Santa Fe County Community Wildfire Protection Plan Although fire suppression is still aggressively practiced, fire management techniques are continually adapting and improving, especially in light of changing climate. Management of fire for resource objectives is an option for land managers in the County. Due to scattered human developments (homes, ranches, and farms) and values (residential and commercial structures, historic and natural values) throughout the WUI, suppression in WUI areas will always have to be a priority. However, combining prescribed fire and managing wildland fire for resource objectives with effective fuels management and restoration techniques have been proven to help re-establish natural fire regimes and reduce the potential for catastrophic wildfires on public lands associated with heightened risk due to a warming climate. The use of prescribed fire on private land is a decision to be made by the landowner, and it is acknowledged that given the prevailing drought such a management technique may not always be feasible in the County. # FIRE RESPONSE CAPABILITIES ### Planning and Decision Support As wildfires have continued to grow in size and severity over the last decade, this has led to fire managers needing to institute more robust pre-fire planning as well as adapt and improve decision-making tools in order to reduce risk to fire responders and the public and assess impacts on ecological processes. A primary decision tool utilized by fire managers across all agencies is the Wildland Fire Decision Support System (WFDSS), a system that assists fire managers and analysts in making strategic and tactical decisions for fire incidents (WFDSS 2015). WFDSS combines desktop applications for fire modeling into one web-based system. It provides a risk-informed decision process and documentation system for all wildland fires and it also introduces economic principles into the fire decision process in order to improve efficiencies which also ensuring safe and effective wildfire response. One intent of WFDSS is to ensure that when fire response decisions are made, they fall in line with agency land and resource management plans. Agencies have recently been moving away from the traditional written fire management plans and instead are developing spatial fire management plans that can be housed within WFDSS (WFDSS 2015). The Santa Fe National Forest for example will have all management requirements and strategic objectives for fire management, contained within WFDSS, so that in the event of a fire, incident managers are considering this information when making decisions and developing strategic direction for the wildfire incident (WFDSS 2015). Another tool employed by fire managers in pre-fire planning is the potential operational delineation (POD). PODs combine fire modeling with expertise from local fire practitioners and managers to identify potential locations where fire suppression could be effective (Caggiano et al. 2020; Harden 2020). This concept was tested in northern New Mexico during the 2019 fire season on seven New Mexico fires, including land in the Santa Fe National Forest. This pilot project demonstrated the effectiveness of PODs for decision support. It is anticipated that these processes will continue to be used in future fire planning across jurisdictions. #### Fire Resources The availability of resources is dictated by the state and federal wildland fire season. From approximately April 15 through July 15, resources are plentiful around the region. This time period is considered the Southwest fire season, so multiple crews, engines, helicopters, and air tankers are available. However, from July 15 to October 31, firefighting focus often changes to other regions such as to the Northwest and California. During this period, the time frame to obtain resources is extended, sometimes taking up to 48 hours. During the winter months, obtaining resources is difficult as many firefighters are employed seasonally from April through October. Given the changing fire regimes, wildfires now occur throughout the entire year, extending beyond the state and federal designated wildland fire season. Resources are limited for fires that occur outside of this time frame. ⁶ WFTDSS: https://wfdss.usgs.gov/wfdss/WFDSS_Home.shtml ## Santa Fe County Community Wildfire Protection Plan # Santa Fe County Fire Department Volunteer and career firefighters at the County and community level have similar capabilities throughout the entire year, while state and federal responders are affected by fire season. In spite of the continuous level of capabilities, ebbs and flows occur within the volunteer service. Recruiting and retaining volunteers is challenging due to people's lifestyles and the training requirements one must follow to be a volunteer firefighter. Although several volunteer firefighters are present in the County, not all are available to respond to every fire. The County Wildland Division has taken steps to have a fire crew all year round for county response. #### Santa Fe National Forest The Santa Fe National Forest provides fire response on USFS land in the County. Fire management and suppression protocols are directed by the Forest Plan. On USFS land, the USFS has the responsibility for initial attack (initial response). The USFS maintains Mutual Aid Agreements (MAA) with the New Mexico State Forestry Division (NMSF), the County, and the NPS. Under the MAA, agency personnel may respond to incidents outside their agency boundaries. The management of wildfire ignitions for multiple resource objectives (managing naturally burning fires in forests as a tool for helping to restore forest health and mitigating the escalating costs of fire suppression) is practiced on federal land but depends upon a thorough assessment of risk to values at risk in the WUI. Depending on the location and nature of a wildfire, USFS policies outline appropriate management responses to guide district personnel in the application of specific suppression techniques. All large wildfire response would be based upon assessment using WFDSS. In wilderness areas, the Santa Fe National Forest supervisor must approve the use of helicopters, portable pumps, and chainsaws, as well as the construction of helispots. The Southwestern Regional Forester must approve the use of motorized vehicles and bulldozer line construction. Fire strategies call for: - · restoring fire to the ecosystem; - using prescribed fire to reduce hazards; - managing wildland fires so that air quality issues are compatible with local, state, and federal laws: and - minimizing suppression impacts to wilderness as well as impacts to the surrounding area. The USFS has the following resources available for fire suppression throughout the County: - · Santa Fe Supervisors Office - 3 Type 3 Incident Command - 2 Operations Section Chiefs - 3 Task Force Leaders - Santa Fe Hotshots - Espanola Ranger District - 2 Type 3 ICs/Division Supervisors - o 1 Type 4 Engine - 1 Type 6 Engine - Pecos/Las Vegas Ranger District - 2 Type 3 ICs/Division Supervisors - 1 Type 3 Engine - 1 Type 6 Engine 37 of 269 # **PURPOSE** The purpose of developing the risk assessment model described here is to create a unique tool for evaluating the risk of wildland fires to communities within the WUI areas of Santa Fe County. Although many definitions exist for hazard and risk, for the purpose of this document these definitions follow those used by the firefighting community: *Hazard* is a fuel complex defined by kind, arrangement, volume, condition, and location that forms a special threat of ignition and resistance to control. Risk is defined as the chance of a fire starting as determined by the presence and activity of causative agents (National Wildfire Coordinating Group [NWCG] 1998). The hazard and risk assessment is twofold and combines a geographic information system (GIS) model of hazard based on fire behavior and fuels modeling technology (Composite Risk/Hazard Assessment) and a Core Team generated assessment of on-the-ground community hazards and values at risk. From these assessments, land use managers, fire officials, planners, and others can begin to prepare strategies and methods for reducing the threat of wildfire, as well as work with community members to educate them about methods for reducing the damaging consequences of fire. The fuels reduction treatments can be implemented on both private and public land, so community members have the opportunity to actively apply the treatments on their properties, as well as recommend treatments on public land that they use or care about. The Santa Fe County Hazard Mitigation Plan (HMP) (Santa Fe County 2018) lists wildfire hazard as a highly likely hazard, with extensive spatial extent, with a critical magnitude/severity and high overall significance. ## Santa Fe County Community Wildfire Protection Plan #### FUELS AND TOPOGRAPHY WITHIN THE WUI IN SANTA FE COUNTY The southern half of the County is predominantly composed of grassland fuels, transitioning into shrubsteppe- or shrubland-dominated fuels to the north. Forested communities exist primarily in the higher elevations of the Sangre de Cristo Mountains in the northeastern portion of the County. Grassland communities are primarily characterized by shortgrass prairie, which is relatively sparse and usually occurs on flat to rolling topography at lower elevations. Grasslands may occur as pure herbaceous stands, as a shrubsteppe community, or as a juniper savanna. #### Grasslands Grassland fires have the potential to move quickly under dry, windy, and steep conditions and can easily spread at a surprisingly rapid rate, often reaching over 300 feet per minute. Many authors have suggested that the historical fire-return intervals (FRIs) for grasslands throughout the seventeenth to early nineteenth centuries are thought to have been every 5 to 10 years (Leopold 1924; Swetnam et al. 1992). Fire-suppression policies may have contributed to declining fire frequency in this cover type, but other interacting factors may have contributed as well. About the time of the Civil War, intensive livestock grazing is thought to have been responsible for a decline in grassland fires (Touchan et al. 1996; West 1984). Heavy grazing reduced the fuels available to propagate fire spread and also reduced competition with herbaceous plants, tipping the balance in favor of the woody species. Woodland encroachment, increased tree density, and altered fire behavior characterize many former grasslands of the Southwest. Once woody plants become dominant, their long lifespans and their ability to extract both shallow and deep soil moisture can maintain a woodland condition indefinitely (Burgess 1995). Frequent fire plays a significant role in grassland nutrient cycling and successional processes, and long-term exclusion may produce irreversible changes in ecosystem structure and function (McPherson 1995). # Piñon-juniper Woodlands One of most common vegetative communities in the County is piñon-juniper woodland. These woodlands are some of the most poorly understood ecosystems in terms of fire regimes, but recent research suggests that fire may have been a less-common and less-important disturbance agent in piñon-juniper woodlands compared with adjacent ponderosa pine and grassland ecosystems. In a recent review of piñon-juniper disturbance regimes, Romme et al. (2007) has subdivided the piñon-juniper cover type into three subtypes: areas of potential woodland expansion and contraction, piñon-juniper savannas, and persistent woodlands. These categories are helpful in separating the broad piñon-juniper cover type into distinct communities, which are subject to different climatic, topographic, and disturbance conditions. Areas of potential expansion and contraction are those zones wherein the boundaries of the piñon-juniper ecotones have shifted. As mentioned previously, many grasslands in the Southwest have been colonized by trees as a result of a complex interplay of environmental factors. The issue of woodland encroachment into grasslands goes hand in hand with the assessment of historical conditions of the woodlands. These shifting boundaries have been widely documented (e.g., Gottfried 2004) but the historical condition of the ecosystem may be relative to the time scale of evaluation. Betancourt (1987) has suggested that the changing distribution patterns seen in the last century may be part of larger trends that have occurred over millennia and not the result of land use changes. Overall, it is believed that greater landscape heterogeneity existed previously in many of these areas that are now uniformly covered with relatively young trees (Romme et al. 2007). Piñon-juniper savannas are found on lower elevation sites with deep soils where most precipitation comes during the summer monsoon season. Juniper savanna, the most common savanna in New Mexico, consists of widely scattered trees in a grass matrix (Dick-Peddie 1993). Similar to grasslands, the range of savannas has decreased as tree density has increased, but the mechanisms for tree expansion are complex as is the subject of current research. Significant scientific debate currently exists over the natural FRI for savannas, but most experts agree that fire was more frequent in savannas than in persistent woodlands.