwork during concrete placement.

3.4 REINFORCEMENT

A. Place reinforcement at mid-height of slabs-on-grade.
B. Interrupt reinforcement at expansion joints.
C. Place reinforcement to achieve pavement and curb alignment as detailed.
D. Provide dowelled joints 18 inches o.c. at interruptions of concrete with one end of dowel set in capped sleeve to allow longitudinal movement.

3.5 JOINTS

A. Place expansion joints at 24 foot intervals. Align curb, gutter, and sidewalk joints.
B. Place joint filler between paving components and building or other appurtenances. Recess top of filler 1/4 inch for sealant placement by Section 02550.
C. Provide scored joints at 6 foot intervals along sidewalks, between sidewalks and curbs and between curbs and pavement, or as indicated on plans.

3.6 PLACING CONCRETE

A. Place concrete in accordance with ACI 301.
B. Place concrete continuously between predetermined construction joints. Do not break or interrupt successive pours such that cold joints occur.
C. Place concrete to pattern indicated. Score contraction joints 3/16 inch wide at an optimum time after finishing.
3.7 FINISHING
 A. Area Paving: Medium broom.
 B. Sidewalk Paving: Medium broom, shaped to 1/2 inch radius, and trowel joint edges.
 C. Curbs and Gutters: Medium broom.
 D. Inclined Pedestrian Ramps: Heavy Broom perpendicular to slope.

3.8 FIELD QUALITY CONTROL
 A. Field testing will be performed under provisions of Section 01410.
 B. Notify testing representative 48 hours prior to placement of any materials and for required testing of paving sub-grade for compaction.
 C. Three concrete test cylinders will be taken for every 75 or less cu yds of each class of concrete placed each day.
 D. One additional test cylinder will be taken during cold weather and cured on site under same conditions as concrete it represents.
 E. One slump test will be taken for each set of test cylinders taken.
 F. Maintain records of placed concrete items. Record date, location of pour, quantity, air temperature, and test samples taken.

3.9 PROTECTION
 A. Immediately after placement, protect pavement from premature drying, excessive hot or cold temperatures, and mechanical injury.

3.10 SCHEDULES
 A. Concrete Sidewalks: 4,000 psi 28 day concrete, 4 inches thick, medium broom finish.
 B. Parking Area Pavement and Curbs: 4,000 psi 28 day concrete, 5-1/2 inches thick, medium broom finish.
 C. Concrete refuse areas: 4,000 psi 28 day concrete, 6 inches thick, smooth finish.

END OF SECTION 321313 – CONCRETE PAVING