INTRODUCTION
Santa Fe County Utilities (SFCU) is pleased to present the 2015 Water Quality Report for the West Sector public water system to our customers and the public. A safe and reliable water supply is vital to our community and is one of the primary missions of Santa Fe County. In 2015, the West Sector’s drinking water met all U.S. Environmental Protection Agency (EPA) and State drinking water quality standards. The West Sector supplies potable water to users outside of the western boundary of the City of Santa Fe and within the boundary of the Historic Village of Agua Fria. These areas include Las Campanas Estates I & II, Aldea, Tessera, El Prado, La Serena, Los Sueños, Sonrisa, the Northwest Ranches, and the Vista Aurora Subdivision. Water is also provided to the Las Campanas Water and Sewer Cooperative and to the Agua Fria Community Water System. This report is designed to inform customers about where our water comes from, what it contains, and how it compares to standards set by regulatory agencies. Because water quality samples are collected periodically throughout the year, this report presents a snapshot of the water quality during calendar year 2015.

ADDITIONAL INFORMATION
This report provides details regarding our water quality and what it means. If you have any questions about this report, concerns regarding your water utility, or would like to learn more about the County’s plans for the future water supply, please visit our website at: www.santafecountynm.gov/public_works/utilities or call us at 505-992-9870.

We want you, our valued customers, to be informed about your water supply and your water utility. If you want to become more involved in issues of water supply in our area, you are encouraged to attend meetings of our governing body, the Santa Fe County Commission, which occur on the second and last Tuesday of each month starting at 2:00 PM. Meeting agendas are posted at: www.santafecountynm.gov/committees/board_of_county_commissioners_bcc

Additionally, the Santa Fe County Water Policy Advisory Committee meets every other month at 5:00 PM at the Public Works Complex, 424 NM Hwy 599 Frontage Rd. Agendas and minutes are posted at: http://www.santafecountynm.gov/committees/wpac.

UNITS, TERMS AND ABBREVIATIONS USED IN THIS REPORT
Please note that, while this report is intended to explain our water quality in plain terms, there are a number of units, terms and abbreviations that are used throughout the report. Please see page 10 for a complete list of the units, terms and abbreviations used in this report.
SOURCES OF SUPPLY
The sources of water supply for both the City and County water systems are the same throughout the Santa Fe metropolitan area and include both ground water and surface water. The map on page 3 illustrates the system and its sources. Both the County’s West Sector and South Sector public water systems are shown. This report pertains to the West Sector only. In 2015, the West Sector was served by four sources: (1) surface water from the Rio Grande, which is treated through advanced processes at the Buckman Regional Water Treatment Plant, (2) ground water from thirteen wells in the City’s Buckman Well Field located approximately 15 miles northwest of Santa Fe, (3) surface water from the Santa Fe River, which is treated through conventional processes at the City’s Canyon Road Water Treatment Plant, and (4) ground water from eight active wells in the City’s Well Field (mostly located in close proximity to the Santa Fe River). As you will see from the data in this report, much of the water quality testing is done on the sources of supply, while some is done on the water in the distribution system itself.

IS MY WATER SAFE?
We are proud to announce that in 2015 the West Sector’s drinking water supply met all U.S. Environmental Protection Agency (EPA) and New Mexico drinking water quality standards.

SOURCE WATER ASSESSMENT & AVAILABILITY
The New Mexico Environment Department (NMED) completed a Source Water Assessment of the City’s Water Utility, which includes the sources of supply for the West Sector, to determine source water protection areas and inventory contaminant sources. NMED concluded: "The Susceptibility Analysis of the City of Santa Fe water utility reveals that the utility is well maintained and operated, and drinking water sources are generally protected from potential contamination…" The susceptibility rank of the City’s system, which includes the sources of supply for the West Sector, is moderately low. A copy of the assessment is available by contacting NMED at 1-877-654-8720.

LONG-TERM SUPPLY SUSTAINABILITY
The Buckman Direct Diversion (BDD), which includes the Buckman Regional Water Treatment Plant, was constructed and is operated under a cooperative agreement between the City, the County, Las Campanas Water and Sewer Cooperative, and the Club at Las Campanas. The BDD, which came online in 2011, has significantly improved the long-term sustainability of the area’s water supply and increases the community’s resilience under drought conditions. Using treated surface water as our primary supply reduces unsustainable groundwater pumping, which helps ensure groundwater will be available during times of drought.
WHY ARE THERE CONTAMINANTS IN MY DRINKING WATER?

The sources of all drinking water (tap water and even bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves or suspends naturally occurring and man-made substances. These substances can include:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

- **Inorganic contaminants**, such as salts and metals that may be naturally-occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, and farming;

- **Pesticides and herbicides**, that may come from a variety of sources, such as agriculture, urban storm-water runoff, and residential uses;

- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and can also come from gas stations, urban storm-water runoff, and septic systems; and

- **Radioactive contaminants**, which can be naturally occurring, man-made from nuclear facilities and atmospheric deposition from former above-ground testing, or be the result of oil and gas production, and mining activities.

Intentionally added substances: Water from all four supply sources for the West Sector is disinfect-ed with chlorine to protect against waterborne pathogens. To protect consumers’ teeth, fluoride may also be added at levels generally recommended by public health professionals.

In order to ensure that tap water is safe to drink, state and federal regulations limit the amount of cer-tain contaminants allowed in water provided by pub-lic water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protec-tion for public health.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised per-sons such as individuals with cancer undergoing chemotherapy, persons who have un-dergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. Health care providers should advise you about certain risks associ-ated with tap water if you have an immune compromising condition. EPA/Centers for Disease Control (CDC) guidelines on appro-priate means to lessen the risk of infection by Cryptoспорidium and other microbial contami-nants are available from the Safe Water Drinking Hotline (1-800-426-4791).

Contaminant Specific Information:

ARSENIC

The drinking water standard for arsenic is 10 ppb. The West Sector’s drinking water supply met this standard throughout 2015 (please see Table 1 of this document for the levels of arsenic measured in 2015). Arsenic occurs naturally in the earth’s rock crust. When arsenic-containing rocks, minerals, and soil erode, they release arsenic into ground water. While our drinking water meets EPA’s standard for arsenic, it does contain low levels of arsenic. The EPA standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and cir-culatory problems.

NITRATES

The West Sector’s drinking water supply meets the federal drinking water standard of 10 ppm for ni-trates. Nitrates have been detected in some of the City Wells up to 6.7 parts per million (ppm). Nitr-ate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome which is a potentially fatal blood disorder in which there is a reduction in the oxygen carrying capacity of blood. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should seek advice from your health care provider concerning nitrate in drinking water.

2015 West Sector Source of Supply Water Quality Table

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10 ppb</td>
</tr>
<tr>
<td>Nitrate</td>
<td>6.7 ppm</td>
</tr>
</tbody>
</table>
Ethylene Dibromide

Notes:
- Total Organic Carbon (TOC) meeting limits
- Turbidity measurement

Surface Water Contaminants

- Uranium
- Radium 226/228
- Gross Beta/Photon Emitters
- Gross Alpha Emitters

Inorganic Contaminants

- Fluoride
- Chromium
- Bromate
- Barium
- Arsenic

Synthetic Organic Contaminants

- Tetrachloroethylene
- 1,2-Dichloroethane
- Dichloroethylene

Radioactive Contaminants

- Gross Alpha Emitters
- Gross Beta/Photon Emitters
- Radium 226/228
- Uranium

Surface Water Contaminants

- Turbidity (highest single measurement)
- Turbidity (lowest monthly % meeting limits)
- Total Organic Carbon (TOC)

Notes:

- City Well Field: Alto, Aguia Fria, Ferguson, Osage, Santa Fe, St. Mikes, Torreon, and the Northwest well.
- The Buckman tank contains water from Buckman Wells 1-13, the Buckman Regional Water Treatment Plant and the Northwest Well.
- EPA considers 50 pCi/L to be the level of concern for beta particles.
- Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
- Alternative compliance criteria used to meet TOC removal requirements.

TABLE 1—2015 West Sector Source of Supply Water Quality

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
<th>City Well Field¹</th>
<th>Sample Date</th>
<th>Buckman Tank²</th>
<th>Sample Date</th>
<th>Canyon Road WTP</th>
<th>Sample Date</th>
<th>Buckman RWTP</th>
<th>Sample Date</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Contaminants</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ppb</td>
<td>200</td>
<td>200</td>
<td>0.1 (ND - 0.1)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>No</td>
<td>Discharge from metal degreasing sites and other factories</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ppb</td>
<td>7</td>
<td>7</td>
<td>0.21 (ND - 0.21)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>No</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ppb</td>
<td>5</td>
<td>zero</td>
<td>0.20 (ND - 0.20)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>No</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ppb</td>
<td>5</td>
<td>zero</td>
<td>0.28 (ND - 0.28)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>No</td>
<td>Discharge from factories and dry cleaners</td>
</tr>
<tr>
<td>Synthetic Organic Contaminants</td>
<td></td>
</tr>
<tr>
<td>Ethylene Dibromide</td>
<td>ppb</td>
<td>0.05</td>
<td>zero</td>
<td>0.007 (ND - 0.007)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>No</td>
<td>Discharge from petroleum refineries</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10</td>
<td>0</td>
<td>4.0 (1.0 - 4.0)</td>
<td>2014</td>
<td>2</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2015</td>
<td>No</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.8 (0.1 - 0.8)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2015</td>
<td>No</td>
<td>Discharge from drinking wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Bromate</td>
<td>ppm</td>
<td>10</td>
<td>zero</td>
<td>NA</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2015</td>
<td>No</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Chromium</td>
<td>ppm</td>
<td>100</td>
<td>100</td>
<td>(ND - 1)</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>2015</td>
<td>No</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>0.16 (0.14 - 0.16)</td>
<td>2014</td>
<td>0.4</td>
<td>2015</td>
<td>0.11</td>
<td>2015</td>
<td>0.37</td>
<td>2015</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nitrate [as N]</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>6.65 (3.03 - 6.65)</td>
<td>2015</td>
<td>0.18</td>
<td>2015</td>
<td>0.12</td>
<td>2015</td>
<td>0.19</td>
<td>2015</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion from natural deposits</td>
</tr>
<tr>
<td>Radioactive Contaminants</td>
<td></td>
</tr>
<tr>
<td>Gross Alpha Emitters</td>
<td>pCi/L</td>
<td>15</td>
<td>0</td>
<td>4.4 (1.9 - 4.4)</td>
<td>2014</td>
<td>4.2</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>1.2</td>
<td>2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Beta/Photon Emitters</td>
<td>pCi/L</td>
<td>50+</td>
<td>NA</td>
<td>1.5 (ND - 1.5)</td>
<td>2014</td>
<td>2.3</td>
<td>2014</td>
<td>1.4</td>
<td>2014</td>
<td>2.3</td>
<td>2014</td>
<td>No</td>
<td>Decay of natural and man-made deposits.</td>
</tr>
<tr>
<td>Radium 226/228</td>
<td>pCi/L</td>
<td>5</td>
<td>0</td>
<td>0.77 (0.10 - 0.77)</td>
<td>2014</td>
<td>0.07</td>
<td>2014</td>
<td>0.18</td>
<td>2014</td>
<td>0.1</td>
<td>2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>ppb</td>
<td>30</td>
<td>0</td>
<td>2.0 (ND - 2.0)</td>
<td>2014</td>
<td>2.0</td>
<td>2014</td>
<td>ND</td>
<td>2014</td>
<td>1</td>
<td>2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Surface Water Contaminants</td>
<td></td>
</tr>
<tr>
<td>Turbidity* (highest single measurement)</td>
<td>NTU</td>
<td>TT = 1.0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.33</td>
<td>2015</td>
<td>0.18</td>
<td>2015</td>
<td>No</td>
</tr>
<tr>
<td>Turbidity* (lowest monthly % meeting limits)</td>
<td>NTU</td>
<td>TT < 0.3 NTU</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>100.0%</td>
<td>2015</td>
<td>100.0%</td>
<td>2015</td>
<td>No</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>NA</td>
<td>(35-45% Removal)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>53% to 64% removal</td>
<td>2015</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Notes:

- a. City Well Field: Alto, Aguia Fria, Ferguson, Osage, Santa Fe, St. Mikes, Torreon, and the Northwest well.
- b. The Buckman tank contains water from Buckman Wells 1-13, the Buckman Regional Water Treatment Plant and the Northwest Well.
- c. EPA considers 50 pCi/L to be the level of concern for beta particles.
- d. Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
- e. Alternative compliance criteria used to meet TOC removal requirements.
Contaminant Specific Information (continued):
MICROBIAL AND DISINFECTION BY-PRODUCTS RULE

The Microbial and Disinfection By-products Rule is a set of interrelated regulations that address risks from microbial pathogens and disinfection by-products (DBPs). The Stage 2 Disinfectants and Disinfection By-Products Rule (DBPR) focuses on public health protection by limiting exposure to known carcinogenic DBPs, specifically total trihalomethanes (TTHM) and five haloacetic acids (HAA5), which can form in water through disinfectants (e.g. chlorine) used to control microbial pathogens. In 2015, the West Sector had one compliance sampling location for TTHM and a separate location for HAA5. Each of these locations was sampled once each quarter throughout the year. The average of analytical results for DBPs at a given location during the previous four quarterly samples is called the locational running annual average (LRAA). The LRAA for each location must be below the MCL (0.060 ppm for HAA5 and 0.080 ppm for TTHM). Based upon the samples that were collected, the West Sector’s water met the MCL standards. The results are presented in Table 2 below.

TABLE 2—Results of Disinfection By-Product Testing for 2015

<table>
<thead>
<tr>
<th>West Sector Disinfection By-Product Results</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Detection (2015)</th>
<th>LRAA Range (2015)</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>ppb</td>
<td>60</td>
<td>NA</td>
<td>25.8</td>
<td>0.0 – 10.2 (4th Quarter)</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>ppb</td>
<td>80</td>
<td>NA</td>
<td>69.2</td>
<td>0.0 – 41.9 (4th Quarter)</td>
<td>By-product of drinking water chlorination.</td>
</tr>
</tbody>
</table>

DISINFECTANT RESIDUAL TESTING

The Stage 2 DBPR also regulates the maximum residual for disinfectants, including chlorine. Disinfectants are added to control microorganisms as part of treatment and to maintain microbiological water quality throughout the distribution system and up to your tap. The West Sector uses free chlorine as a disinfectant. For 2015, sampling was performed at 24 monitoring locations each month. The results are shown in Table 3 below.

TABLE 3—Results of Disinfectant Residual Testing for 2015

<table>
<thead>
<tr>
<th>West Sector Disinfectant Residual Results</th>
<th>Units</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Range (2015)</th>
<th>Violation (yes/no)</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>ppm</td>
<td>4.0</td>
<td>4</td>
<td>0.02 – 1.46</td>
<td>No</td>
<td>Water additive used to control microorganisms</td>
</tr>
</tbody>
</table>

Contaminant Specific Information (continued):
LEAD AND COPPER TESTING

Tests for lead and copper were taken from 20 customer taps located in the West Sector twice in 2015 (during the period from 3/31/15 thru 4/2/15 and from 9/14/15 thru 9/28/15). None of the samples exceeded the action level for lead or copper. The sample results from the most recent sampling event (those taken between 9/14/15 and 9/28/15) are reported in Table 4 below. Ten samples will next be collected in 2018 during the period between June 1 and September 30 and analyzed for lead and copper and the results of those samples will be reported in our 2018 Water Quality Report.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and house plumbing. SFCU is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds and to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have its quality tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791, or visiting:

http://www.epa.gov/safewater/lead

Lead and Copper Action Level

The lead and copper levels reported are values for the 90th percentile. In this case, 20 samples were collected and the 18th highest sample result represents the 90th percentile.

TABLE 4—Results of Lead and Copper Testing for 2015

<table>
<thead>
<tr>
<th>West Sector Lead & Copper Results</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
<th>Your Water (90th percentile)</th>
<th>No. of Samples Exceeding the AL</th>
<th>Sample Dates</th>
<th>Violation (yes/no)</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>AL = 1.3</td>
<td>1.3</td>
<td>0.26</td>
<td>0 of 20</td>
<td>Sept. 14 -28, 2015</td>
<td>No</td>
<td>Erosion of natural deposits, corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>AL = 15</td>
<td>0</td>
<td>2.4</td>
<td>0 of 20</td>
<td>Sept. 14 -28, 2015</td>
<td>No</td>
<td>Erosion of natural deposits, corrosion of household plumbing systems.</td>
</tr>
</tbody>
</table>
Contaminant Specific Information (continued):

CRYPTOSPORIDIUM

Cryptosporidium is a protozoan parasite that is common in surface waters. The oocyst is the transmission stage of the organism. Cryptosporidium is introduced into our source waters via wild animal populations. Although the organism is readily removed by the conventional treatment process utilized at the Canyon Road Water Treatment facility and advanced treatment processes at the Buckman Direct Diversion (BDD) Treatment facility, the oocyst is resistant to chemical disinfectants like chlorine. Therefore, the primary reason to test for cryptosporidium is to determine if additional treatment is required. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection.

In April 2007 the City began a two-year study to determine the average Cryptosporidium concentration in source water entering the Canyon Road Water Treatment facility. The sampling portion of the study was completed in March of 2009. The study is part of the requirements contained in the 2006 USEPA Long-Term Enhanced Surface Water Treatment Rule. Cryptosporidium was detected in a single untreated sample in each of the following months: December of 2007, September 2008 and October 2008. The highest 12-month consecutive mean for this study was 0.018 oocysts/L. Since the concentration is <0.075 oocysts/L, no additional treatment at the Canyon Road Water Treatment Facility was necessary.

The City began a second round of Cryptosporidium sampling, collecting one sample a month starting in October 2015. This sampling effort will be completed in September 2017. For the Canyon Road Water Treatment facility source water, no Cryptosporidium oocysts were detected in three samples collected in calendar year 2015 (October, November, and December). As with Cryptosporidium oocysts, no Giardia Lamblia cysts (another protozoan cyst forming organism) were detected in the three samples collected during the last three months of 2015. BDD source water (untreated water from the Rio Grande) ranged from 0 to 0.4 oocysts/L in initial samples taken in 2015. Based on the early data collection efforts at both facilities, no additional treatment for Cryptosporidium removal above current levels is anticipated to be needed at either facility.

WATER CONSERVATION TIPS

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

● Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
● Shut off water while brushing your teeth, washing your hair, and shaving to save up to 500 gallons a month.
● Use a water-efficient showerhead. They’re inexpensive, easy to install, and can save you up to 750 gallons a month.
● Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
● Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
● Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
● Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month’s water bill!

Visit www.epa.gov/watersense for more information.

Key to Units, Terms and Abbreviations

- NA: Not Applicable.
- ND: Not Detected.
- NTU: Nephelometric Turbidity Units (a measure of turbidity).
- ppm: parts per million, or milligrams per liter (mg/L).
- ppb: parts per billion, or micrograms per liter (µg/L).
- pCi/L: picocuries per liter (a measure of radioactivity).
- µg/L: Number of micrograms of substance per liter of water.
- mg/L: Number of milligrams of substance per liter of water.
- µmhos/cm: Micromhos per centimeter or µS/cm (microsiemens per centimeter) – a measure of electrical conductivity in water due to the presence of dissolved inorganic ions (e.g., calcium, chloride, sodium, etc.).

(Range): The range represents the highest and lowest values. Range values are not provided if only one sample was taken during the range period.

- AL: Action level: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.
- LRAA: Locational running annual average - the average of analytical results for samples at a particular monitoring location during the previous four calendar quarters. LRAA at each sampling location must be below the MCL (0.060 mg/L for Total Haloacetic Acids and 0.080 mg/L for Total Trihalomethanes).
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCL’s are set as close as feasible to the MCLGs as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water.
- Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Secondary MCL (SMCL): Non-mandatory water quality standards for certain contaminants established as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color and odor. These contaminants are not considered to present a risk to human health at the SMCL.
- TT: Treatment Technique: a required process intended to reduce the level of a contaminant in drinking water.