1	DRAFT FINAL
2	Site Inspection Report
3	Army Aviation Support Facility
4	Santa Fe, New Mexico
5	
6 7 8 9 10	Site Inspection for Perfluorooctanoic Acid (PFOA), Perfluorooctanesulfonic Acid (PFOS), Perfluorohexanesulfonic Acid (PFHxS), Perfluorononanoic Acid (PFNA), Hexafluoropropylene oxide dimer Acid (HFPO-DA), and Perfluorobutanesulfonic Acid (PFBS) at ARNG Installations Nationwide
11	F. L
12	February 2023
13 14	
15	
16	
17 18	
19	
20	Prepared for
21 22 23	TUNAL CLARD * * * *
24	Army National Guard Headquarters
25	111 S. George Mason Drive
26 27 28	Arlington, VA 22204
29	
30 31	UNCLASSIFIED

33 34				TABLE OF CONTENTS
35				Page
36 37	LIST OF APP	PENDIC	ES	iii
38	LIST OF FIG	URES .		iv
39	LIST OF TAE	BLES		v
40	LIST OF ACE	RONYN	AND A	ABBREVIATIONS vi
41	EXECUTIVE	SUMM	IARY	
42	1.	INTRO	ODUCTIO	DN
43		1.1	PROJEC	T AUTHORIZATION1-1
44		1.2	SITE IN	SPECTION PURPOSE1-1
45	2.	SITE I	BACKGR	OUND2-1
46		2.1		CATION AND DESCRIPTION
47		2.2	FACILII	TY ENVIRONMENTAL SETTING
48			2.2.1	Geology
49 50			2.2.2 2.2.3	Hydrogeology
51			2.2.3	Climate
52			2.2.5	Current and Future Land Use
53			2.2.6	Critical Habitat and Threatened/Endangered Species2-4
54		2.3	HISTOR	Y OF PFAS USE
55	3.	SUMN	MARY OF	AREAS OF INTEREST
56		3.1		FORMER FIRETRUCK BAY AND TRI-MAX TM HAND
57			TRUCK	STORAGE AREA
58			3.1.1	Former Firetruck Bay
59			3.1.2	Former Tri-Max TM Hand Truck Storage Area
60		3.2	ADJACH	ENT AND HISTORICAL POTENTIAL SOURCES
61			3.2.1	Santa Fe Regional Airport
62			3.2.2	Santa Fe WWTP, Associated Land Application Areas, and Solar
63				Panel Farm
64	4.	PROJI	ECT DAT	A QUALITY OBJECTIVES
65		4.1	PROBLE	EM STATEMENT

66		4.2 IN	FORMATION INPUTS	. 4-1
67		4.3 ST	ГUDY BOUNDARIES	. 4-1
68		4.4 A	NALYTICAL APPROACH	. 4-1
69		4.5 D	ATA USABILITY ASSESSMENT	. 4-2
70	5.	SITE INS	SPECTION ACTIVITIES	. 5-1
71		5.1 Pl	RE-INVESTIGATION ACTIVITIES	. 5-2
72		5.	1.1 Technical Project Planning	. 5-2
73		5.	1.2 Utility Clearance	. 5-2
74		5.	1.3 Source Water and PFAS Sampling Equipment Acceptability.	
75		5.2 SO	OIL BORINGS AND SOIL SAMPLING	. 5-3
76			ONITORING WELL INSTALLATION AND GROUNDWATER	
77			RAB SAMPLING	5-4
78		-	YNOPTIC WATER LEVEL MEASUREMENTS	
79			URVEYING	
80			VESTIGATION-DERIVED WASTE	
			ABORATORY ANALYTICAL METHODS	
81				
82		5.8 D	EVIATIONS FROM UFP-QAPP ADDENDUM	. 3-6
83	6.	SITE INS	SPECTION RESULTS	. 6-1
84		6.1 SO	CREENING LEVELS	. 6-1
85		6.2 SO	OIL PHYSICOCHEMICAL ANALYSES	. 6-2
86		6.3 A	OI 1	. 6-2
87		6	3.1 AOI 1 - Soil Analytical Results	6-2
88			3.2 AOI 1 - Groundwater Results	
89			3.3 AOI 1 - Conclusions	
0)		0.	5.5 AOI 1 - Colletusions	.0-5
90		6.4 H	ISTORICAL WASTEWATER TREATMENT PLANT BIOSOLID	
91		A	PPLICATION AREA SAMPLE LOCATIONS	. 6-4
92		6.	4.1 Historical Wastewater Treatment Plant Biosolid Application	
93			Area – Soil Analytical Results	. 6-4
94		6.	4.2 Historical Wastewater Treatment Plant Biosolid Application	
95		0.	Area – Groundwater Results	6-4
96		6	4.3 Historical Wastewater Treatment Plant Biosolid Application	.01
97		0.	Area – Conclusions	.6-4
98		6.5 B	OUNDARY SAMPLE LOCATIONS	. 6-5
99		E	5.1 Boundary Sample Locations – Soil Analytical Results	65
100			5 1 5	
			5 1	
101		6.	5.3 Boundary Sample Locations – Conclusions	.0-3
102	7.	EXPOSU	RE PATHWAYS	.7-1

103		7.1	SOIL EX	KPOSURE PATHWAY	. 7-2
104			7.1.1	AOI 1	. 7-2
105 106			7.1.2	Historical Wastewater Treatment Plant Biosolid Application Area	7 2
100				Area	. 1-2
107		7.2	GROUN	DWATER EXPOSURE PATHWAY	. 7-3
108			7.2.1	AOI 1	.7-3
109			7.2.2	Historical Wastewater Treatment Plant Biosolid Application	
110				Area	.7-3
111		7.3	SURFAC	CE WATER/ SEDIMENT exposure pathway	. 7-3
112	8.	SUMN	MARY AN	ND OUTCOME	. 8-1
113		8.1	SITE IN	SPECTION ACTIVITIES SUMMARY	. 8-1
114		8.2	OUTCO	ME	. 8-1
115	9.	REFE	RENCES		.9-1
116					
117				LIST OF APPENDICES	
118	Appendix A.	Data U	Jsability A	Assessment and Data Validation Reports	
119	Appendix B.		Document		
120 121			ogs of Dai eld Forms	ly Notice of Field Activities	
121			arvey Data		
123				e Request Forms	
124	Appendix C.	Photog	graphic Lo)g	
125	Appendix D.		•	ct Planning Meeting Minutes	
126	Appendix E.			d Well Construction Diagrams	
127 128	Appendix F. Appendix G.	•	tical Resu atory Repo		
120	rependix O.	Labor	atory Rep	5165	

129		LIST OF FIGURES
130 131	Figure 2-1.	Facility Location
131 132 133	Figure 2-2.	Facility Topography
134 135	Figure 2-3.	Groundwater Features
136 137	Figure 2-4.	Surface Water Features
138 139	Figure 2-5	Groundwater Elevations, Perched (June 2022)
140 141	Figure 2-6.	Groundwater Elevations, Regional (June 2022)
142 143	Figure 3-1.	Areas of Interest
144 145	Figure 5-1.	Site Inspection Sample Locations
146 147	Figure 5-2.	Site Inspection Sample Locations with Historical Imagery
148 149	Figure 6-1.	AOI 1 PFOS Detections in Soil
150 151	Figure 6-2.	AOI 1 PFOA Detections in Soil
152 153	Figure 6-3.	AOI 1 PFBS Detections in Soil
154 155	Figure 6-4.	AOI 1 PFHxS Detections in Soil
156 157	Figure 6-5.	AOI 1 PFNA Detections in Soil
158 159	Figure 6-6.	AOI 1 PFOA, PFOS, and PFBS Detections in Groundwater
160 161	Figure 6-7.	AOI 1 PFHxS and PFNA Detections in Groundwater
162 163	Figure 7-1.	Conceptual Site Model, AOI 1
164	Figure 7-2.	Conceptual Site Model, Historical WWTP Biosolid Application Area

165		LIST OF TABLES
166	Table ES-1.	Screening Levels (Soil and Groundwater)
167 168 169	Table ES-2.	Summary of Site Inspection Findings and Recommendations
170 171	Table 5-1.	Samples by Medium, Santa Fe AASF, New Mexico, Site Inspection Report
172 173 174	Table 5-2.	Soil Boring Depths and Well Screen Intervals, Santa Fe AASF, New Mexico, Site Inspection Report
174 175 176	Table 5-3.	Groundwater Elevation, Santa Fe AASF, New Mexico, Site Inspection Report
177 178	Table 6-1.	Screening Levels (Soil and Groundwater)
179 180 181	Table 6-2.	PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Surface Soil, Site Inspection Report, Santa Fe AASF
182 183	Table 6-3.	PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Shallow Subsurface Soil, Site Inspection Report, Santa Fe AASF
184 185 186	Table 6-4.	PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Deep Subsurface Soil, Site Inspection Report, Santa Fe AASF
187 188 189 190	Table 6-5.	PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Groundwater, Site Inspection Report, Santa Fe AASF
190	Table 8-1.	Summary of Site Inspection Findings and Recommendations

192		LIST OF ACRONYMS AND ABBREVIATIONS
193	°C	Degrees Celsius
194	°F	Degrees Fahrenheit
195	%	Percent
196 197	µg/kg	Microgram(s) per kilogram
198	AASF	Army Aviation Support Facility
199	AECOM	AECOM Technical Services, Inc.
200	AFFF	Aqueous film-forming foam
201	amsl	Above mean sea level
202	AOI	Area of Interest
203	ARNG	Army National Guard
204 205	ASTM	ASTM International
206	bgs	Below ground surface
207 208	btoc	Below top of casing
209	CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
210	City	City of Santa Fe
211	CSM	Conceptual site model
212		
213	DoD	Department of Defense
214	DPT	Direct-push technology
215	DQO	Data quality objective
216 217	DUA	Data Usability Assessment
218	EA	EA Engineering, Science, and Technology, Inc., PBC
219	ELAP	Environmental Laboratory Accreditation Program
220	EM	Engineer Manual
221	EB	Equipment blank
222		
223	FB	Field blank
224	FD	Field duplicate
225	FedEx	Federal Express
226	ft	Foot (feet)
227		
228 229	GPS	Global Positioning System
230	HDPE	High-density polyethylene
231 232	HFPO-DA	Hexafluoropropylene oxide dimer acid
233	ID	Identification
234	IDW	Investigation-derived waste
235	ITRC	Interstate Technology Regulatory Council

226		LIST OF ACDONIVMS AND ADDEVIATIONS (continued)
236 237		LIST OF ACRONYMS AND ABBREVIATIONS (continued)
237	J	Estimated concentration
238	J J+	Estimated concentration Estimated concentration, biased high
239	J	Estimated concentration, blased high
240 241	LC/MS/MS	Liquid abromata graphy with tandam maga graptromatry
241		Liquid chromatography with tandem mass spectrometry
	$m \alpha / l r \alpha$	Millionom (a) non Irilo onom
243	mg/kg MS	Milligram(s) per kilogram
244 245	MS MSD	Matrix spike Matrix spike duplicate
243 246	MSD	Matrix spike duplicate
	NA	Not applicable
247		Not applicable
248	ng/L	Nanogram(s) per liter
249	NMARNG	New Mexico Army National Guard
250	NMED	New Mexico Environment Department
251	NMOSE	New Mexico Office of the Engineer
252	No.	Number
253	OSD	Office of the Secondary of Defense
254	OSD	Office of the Secretary of Defense
255	D 9- A	Diversed and shandoned
256	P&A	Plugged and abandoned
257	PA	Preliminary Assessment
258	PFAS	Per- and polyfluoroalkyl substances
259	PFBS	Perfluorobutanesulfonic acid
260	PFHxS	Perfluorohexanesulfonic acid
261	PFNA	Perfluorononanoic acid
262	PFOA	Perfluorooctanoic acid
263	PFOS	Perfluorooctanesulfonic acid
264	PID	Photoionization detector
265	PVC	Polyvinyl chloride
266 267		Quality Assumence Project Plan
	QAPP	Quality Assurance Project Plan
268	QSM	Quality Systems Manual
269	DI	Demodial Investigation
270	RI	Remedial Investigation
271	CAE	South En Aliment
272	SAF	Santa Fe Airport
273	SI	Site Inspection
274	SL	Screening level
275	ТОС	Total organia parkan
276	TOC	Total organic carbon
277	TPP	Technical Project Planning
278	LIED	Uniform Foderal Dalies
279	UFP	Uniform Federal Policy
280	USACE	U.S. Army Corps of Engineers
281	USEPA	U.S. Environmental Protection Agency

- 282LIST OF ACRONYMS AND ABBREVIATIONS (continued)283
- 284 WWTP Wastewater Treatment Plan

EXECUTIVE SUMMARY

286 The Army National Guard (ARNG) G-9 is the lead agency in performing Preliminary 287 Assessments (PAs) and Site Inspections (SIs) at ARNG facilities nationwide based on the current 288 or potential historical use of per- and polyfluoroalkyl substances (PFAS) with a focus on six 289 compounds presented in the memorandum from the Office of the Secretary of Defense (OSD) 290 dated 6 July 2022 (Assistant Secretary of Defense 2022). The six compounds listed in the OSD 291 memorandum include perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 292 perfluorobutanesulfonic acid (PFBS), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and hexafluoropropylene oxide dimer acid (HFPO-DA).¹. These compounds are 293 294 collectively referred to as "relevant compounds" throughout the document. The applicable 295 screening levels (SLs) are provided below in Table ES-1.

296

297 The PA identified one Area of Interest (AOI) where PFAS-containing materials may have been

stored, disposed, or released historically (Table ES-2 for AOI locations). The objective of the SI

299 is to determine whether there has been a release to the environment from the AOI identified in

300 the PA and determine whether further investigation is warranted, a removal action is required to

301 address immediate threats, or no further action is required based on a comparison of SI results to

302 SLs for the relevant compounds. This SI was completed at the Army Aviation Support Facility

303 (AASF) in Santa Fe, New Mexico, and determined further evaluation under the Comprehensive 304 Environmental Response, Compensation, and Liability Act (CERCLA) is warranted for AOI 1.

Environmental Response, Compensation, and Liability Act (CERCLA) is warranted for AOI 1.
 The Santa Fe AASF will be referred to as the "Facility" throughout this document.

306

307 The Facility, operated by the New Mexico ARNG (NMARNG), encompasses approximately

308 22 acres in Santa Fe, New Mexico, approximately 10 miles southwest of downtown. The original

309 Facility was constructed in 1979 in the northwest corner of the Santa Fe Regional Airport. The

310 Facility was renovated with a new, larger AASF building in 2012. The AASF and surrounding

area consists of piedmont slopes underlain by late Cenozoic basin-filling deposits, or the Santa

312 Fe marls. Basin-fill aquifers of the Santa Fe Group are the principal groundwater resource for the $(4 \text{ Fe} \text{ CO})(T = 1 \text{ for } 1 \text{$

cities of Santa Fe, Española, and six Pueblo nations (AECOM Technical Services, Inc. 2020).

314

315 The PA identified one AOI for investigation during the SI phase. SI sampling results from the

AOI were compared to OSD SLs. **Table ES-2** summarizes the SI results for the AOI. Based on

the results of this SI and following the CERCLA process, a remedial investigation (RI) is

warranted for AOI 1. Note that based on historical aerial photographs, application of biosolids

extended into the current Santa Fe AASF lease area; biosolid land application extended to the

320 north end of the current AASF building prior to the 2012 renovations of the facility. This area

321 was therefore designated for further evaluation during the SI planning phases.

¹ Of the six PFAS compounds presented in the 6 July 2022 OSD memorandum, HFPO-DA (commonly referred to as GenX) was not included as an analyte at the time of this SI, as screening values were established after SI planning and execution. However, ARNG will add HFPO-DA to the list of constituents sampled during the next phase of CERCLA, if warranted.

Analyte ²	Residential (Soil) (µg/kg) ¹ 0 to 2 ft bgs	Industrial / Commercial Composite Worker (Soil) (µg/kg) ¹ 2 to 15 ft bgs	Tap Water (Groundwater) (ng/L) ¹
PFOA	19	250	6
PFOS	13	160	4
PFBS	1,900	25,000	601
PFHxS	130	1,600	39
PFNA	19	250	6

 Assistant Secretary of Defense. 2022. Risk-Based Screening Levels in Groundwater and Soil using U.S. Environmental Protection Agency's Regional SL Calculator. Hazard Quotient = 0.1. May 2022.

 Screening values for HFPO-DA were established after SI planning and execution and thus not included as an analyte. Future CERCLA phases will include HFPO-DA if warranted.
 bgs = Below ground surface

ft = Foot (feet)

 $\mu g/kg = Microgram(s)$ per kilogram

ng/L = Nanogram(s) per liter

323 324

Table ES-2. Summary of Site Inspection Findings and Recommendations

Area	Potential Release Area	Soil	Groundwater- On-site	Groundwater – Facility Boundary	Future Action
AOI 1	Former Firetruck Bay and Tri-Max [™] Hand Truck Storage Area		•	\bigcirc	Proceed to RI
Historical WWTP Biosolid Application Area	Historical WWTP Biosolid Application		•	0	Further Evaluation
Notes: 1 This area will be a	ssessed during the RI to det	ermine if 1	the contamination pr	esent poses a detri	mental

. This area will be assessed during the RI to determine if the contamination present poses a detrimental impact on human health for personnel at the facility or the environment.

WWTP = Wastewater Treatment Plan

325

1. INTRODUCTION

327 1.1 PROJECT AUTHORIZATION

328 The Army National Guard (ARNG) G-9 is the lead agency in performing Preliminary

329 Assessments (PAs) and Site Inspections (SIs) at ARNG facilities nationwide based on the current

330 or potential historical use of per- and polyfluoroalkyl substances (PFAS) with a focus on six

compounds presented in the memorandum from the Office of the Secretary of Defense (OSD)

dated 6 July 2022 (Assistant Secretary of Defense 2022). The six compounds listed in the OSD

memorandum will be referred to as "relevant compounds" throughout this document and include

perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic

acid (PFBS), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and

hexafluoropropylene oxide-dimer acid (HFPO-DA)² at ARNG facilities nationwide. The ARNG performed this SI at the Army Aviation Support Facility (AASF) in Santa Fe, New Mexico. The

338 Santa Fe AASF will be referred to as the "Facility" throughout this report.

339

340 The SI project elements were performed in accordance with the Comprehensive

341 Environmental Response, Compensation, and Liability Act (CERCLA) (U.S. Environmental

342 Protection Agency [USEPA] 1980), as amended, the National Oil and Hazardous Substances

343 Pollution Contingency Plan (40 Code of Federal Regulations Part 300) (USEPA 1994), and in

344 compliance with Army requirements and guidance for field investigations.

345

346 **1.2 SITE INSPECTION PURPOSE**

A PA was performed at the Facility (AECOM Technical Services, Inc. [AECOM] 2020) that

identified one Area of Interest (AOI) where PFAS-containing materials were used, stored, and/or

disposed, or areas where known or suspected releases to the environment occurred. The objective

of the SI is to identify whether there has been a release to the environment from the AOI

identified in the PA and determine whether further investigation is warranted, a removal action is

required to address immediate threats, or no further action is required based on screening levels (SLs) for the relevant compounds. During the SI planning phase and review of the historical

353 (SLs) for the relevant compounds. During the SI planning phase and review of the historical 354 aerial photographs, it was noted that application of biosolids extended on to the current Santa Fe

AASF lease area to the north end of the current AASF building prior to the 2012 renovations of

the Facility. This area was therefore designated for further evaluation under this SI.

² Of the six PFAS compounds presented in the 6 July 2022 OSD memorandum, HFPO-DA (commonly referred to as GenX) was not included as an analyte at the time of this SI, as screening values were established after SI planning and execution. However, ARNG will add HFPO-DA to the list of constituents sampled during the next phase of CERCLA, if warranted.

2. SITE BACKGROUND

359 2.1 SITE LOCATION AND DESCRIPTION

360 The Santa Fe AASF is located within the incorporated limits of and approximately 10 miles 361 southwest of downtown Santa Fe, New Mexico. The 22-acre Facility is located on the northwest 362 corner of the Santa Fe Regional Airport (SAF) and is leased to the New Mexico Army National 363 Guard (NMARNG) by the City of Santa Fe (City). The land was acquired in 1976, and the 364 original Facility was constructed in 1979. The original facility consisted of an AASF building 365 and hangar and a small parking apron for helicopters. In 2012, the Facility was completely 366 renovated with a new, larger AASF building constructed adjacent to the former AASF building, 367 and the former AASF building converted to the Santa Fe Readiness Center (AECOM 2020). 368 369 The properties immediately surrounding the AASF are also owned by the City, with the Santa Fe

369 The properties immediately surrounding the AASF are also owned by the City, with the Santa Fe 370 Wastewater Treatment Plant (WWTP) to the north, and the Santa Fe Regional Airport

371 immediately to the west, south, and east (**Figure 2-1**) (AECOM 2020).

372

373 2.2 FACILITY ENVIRONMENTAL SETTING

The AASF is at an elevation of approximately 6,330 feet (ft) above mean sea level (amsl). The Facility is covered by the U.S. Geological Survey Turquoise Hill 7.5-minute quadrangle

376 topographic map. The geographic coordinates for the center of the Facility are 106°18'31.454"W;

377 35°37'27.146"N. The Facility is developed with two large buildings, three small structures,

and a helicopter parking apron. One building, built in 1979 and renovated in 2012, is the former

AASF and the current administration headquarters for the Santa Fe Readiness Center. The

380 second building is the current AASF, which is comprised of a 75,000-square-foot (ft²) hangar/

- administration building. A 16,400- ft² storage building; a guard house; fuel storage area; and
- 382 455,000 ft² of concrete airfield paving also exist on the property (AECOM 2020). Topography of
- the area is displayed in **Figure 2-2**. The regional geology and groundwater features are shown on
- Figure 2-3. The regional surface water features and drainage basins are shown on Figure 2-4.
 Groundwater elevations and contours, if applicable, are presented on Figures 2-5 and 2-6.
- 386

387 2.2.1 Geology

The City of Santa Fe, New Mexico, is located on the east border of the Rio Grande trough, in the Española Basin, within the Rio Grande Rift. The basin formed during 25 million years of plate

tectonic stress pulling the land apart and causing a vast expanse of land to subside. When these

basins formed, large amounts of sediment filled the basin from the ancient flow of the Rio

392 Grande and from volcanic eruptions. These sediments, which fill the basin, make up an aquifer

393 system that contains the primary source of water for most residents who live in the basin

- 394 (AECOM 2020).
- 395

396 The Española basin in north-central New Mexico comprises the central portion of the Rio

397 Grande rift, which formed in response to rifting as early as Oligocene epoch. There are four main

398 physiographic units associated with the Santa Fe area: a complex of metamorphic and igneous

- 399 rocks from the Pre-Cambrian encompassing the Sangre de Cristo mountains in the eastern area;
- 400 sedimentary and volcanic rocks Neogene to Quaternary in age in the southwest; basalt flows of

401 Quaternary in the western Mesa; and basin fill sediments of the Santa Fe group in the intervening402 piedmont (AECOM 2020).

403

404 Most of the area consists of piedmont slopes underlain by late Cenozoic basin-filling deposits

405 called the Santa Fe marls. These marls are composed of silty sandstones, sand, and gravel
406 approximately 300 ft thick. This layer lies overtop of a bedrock floor that is made up of
407 sedimentary and igneous rocks (AECOM 2020).

408

409 Soils encountered during the SI were dominated by well-graded sand with interbedded gravel,

410 silt, and clay. Samples for grain size analyses were collected at two locations, AOI101-01 and

411 AOI01-02, and analyzed via ASTM International (ASTM) Method D-422. The results indicate

that the soil samples are comprised primarily of sand (30.5 to 50.3 percent [%]) and silt (57.3 to 412

413 41.3%). These results and field observations are consistent with the reported depositional
414 environment of the region. pH in soil samples ranged from 8.7 to 8.9. Total organic carbon

415 (TOC) concentrations ranged from 2,400 to 4,600 milligrams per kilogram (mg/kg).

416

417 **2.2.2 Hydrogeology**

418 Primary aquifers in the Española Basin are contained within the Tertiary-Quaternary Santa Fe

419 Group. Basin-fill aquifers of the Santa Fe Group are the principal groundwater resource for the

420 cities of Santa Fe, Española, and six Pueblo nations. The Santa Fe Group thickens to the west

421 and north, ranging from approximately 250 ft thick south of the City to greater than 10,000 ft

422 beneath the Pajarito Plateau west of Española. The Ancha Formation is a locally important
423 shallow aquifer that is present in the vicinity of the Facility (Johnson et al 2016). The Ancha

424 Formation is comprised of alluvial deposits associated with the ancestral Santa Fe River and the

425 alluvial slope deposits originating from the southwestern Sangre de Cristo Mountains. The

426 Tesuque Formation lies beneath the Ancha Formation and is in hydraulic communication with

427 aquifers within the overlying Ancha and Puye Formations. The highly heterogeneous and

428 complex nature of the Tesuque aquifer reflects its depositional environment of coalescing

429 alluvial fans, a heterogeneity that is compounded by discontinuities created by faulting. The

- 430 Santa Fe Group aquifers are in hydraulic communication with Precambrian rocks along the
- 431 eastern margin of the basin where most of the recharge occurs. Paleozoic limestones underlying
- the basin-fill aquifers, fractured Tertiary intrusive rocks, and Tertiary volcanics of the Jemez

433 volcanic field also locally produce water. Recharge within the basin is assumed to occur 434 primarily from the higher elevations with little or no recharge from the lower elevations becau

434 primarily from the higher elevations with little or no recharge from the lower elevations because

- 435 of high evapotranspiration and low precipitation (AECOM 2020).
- 436

437 Regional groundwater studies indicate that the Facility is near a groundwater divide and

that groundwater may travel southwest toward the Santa Fe River or south toward Arroyo

439 Hondo/Cienega Creek (Johnson et al 2016). Based on the SI, regional groundwater flows

south-southwest at the Facility. Numerous wells are located south and southwest of the Facility.

441 The nearest domestic well is located approximately 1 mile southwest of the Facility. A municipal

442 well located at the Santa Fe Airport is located a 0.5 mile southeast of the Facility (New Mexico

443 Office of the Engineer [NMOSE] 2022). These and other wells identified during the PA are

444 displayed on Figure 2-3.

445

- The City's drinking water comes from a nearly even split between groundwater from the
 Buckman and City Well Fields, and surface water from the Santa Fe and Rio Grande rivers. The
 City well fields are located within or northeast of Santa Fe (AECOM 2020), which are
 hydrologically upgradient of the Facility.
- 450
- 451 During the SI, perched groundwater was observed on the west side of the Facility at depths of
- 452 110–111 ft below ground surface (bgs). Groundwater flow direction of the perched groundwater
- 453 could not be calculated since it was encountered in only two drilling locations (**Figure 2-5**).
- 454 Depth to regional groundwater was observed at 176–185 ft bgs, which is consistent with
- d55 observations made at Santa Fe WWTP monitoring wells located east of the Facility (New
- 456 Mexico Environment Department [NMED] Ground Water Quality Bureau 2011). Measurements 457 made during the SI indicate that regional groundwater flows south-southwest with a gradient of
- 457 made during the SI indicate that regional g458 0.001 ft/ft (Figure 2-6).
- 459

460 **2.2.3 Hydrology**

461 The Facility's topography is relatively flat. It straddles two watersheds with the northern portion

- 462 within the Headwaters Santa Fe River Watershed and the southern portion within the Outlet
- 463 Santa Fe River Watershed. The surface water flow direction is generally to the southwest on both
- sides of the watershed divide. The Santa Fe River cuts through undeveloped land approximately
- 465 0.5 miles north of the Facility (AECOM 2020). Water features near the Facility are shown in
 466 Figure 2-4.
- 466 467
- 468 Consistent with regional surface water flow directions, historical imagery indicates that
- stormwater flowed to the southwest from the historical helicopter parking apron and other paved
- 470 areas. Stormwater also appears to have accumulated on either side of the taxiway historically.
- 471 There are two stormwater retention basins that currently receive water from the tarmac. A
- 472 stormwater detention pond north of the Readiness Center currently receives runoff and has an
- 473 outflow that is directed north. Historical imagery suggests that those areas were constructed
- 474 during the 2012 facility renovations and did not previously receive runoff. Current and historical
- areas that receive or appear to have received stormwater runoff are displayed in **Figure 2-4**.
- 476
- 477 The City of Santa Fe's surface water comes from the Santa Fe River and San Juan-Chama
- 478 Project water via the Rio Grande, both of which are treated through conventional and advanced
- 479 treatment processes to meet current permit regulations. The City of Santa Fe has a license to
- 480 store up to 3,985-acre ft (combined) of Santa Fe River water in McClure and Nichols Reservoirs.
- 481 Both municipal drinking water supply reservoirs are located east of Santa Fe (AECOM 2020).
- 482

483 **2.2.4** Climate

484 Santa Fe is located in north central New Mexico at an elevation of approximately 7,000 ft amsl.

- 485 January is the coldest month, with an average temperature of 30.5 degrees Fahrenheit (°F), while
- 486 July is the hottest month, with an average temperature of 70.1°F. Santa Fe receives an average of
- 487 14.2 inches of precipitation annually, with 5.85 inches falling during summer months. The City
- 488 receives an annual snowfall amount of 23 inches per year (AECOM 2020).

489 2.2.5 Current and Future Land Use 490 Presently, Santa Fe AASF resides on SAF property. Th

Presently, Santa Fe AASF resides on SAF property. The Facility is comprised of one hangar,
multiple administrative buildings, a paved parking area, a fueling station, and a small, paved
parking area. The current land use is listed as I-1 Light Industrial. Future land use is not
anticipated to change (AECOM 2020). The Facility is fenced and has restricted access. Land
directly to the north and east of the Facility is currently a WWTP biosolid application area
owned by the City of Santa Fe.

497 2.2.6 Critical Habitat and Threatened/Endangered Species

A wildlife survey has not occurred at the Facility, and the Facility does not have any significant
 areas of habitat. The following species have not been identified at the Facility but may be present
 in the surrounding area.

- 502 The following species are listed as federally endangered, threatened, proposed, and/or candidate 503 species in Santa Fe County, New Mexico (U.S. Fish and Wildlife Service 2022):
- Birds: Mexican Spotted Owl, *Strix occidentalis lucida* (Threatened); Southwestern
 Willow Flycatcher, *Empidonax traillii extimus* (Endangered); and Yellow-billed Cuckoo,
 Coccyzus americanus (Threatened)
 - Fishes: Rio Grande Cutthroat Trout, *Oncorhynchus clarkii virginalis* (Candidate); and Rio Grande Silvery Minnow, *Hybognathus amarus* (Endangered)
 - Insects: Monarch Butterfly, *Danaus plexippus* (Candidate)
 - Amphibians: Jemez Mountains Salamander, *Plethodon neomexicanus* (Endangered)
 - Mammal: New Mexico Meadow Jumping Mouse, Zapas hudsonius luteus (Endangered).
- 516 517

504

509

510

511 512

513 514

515

518 2.3 HISTORY OF PFAS USE

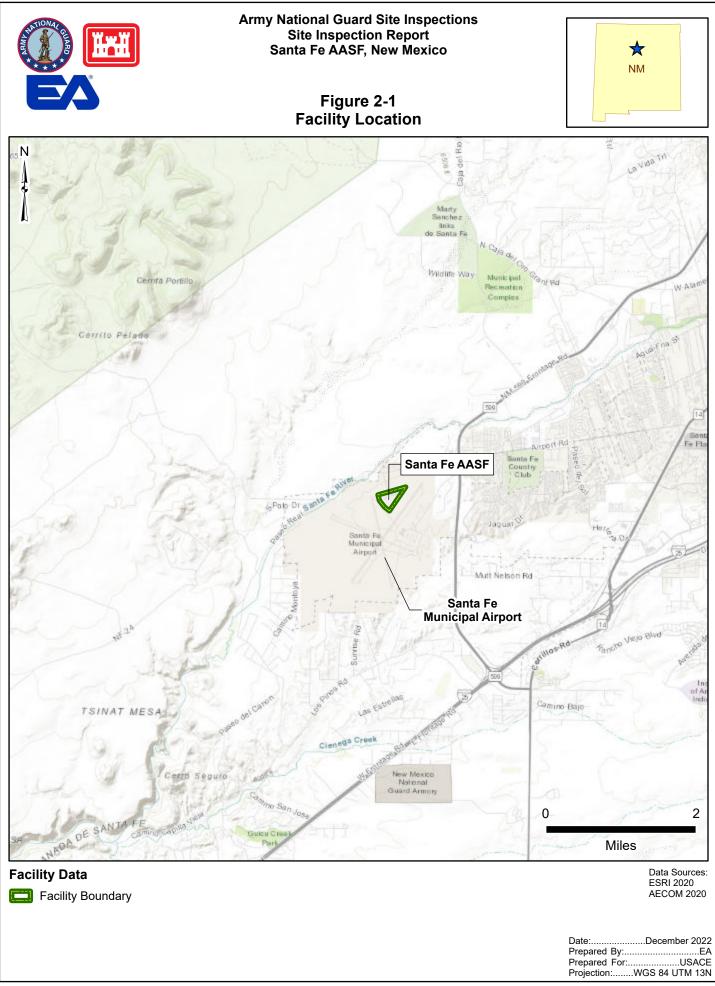
519 Two potential PFAS release areas were identified at the Facility during the PA (AECOM 2020).

520 The areas include the former AASF building and former Tri-MaxTM 70/30 hand-truck storage

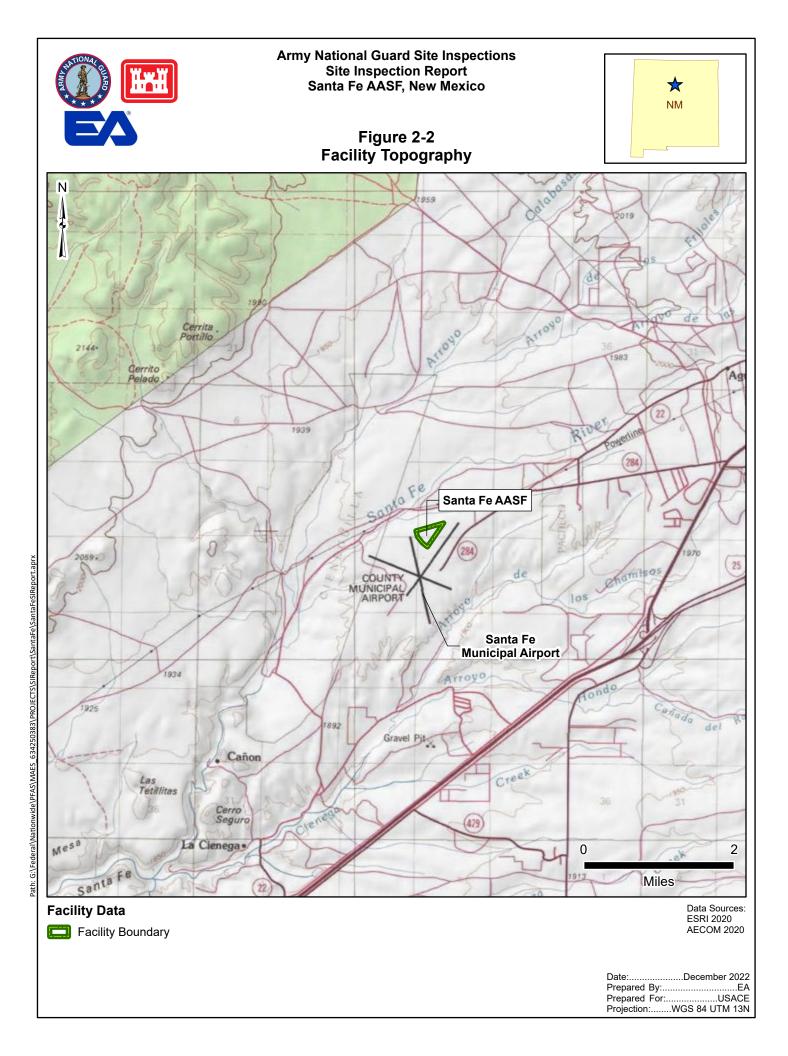
area, which consists of the flight line and paved parking apron. These two potential source areas are in close proximity to one another and have co-mingling stormwater runoff. As a result, these

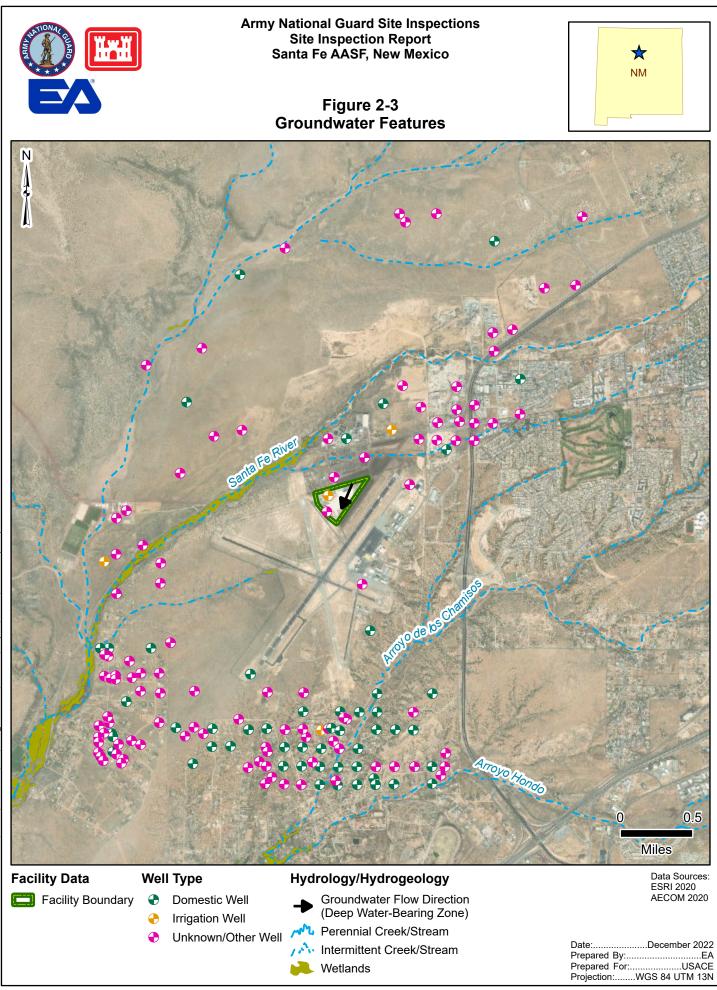
- 523 areas were combined and together comprise AOI 1.
- 524

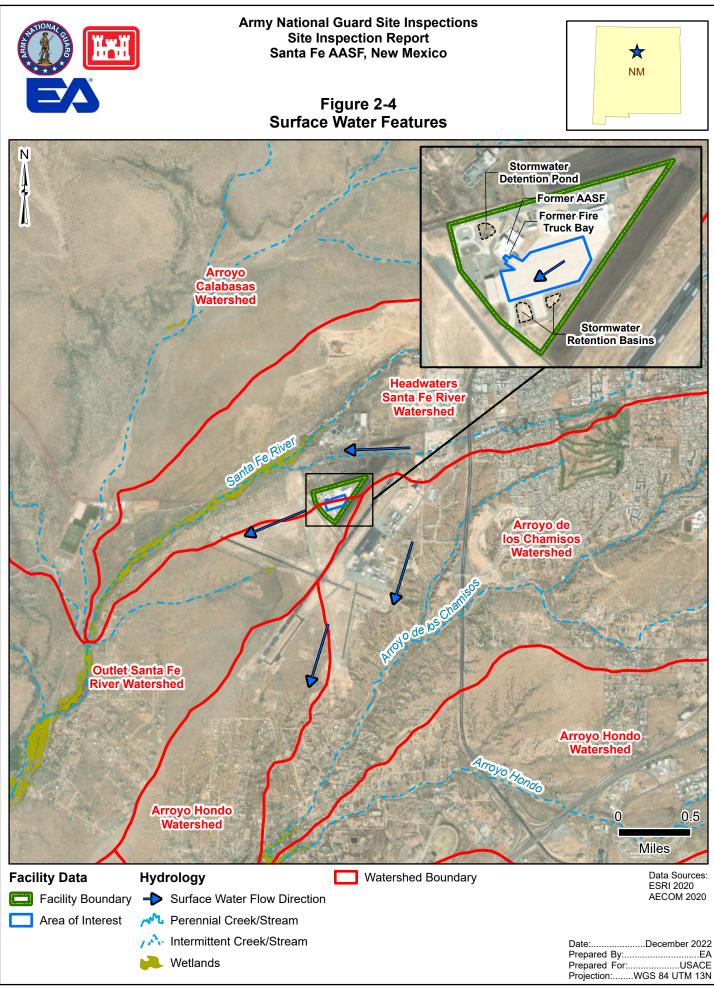
525 Personnel interviews confirmed that a firetruck parked within the former AASF building stored 526 aqueous film-forming foam (AFFF). Personnel indicate that it was never used because no one at 527 the Facility was qualified to use it; however, there is a possibility that the firetruck stored inside

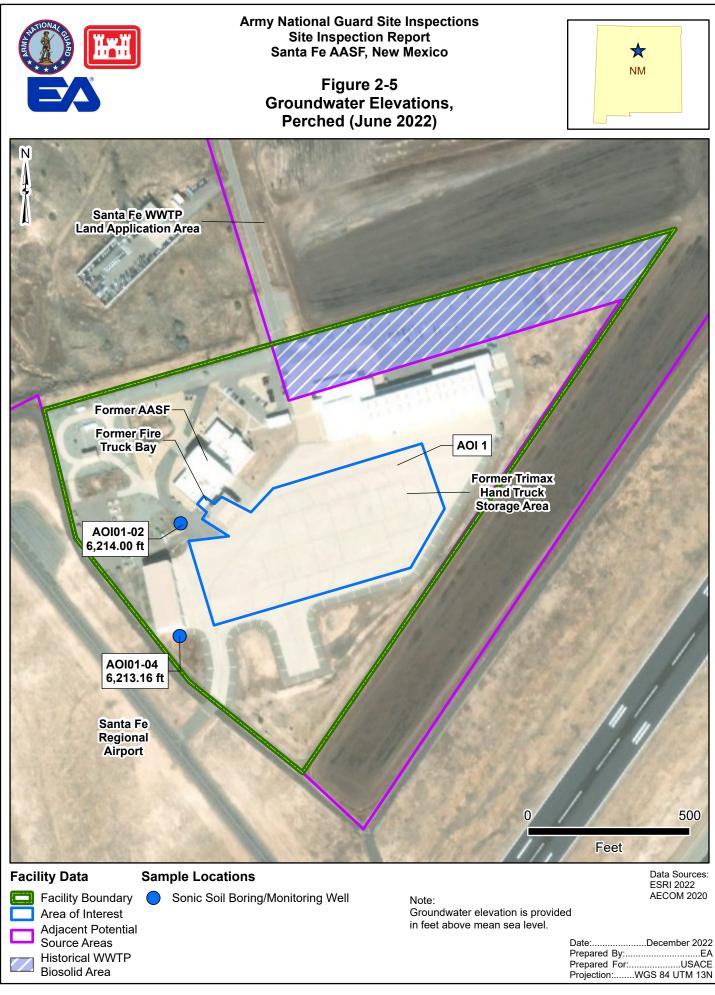

528 the former AASF Facility may have leaked AFFF or may have had its AFFF tank flushed out

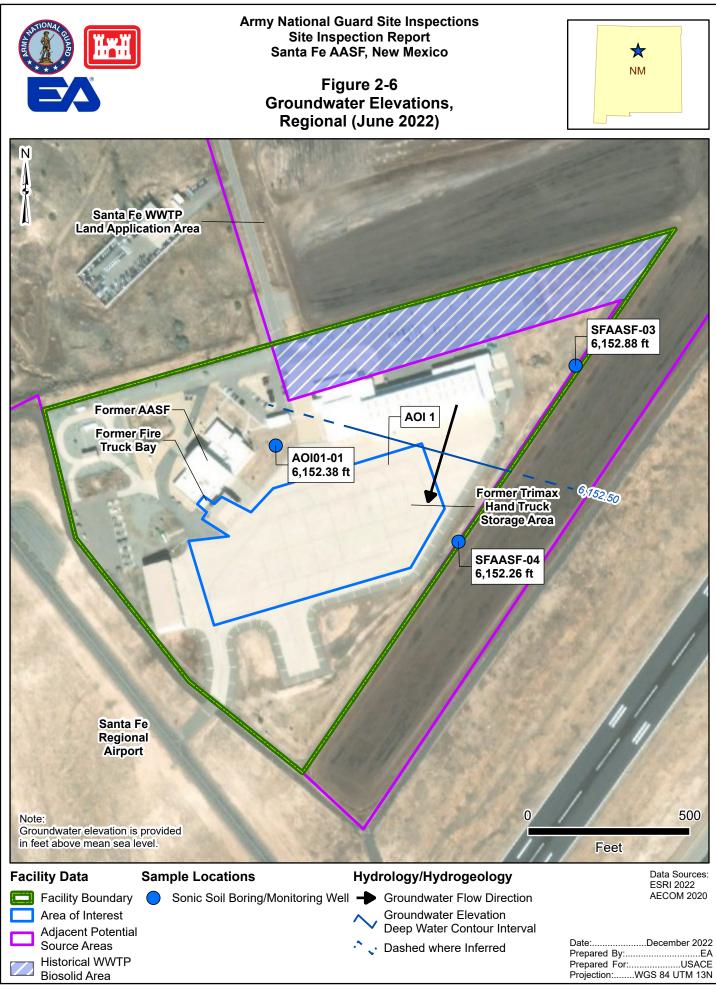
529 during maintenance. There are no records or recollection of the AFFF stored on this firetruck


530 being used or spilled.


531


- 532 Prior to the 2012 facility renovation, Tri-MaxTM 70/30 hand trucks were stored in various places
- around the flight line and paved parking apron and constitute a potential PFAS source within
- AOI 1. The hand trucks were regularly serviced. Service for Tri-MaxTM 70/30 hand trucks may
- 535 include nozzle checks that can result in an AFFF discharge. According to personnel, the Tri-
- 536 MaxTM hand trucks were only used for 4 to 5 years in the mid-2000s and were turned in because
- 537 they were too expensive to maintain. There is no recollection or record of any training conducted 538 with these units or nozzle testing performed. A description of AOI 1 and its potential release
- areas are presented in Section 3.


Path: G:\Federal\Nationwide\PFAS\MAES_634250383\PROJECTS\SIReport\SantaFe\SantaFeSIRe



634250383\PROJECTS\SIReport\SantaFe\SantaFeSIRe Path: G:\Federal\Nationwide\PFAS\MAES

3. SUMMARY OF AREAS OF INTEREST

566 The PA evaluated areas where PFAS-containing materials may have been used, stored, disposed, 567 or released historically. Based on the PA findings, one potential release area was identified at the 568 Santa Fe AASF: AOI 1 Former Firetruck Bay and Tri-MaxTM Hand Truck Storage Area.

Additionally, there are off-facility potential source areas as detailed in Section 3.2. The potential source areas are shown on Figure 3-1 and described in subsequent sections.

571

572 3.1 AOI 1 – FORMER FIRETRUCK BAY AND TRI-MAXTM HAND TRUCK 573 STORAGE AREA

AOI 1 consists of the Santa Fe AASF Former Firetruck Bay and Tri-MaxTM Hand Truck Storage Area. Each of these areas is described below and shown on **Figure 3-1**.

576

577 **3.1.1 Former Firetruck Bay**

578 The former AASF building, which is now the current Santa Fe Readiness Center, is located on 579 the western portion of the Facility and historically housed a single firetruck within a bay. The 580 firetruck was stored in this bay for an unknown length of time, but it was sold in 2005 to the 581 Santa Fe Fire Department. Personnel interviews confirmed that the firetruck stored AFFF foam, 582 but it was never used because no personnel at the Facility were qualified to use it. There are no 583 records or recollection of the use or release of the AFFF stored on the firetruck; however, there is a possibility that the firetruck stored may have leaked AFFF or had its AFFF tank flushed out 584 585 during maintenance. 586 587 The building was renovated in 2012 and received a new roof, exterior wall openings and 588 finishes, interior walls, floor finishes, ceilings, and lighting. Mechanical, electrical, plumbing,

589 fire protection, telecommunication, and security systems were replaced as well. There is no floor

drain in the remodeled bay and no evidence one was previously present. The current Santa Fe

591 Readiness Center building does not currently house any materials containing AFFF (AECOM

- 592 2020).
- 593

594 **3.1.2** Former Tri-MaxTM Hand Truck Storage Area

595 The flight line and paved parking apron currently stretch across the majority of the Facility and

are directly adjacent to both the current and former AASF buildings. The area was expanded

and repaved in 2012 during the construction and renovation of the Facility. Prior to the 2012

renovation, Tri-MaxTM 70/30 hand trucks were stored in various places around the flight line and

- parking apron and were regularly serviced. Service for Tri-MaxTM 70/30 hand trucks may include
- 600 nozzle checks that can result in an AFFF discharge. According to personnel, the Tri-MaxTM hand 601 truels were only used for 4 to 5 were in the mid 2000s and their were discontinued by
- 601 trucks were only used for 4 to 5 years in the mid-2000s and their use was discontinued because 602 they were too expensive to maintain. There is no recollection or record of any training conducted
- 603 with these units or nozzle testing performed. Interviewees were unsure about when or where,
- specifically, the Tri-MaxTM units were turned in, but they no longer exist at the Facility and have
- since been replaced with fire extinguishers that do not contain PFAS (AECOM 2020).

606 3.2 ADJACENT AND HISTORICAL POTENTIAL SOURCES

Two potential off-facility sources of PFAS are located adjacent to the Facility and are not under
the control of the NMARNG. A description of each potential off-facility source is presented
below and shown on Figure 3-1.

610

611 **3.2.1 Santa Fe Regional Airport**

612 The SAF is a public airport that opened in 1941 and covers 2,128 acres. The SAF has three 613 active asphalt runways. Interviews with NMARNG facility staff and a historical records search 614 provided little information regarding use of AFFF at SAF; however, the records search detailed 615 two emergency incidents that happened on or near the runway on 27 November 2018, and on 616 8 April 2019. According to a local news source, the first crash occurred when a single-engine 617 Mooney M20 crashed just short of the runway and burst into flames. The second crash happened 618 several months later, when a two-seater aircraft crashed and burst into flames at the airport on a 619 secondary runway just south of the AASF Facility (AECOM 2020). Fire Station 10 supports the 620 Santa Fe Airport with a crash rescue fire truck (City of Santa Fe 2022), which is presumably 621 AFFF-enabled. As a result, the entirety of the airport is considered a potential AFFF release area. 622 The Santa Fe Regional Airport is located upstream of surface water flow and cross-gradient to 623 groundwater flow at the time of gauging.

624

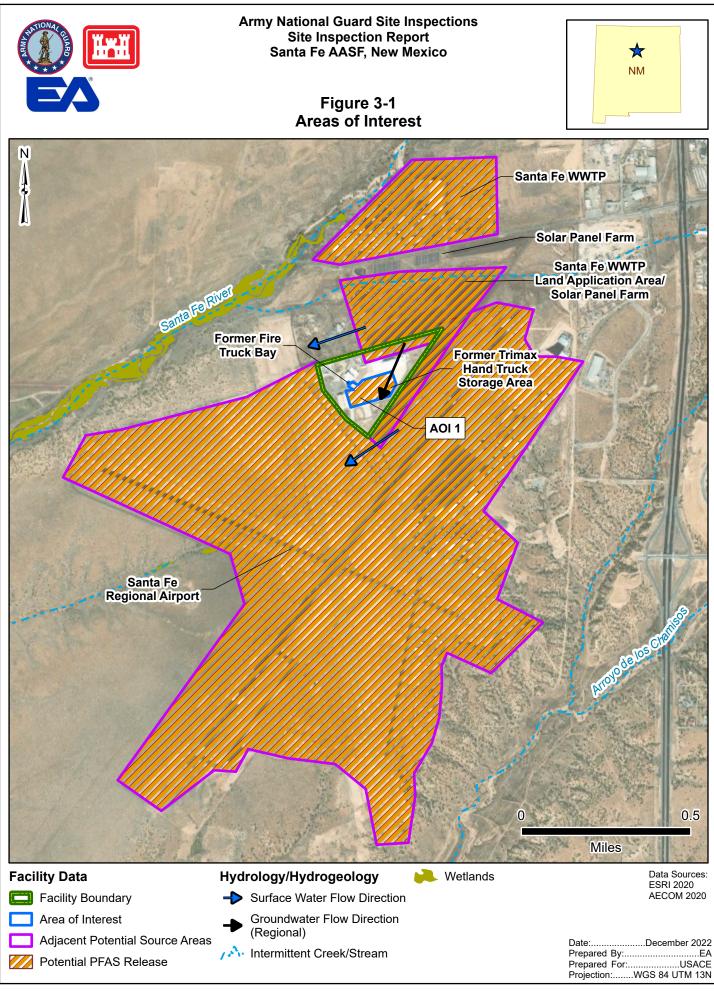
625 3.2.2 Santa Fe WWTP, Associated Land Application Areas, and Solar Panel Farm

626 The Santa Fe WWTP is located north of the Santa Fe AASF. Areas to the north and east of the

627 Santa Fe AASF are currently used for land application of biosolids. Within the Santa Fe WWTP

628 Land Application area is a solar panel farm, which is also a potential source of PFAS due to the

629 use of fluoropolymers in the construction of solar panels. Based on historical aerial


630 photographs, application of biosolids extended into the current Santa Fe AASF lease area;

631 biosolid land application extended to the north end of the current AASF building prior to the

632 2012 renovations of the Facility (Figure 3-1). Although WWTPs are not usually primary

633 potential release areas of PFAS, sludges and liquids from areas of potential release that are

treated at WWTPs can create a secondary source of contamination.

639
057

4. PROJECT DATA QUALITY OBJECTIVES

640 As identified during the data quality objective (DOO) process and outlined in the SI Uniform 641 Federal Policy- (UFP) Quality Assurance Project Plan (QAPP) Addendum (EA Engineering, 642 Science, and Technology, Inc., PBC [EA] 2021a), the objective of the SI is to identify whether 643 there has been a release to the environment at the AOI identified in the PA. For each AOI, 644 ARNG determines if further investigation is warranted, a removal action is required to address 645 immediate threats, or whether no further action is warranted. This SI evaluated groundwater and 646 soil for presence or absence of relevant compounds at the sampled AOI. 647 648 4.1 **PROBLEM STATEMENT** 649 ARNG will recommend AOIs for remedial investigation (RI) if site-related soil and groundwater 650 samples have concentrations of the relevant compounds above the OSD risk-based screening 651 levels. The SLs are presented in Section 6.1. 652 653 4.2 **INFORMATION INPUTS** 654 Primary information inputs for the SI include the following: 655 656 The PA Report for the Santa Fe AASF (AECOM 2020) • 657 658 Analytical data collected during other environmental sampling efforts at each ARNG • 659 facility 660 661 Groundwater and soil sample data collected as part of this SI in accordance with the • site-specific UFP-QAPP Addendum (EA 2021a) 662 663 664 Field data collected including groundwater elevation and water quality parameters • 665 measured at the time of sampling. 666 667 **STUDY BOUNDARIES** 4.3 668 The scope of the SI was bounded horizontally by the property limits of the Facility (Figure 2-2).

The scope of the SI was bounded horizontally by the property limits of the Facility (Figure 2-2). Off-facility sampling was not included in the scope of this SI. If future off-facility sampling is required, the proper stakeholders will be notified, and necessary rights of entry will be obtained by ARNG with property owner(s). The scope of the SI was vertically bounded as follows: groundwater (110–185 ft bgs), soil from hand-auger borings (0–2 ft bgs), soil from direct-push technology (DPT) borings (15 ft bgs), and soil from sonic drilling borings (197 ft bgs). Temporal boundaries were limited to the earliest available time field resources were available to complete the study.

- 677 4.4 ANALYTICAL APPROACH
- 678 Samples were analyzed in accordance with Department of Defense (DoD) Quality Systems
- 679 Manual (QSM) Version 5.3 by Eurofins Lancaster Laboratories Environmental, LLC, accredited
- 680 under the DoD Environmental Laboratory Accreditation Program (ELAP) (DoD ELAP;

- 681 Accreditation No. 1.01). PFAS data underwent 100 % Stage 2B validation in accordance with
- the DoD General Data Validation Guidelines (2019) and DoD Data Validation Guidelines
- 683 Module 3: Data Validation Procedure of PFAS Analysis by QSM Table B-15 (2020).
- 684
- 685 Data were compared to applicable SLs and decision rules as defined in the UFP-QAPP
- 686 Addendum (EA 2021b).
- 687

688 4.5 DATA USABILITY ASSESSMENT

689 The Data Usability Assessment (DUA), which is provided in Appendix A, is an evaluation at the

690 conclusion of data collection activities that uses the results of both data verification and

validation in the context of the overall project decisions or objectives. Using both quantitative

and qualitative methods, the assessment determines whether project execution and the resulting

data have met installation-specific DQOs. Both sampling and analytical activities are considered

to assess whether the collected data are of the right type, quality, and quantity to support the

695 decision-making (DoD 2019a, 2019b; USEPA 2017).

696

Based on the DUA, the environmental data collected during the SI were found to be acceptable

and usable for this SI evaluation with the qualifications documented in the DUA and its

699 associated data validation reports. These data are of sufficient quality to meet the objectives and

requirements of the UFP-QAPP Addendum (EA 2021b).

701	5. SITE INSPECTION ACTIVITIES
702 703 704 705	This section describes the environmental investigation and sampling activities that occurred as part of the SI. The SI sampling approach was based on the findings of the PA and was implemented in accordance with the following approved documents:
706 706 707 708	• Final Preliminary Assessment Report, Santa Fe Army Aviation Support Facility, dated August 2020 (AECOM 2020)
709 710 711 712	• Final Programmatic Uniform Federal Policy-Quality Assurance Project Plan, Site Inspections for Per- and Polyfluoroalkyl Substances Impacted Sites, ARNG Installations, Nationwide, dated December 2020 (EA 2020a)
712 713 714 715 716	• Final Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Santa Fe Army Aviation Support Facility, Santa Fe, New Mexico dated December 2021 (EA 2021b)
717 718 719	• <i>Final Programmatic Accident Prevention Plan, Revision 1,</i> dated November 2020 (EA 2020b)
720 721 722	• Final Accident Prevention Plan/Site Safety and Health Plan Addendum, Santa Fe Army Aviation Support Facility, New Mexico, dated August 2021 (EA 2021a).
723 724 725 726 727 728 729 730	The SI field activities were conducted during two mobilizations. Field activities for the first mobilization were conducted from 7 to 8 February 2022 and consisted of hand augering and surface soil sample collection. The second mobilization was conducted 25 April through 3 June 2022. Field activities included sonic and DPT drilling, collection of soil samples, installation of permanent monitoring wells, groundwater gauging and sampling, and collection of spatial data. Field activities were conducted in accordance with the UFP-QAPP Addendum (EA 2021a), except as noted in Section 5.8 .
731 732 733 734	The following samples were collected during the SI and analyzed for a subset of 24 compounds via liquid chromatography with tandem mass spectrometry (LC/MS/MS) compliant with QSM Version 5.3 Table B-15 to fulfill the project DQOs:
735 736	• Eighteen (18) surface soil samples collected by hand auger from 16 locations
737 738 739	• Fifteen (15) shallow subsurface samples collected by direct push/sonic drilling from 10 locations
740 741	• Eight (8) deep subsurface samples collected from 6 locations by sonic drilling
742 743	• Six (6) groundwater samples from 5 groundwater monitoring wells
744	• Nineteen (19) field blanks

• Twenty-one (21) equipment rinsate samples.

746 Figure 5-1 provides the sample locations for all media across the Facility. Figure 5-2 displays 747 the sample locations with historical imagery to show features and Facility layout before the 748 facility renovation. Table 5-1 presents the list of samples collected for each medium. Field 749 documentation is provided in Appendix B. A log of Daily Notice of Field Activity was 750 completed throughout the SI field activities, which is provided in Appendix B1. Field notes are 751 provided in Appendix B2. Survey data is presented in Appendix B3. Field change request forms 752 are provided in Appendix B4. Additionally, a photographic log of field activities is provided in 753 Appendix C. 754

755 5.1 PRE-INVESTIGATION ACTIVITIES

In preparation for the SI field activities, project team members participated in Technical Project
 Planning (TPP) meetings, performed utility clearance, and sampled decontamination source
 water. Details of these activities are presented below.

760 5.1.1 Technical Project Planning

The U.S. Army Corps of Engineers (USACE) TPP Process, Engineer Manual (EM) 200-1-2 (Department of the Army 2016) defines four phases to project planning: (1) defining the project phase; (2) determining data needs; (3) developing data collection strategies; and (4) finalizing the data collection plan. The process encourages stakeholder involvement in the SI, beginning with defining overall project objectives, including DQOs, and formulating a sampling approach to address the AOIs identified in the PA.

767

759

A combined TPP Meeting 1 and 2 was held on 1 October 2021, prior to SI field activities and included a site walk with stakeholders. The combined TPP Meeting 1 and 2 was conducted in general accordance with EM 200-1-2. The stakeholders for this SI include ARNG, NMARNG, USACE, and the NMED, representatives familiar with the Facility, the regulations, and the community. Stakeholders were provided the opportunity to make comments on the technical sampling approach and methods at the combined TPP Meeting 1 and 2. The outcome of the combined TPP Meeting 1 and 2 was memorialized in the UFP-QAPP Addendum (EA 2021b).

775

A TPP Meeting 3 was held after the field event to discuss the results of the SI. Meeting minutes
for TPP 3 are included in **Appendix D** of this report. Future TPP meetings will provide an
opportunity to discuss the results and findings, and future actions, where warranted.

779

780 5.1.2 Utility Clearance

781 EA contracted MT Private Utility Locating Services, LLC, a private utility location service, to

perform utility clearance at the Facility. Utility clearance was performed at each of the proposed

boring locations on 7 February 2022 with input from the EA field team. It was discovered that

incorrect locations received utility clearance for AOI01-02 and AOI01-06. As a result, the

corrected locations were surveyed on 27 April 2022. General locating services were used to

complete the clearance. Additionally, the first 5 ft of each boring were pre-cleared by EA's

drilling subcontractors using a hand auger to verify utility clearance in shallow subsurface whereutilities would typically be encountered.

789

790 5.1.3 Source Water and PFAS Sampling Equipment Acceptability

791 The potable water source used for decontamination of drilling equipment was sampled prior to

the start of field activities and confirmed to be acceptable for this use during the SI. A potable

water source sample was collected at the wash rack on 14 October 2021, prior to mobilization,

and analyzed for PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15. The results

of the decontamination water sample associated with the wash rack spigot source used during the

SI are provided in Appendices F and G. A discussion of the results is presented in the DUA(Appendix A).

798

799 Materials that were used within the sampling zone were confirmed as acceptable for use in the

- 800 PFAS sampling environment. The checklist of acceptable materials for use in the PFAS sampling
- 801 environment was provided in the Standard Operating Procedures provided as Appendix B to the
- 802 Programmatic UFP-QAPP (EA 2020a).
- 803

804 5.2 SOIL BORINGS AND SOIL SAMPLING

A hand auger was used to collect surface soil samples from 0 to 2 ft bgs. It was also used to

806 collect soil from the top 5 ft of the boring in compliance with utility clearance procedures. For

boring locations advanced to a depth greater than 5 ft, soil samples were collected via sonic or

808 DPT drilling methods in accordance with 025 *Standard Operating Procedure for Soil Sampling*

809 (EA 2021b). Soil borings associated with monitoring wells were installed with a truck-mounted 810 Boart LS600 full-sized sonic rig. Continuous soil cores were collected to the target depth. For

811 15-ft borings, a Geoprobe[®] 7822DT dual-tube sampling system was used.

812

813 At hand auger borings, a soil sample was collected from 0 to 2 ft bgs with a total depth of 2 ft

- bgs. Three discrete soil samples were collected for chemical analysis from all other soil borings:
- one sample at the surface (0 to 2 ft bgs) and two subsurface soil samples. In 15-ft DPT borings,
- subsurface soil samples were collected at 6–8 ft bgs and 13–15 ft bgs. In deeper soil borings
- 817 associated with monitoring wells and drilled with sonic, one subsurface soil sample was
- 818 collected at the 13–15 ft bgs interval, and one sample was collected approximately 1 ft above the
- groundwater table. Total depth for soil borings associated with monitoring wells ranged from
- 820 110 to 184 ft bgs. Note that subsurface soil samples were not collected at SFAASF-03;
- 821 concentrations in sub-surface soil are considered to be represented by the samples collected at
- 822 SFAASF-03-PA due to the close proximity of the two borings.
- 823

All soil sample locations are shown on **Figures 5-1** and **5-2** and boring sample depths are

- provided in **Table 5-1**. The soil boring locations were selected based on the AOI information
- 826 provided in the PA (AECOM 2020) and as agreed upon by stakeholders during the TPP and
- review of the UFP-QAPP Addendum (EA 2021b), with several exceptions. Soil boring locations
- AOI01-06B, AOI01-09, and SFAASF-03-PA are not included in the UFP-QAPP Addendum but
- 829 are discussed in Section 5.8.

- During drilling, soil cores were continuously logged for lithological descriptions by a field
 geologist using the Unified Soil Classification System. A photoionization detector (PID) was
 used to screen the breathing zone during boring activities as a part of personal safety
 requirements. Observations and measurements were recorded boring log forms in a non-treated
 field logbook. Depth interval, recovery thickness, PID concentrations, moisture, relative density,
 Munsell color, and Unified Soil Classification System texture were recorded. Soil borings
 SFAASF-03 and AOI01-09 were not logged due to their close proximity (17 ft or less) to
- soil borings SFAASF-03-PA and AOI01-01, respectively. The boring logs are provided in
- 838 Appendix E.839
- Boreholes advanced to a maximum depth of 2 ft bgs were filled with bentonite. Boreholes
 advanced to a maximum depth of 15 ft bgs were backfilled with material removed from the
 borehole and then bentonite pellets filled the remainder to land surface except for boring AOI01-
- 843 06B which was filled with bentonite and the cuttings were drummed.
- 844

Each sample was collected into a laboratory-supplied PFAS-free high-density polyethylene

- 846 (HDPE) bottle and labeled using a PFAS-free marker or pen. Samples were packaged on ice
- and transported via Federal Express (FedEx) under standard chain-of-custody procedures to
- the laboratory and analyzed for PFAS (LC/MS/MS compliant with QSM Version 5.3 Table
- 849 B-15), TOC (USEPA Method 9060A) and pH (USEPA Method 9045D) in accordance with the
- 850 UFP-QAPP Addendum (EA 2021b).
- Field duplicate (FD) samples were collected at a rate of 10% and analyzed for the same
- 852 parameters as the accompanying samples. Matrix spike (MS)/matrix spike duplicates (MSDs)
- 853 were collected at a rate of 5% and analyzed for the same parameters as the accompanying
- samples. In instances when non-dedicated sampling equipment was used, such as a hand auger
- 855 for the shallow soil samples, one equipment blank (EB) was collected per day and analyzed for
- the same parameters as the soil samples. One field blank (FB) was collected per day. A
- temperature blank was placed in each cooler to ensure that samples were preserved at or below
- 858 6 degrees Celsius (°C) during shipment. After removal of the drilling equipment, boreholes were
- 859 abandoned using bentonite chips. In borings installed on paved surfaces, the borings were
- abandoned by backfilling with bentonite chips. Borings were installed in unpaved areas to avoid
 disturbing concrete or asphalt surfaces.
- 862

863 5.3 MONITORING WELL INSTALLATION AND GROUNDWATER GRAB 864 SAMPLING

- 865 Monitoring wells were installed using a truck-mounted Boart LS600 full-sized sonic rig. Once 866 the borehole was advanced to the desired depth, a monitoring well was constructed of a 20-ft
- the borehole was advanced to the desired depth, a monitoring well was constructed of a 20-ft section of 2-inch Schedule 80 polyvinyl chloride (PVC) screen with sufficient casing to reach the ground surface. The screen intervals for the monitoring wells are provided in **Table 5-2**.
- 869
- 870 Two wells were installed and subsequently plugged and abandoned due to the lack of water
- 871 production (AOI01-09) or the presence of grout in the well (SFAASF-03-PA). Upon the
- 872 completion of SFAASF-03-PA, the well was gauged and found to contain grout. The well was
- abandoned by filling the PVC pipe with bentonite chips from a depth of 197 to 138.8 ft and
- adding water to hydrate overnight. The next day the top 5 ft of PVC was removed and a tremie

pipe was inserted to fill the rest of the well/borehole with mixed grout 136 ft to ground surface.

876 After AOI01-09 was completed to the target depth, the well was left overnight to allow any

877 groundwater to accumulate. No groundwater accumulated so the well was abandoned by

removing the entire PVC pipe and pumping mixed grout to fill the open borehole to groundsurface.

880

881 Groundwater samples were collected using a PFAS-free Geosub pump and PFAS-free HDPE

tubing. Samples were collected at least 1 week after well development. Each sample was
 collected in laboratory-supplied PFAS-free HDPE bottles and labeled using a PFAS-free marker

or pen. The monitoring wells were purged at a rate determined in the field to reduce turbidity and

draw down prior to sampling. Water quality parameters (e.g., temperature, specific conductance,

pH, dissolved oxygen, and oxidation-reduction potential) were measured using a water quality
 meter and recorded on the field sampling form (Appendix B2) before each grab sample was

collected in a separate container. Samples were packaged on ice and transported via FedEx under

- standard chain-of-custody procedures to the laboratory and analyzed for PFAS by LC/MS/MS
- 890 compliant with QSM Version 5.3 Table B-15 in accordance with the UFP-QAPP Addendum (EA
- 891 2021b). Additionally, a separate groundwater sample was collected for the purpose of conducting
- a field-administered shake test to observe the presence or absence of foam.
- 893

Field duplicate samples were collected at a rate of 10% and analyzed for the same parameters as the accompanying samples. MS/MSDs were collected at a rate of 5% and analyzed for the same parameters as the accompanying samples. One FB per day was collected in accordance with the UFP-QAPP Addendum (EA 2021b). A minimum of one EB was collected per day and analyzed for the same parameters as the groundwater samples due to the use of a non-dedicated pump. A temperature blank was placed in each cooler to ensure that samples were preserved at or below 6°C during shipment.

900 6°C 901

902 5.4 SYNOPTIC WATER LEVEL MEASUREMENTS

903 Groundwater levels were measured and used to calculate facility-wide groundwater elevations

and assess groundwater flow direction. Synoptic water-level elevation measurements were

905 collected on 3 June 2022 from the groundwater monitoring wells, taken from the survey mark

906 on the northern side of the well casing. Groundwater elevation maps for perched and regional

907 groundwater are provided in Figures 2-5 and 2-6, respectively. Groundwater elevation data are 908 provided in Table 5-3.

908

910 **5.5 SURVEYING**

911 The northern side of each new temporary well casing was surveyed using a Trimble R10

- 912 real-time kinematic differential Global Positioning System (GPS). Positions are provided in the
- 913 applicable Universal Transverse Mercator zone projection with North American Datum 1983
- 914 (horizontal) and North American Vertical Datum 1988 using Geoid 18 (vertical). Surveying data
- 915 were collected on 3 June 2022 and are provided in Appendix B3.
- 916
- 917 GPS locations for soil borings and land application of soil cuttings were collected using a
- 918 Trimble Geo 7x by EA on 19–20 May 2022 and 17 June 2022. Coordinates were differentially

919 corrected, and point locations meet accuracy objectives outlined in the UFP-QAPP Addendum
920 Worksheet #22 (EA 2021b). Coordinates are presented in Appendix B3.

921

922 **5.6 INVESTIGATION-DERIVED WASTE**

As of the date of this report, the disposal of PFAS investigation-derived waste (IDW) is not regulated federally. PFAS IDW generated during the SI is considered non-hazardous waste. The waste was managed according to a set of decision rules approved by ARNG, NMARNG, and NMED and documented in Field Change Request 1. PFAS concentrations from Mobilization 1 were compared to the industrial screening levels published in the Risk Assessment Guidance for Investigations and Remediation, Volume 1 (NMED 2021) for the purpose of directing IDW management for Mobilizations 1 and 2.

930

931 Surface soil collected during Mobilization 1 had concentrations below NMED industrial SLs. In

accordance with the IDW decision rules outlined in Section 5.8, these cuttings were land applied.

All land application areas were recorded with a GPS. Appendix B3 contains maps displaying

- 934 land application areas and a table of coordinates.
- 935

936 For Mobilization 2, in accordance with the IDW decision rules outlined in Section 5.8, in cases

937 where PFAS concentrations in surface soil were less than the NMED industrial SLs, cuttings

- 938 generated during Mobilization 2 from surface to the capillary fringe were land applied. Soil
- 939 cuttings from Mobilization 2 were drummed in borehole-specific drums if they were sourced
- 940 from the capillary fringe or below. Soil cuttings from above the capillary fringe were land
- applied, with the exception of DPT boring location AOI01-06B. Cuttings from AOI01-06B were
- drummed due to the lack of surface soil analytical results that could be used to characterize the
- 943 cuttings. All land application areas were recorded with a GPS. Appendix B3 contains maps
- 944 displaying land application areas and a table of coordinates.
- 945

Liquid IDW (i.e., purge water, development water, and decontamination fluids) generated during
the SI activities were drummed. All liquid and solid IDW drums are currently stored at the
Facility.

949

950 Other solids such as spent personal protective equipment, plastic sheeting, tubing, and unused

951 monitoring well construction materials utilized during the field activities were disposed of as

952 municipal waste.953

954 5.7 LABORATORY ANALYTICAL METHODS

Samples were analyzed by LC/MS/MS compliant with QSM Version 5.3 Table B-15 at Eurofins
Lancaster Laboratories Environmental, LLC, in Lancaster, Pennsylvania, a DoD ELAP-certified
laboratory. Soil samples were also analyzed for TOC using USEPA Method 9060A and pH by
USEPA Method 9045D.

959

960 **5.8 DEVIATIONS FROM UFP-QAPP ADDENDUM**

- 961 The following deviations from the UFP-QAPP Addendum occurred based on conditions
- 962 encountered during the field investigation activities. These deviations were discussed between

963	EA, ARNG, USACE, NMARNG, and the NMED and are documented in a Field Change
964	Request Form (Appendix B4). Deviations from the UFP-QAPP Addendum are noted below:
965	
966	• The UFP-QAPP Addendum indicates that non-hazardous waste generated during SI
967	activities would be containerized in 55-gallon drums. Based on discussions with ARNG
968	and with the NMED, surface soil samples from each of the drilling locations were
969	collected during a first mobilization. PFAS concentrations were reviewed and compared
970	to state industrial standards for purposes of IDW management. NMED approved the land
971	application of soil cuttings down to the capillary fringe in borings where surface soil
972	concentrations did not exceed state standards. NMED granted approval via email on
973	January 18, 2022 (J. Rhoderick, email). Areas of land application were recorded with a
974	GPS. Locations are provided in a table and a map in Appendix B3 . Solid IDW from the
975	capillary fringe down were containerized in drums.
976	cupinary minge down were containenzed in drains.
977	• The UFP-QAPP Addendum states that borings will be advanced with air rotary or sonic
978	drilling; however, DPT was used to install 15-ft borings. The alternate technology was
979	used to reduce the length of the field event, as the DPT rig could install 15-ft boreholes
980	while the sonic rig was installing deeper boreholes.
981	while the some fig was instanting deeper borenoies.
982	• The UFP-QAPP Addendum identifies AOI01-01 as a 15-ft soil boring and AOI01-03 as a
983	soil boring/monitoring well location. Due to the results of the surface soil sampling
984	during the first mobilization, the project team decided to convert AOI01-01 a soil
985	boring/monitoring well and AOI01-03 to a 15-ft soil boring.
986	bonnig monitoring wen and restor of to a 15 h son bonnig.
987	• Soil boring AOI01-06B was installed as a replacement for soil boring AOI01-06. The
988	location of the 0–2 ft surface soil sample from AOI01-06 was collected from the lowest
989	point in the area rather than from the edge of the pavement, as depicted in the UFP-QAPP
990	Addendum (Figure 17-1). Soil boring AOI01-06B was installed at a location in closer
991	proximity to the former parking apron, which was identified as a possible PFAS source.
992	
993	• An additional soil boring (AOI01-09) was installed 11 ft northeast of monitoring well
994	AOI01-01, which was screened in regional groundwater. The purpose of the installing
995	AOI01-09 was to characterize the groundwater and capillary fringe of perched
996	groundwater if present. Perched groundwater was not observed during drilling and a
997	monitoring well was not installed at the location.
998	
999	Additional deviations from the UFP-QAPP not included in the Field Change Request Form
1000	(Appendix B4) are described below:
1001	
1002	• Monitoring wells installed in perched groundwater were constructed with 10 ft of screen
1003	rather than 20 ft of screen due to the limited thickness of the water-bearing zone.
1003	The state of the second and to the mining the model of the state of th
1005	• The deep soil sample from AOI01-01 was collected at 181–182 ft bgs, which was the
1005	1-ft interval above observed moisture in soil. Groundwater was later observed at 176 ft
1000	bgs. As a result, the deep sample collected from AOI01-01 may represent PFAS
1007	concentrations in saturated soil rather than the capillary fringe.
	concentrations in savarated son ranter than the capitaly initige.

Table 5-1. Samples by MediumAASF, Santa Fe, New MexicoSite Inspection Report

	~	site mspe	ction ite				
Sample Identification	Sample Collection Date	Sample Depth (ft bgs)	PFAS (USEPA Method 537 Modified)	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	Grain Size (ASTM D422)	Comments
Soil Samples		•					
AOI01-01-SB-0-2	2/8/2022	0-2	Х				
AOI01-01-SB-13-15	4/25/2022	13-15	Х				
AOI01-01-SB-135-136	4/25/2022	135-136				Х	
AOI01-01-SB-181-182	4/26/2022	181-182	Х				
AOI01-02-SB-0-2	2/8/2022	0-2					
AOI01-02-SB-0-2-D	2/8/2022	0-2	Х				FD
AOI01-02-SB-13-15	4/27/2022	13-15	X				
AOI01-02-SB-113-115	4/28/2022	113-115	Х				
AOI01-02-SB-113-115-DUP	4/28/2022	113-115	Х				FD
AOI01-02-SB-119-120	4/28/2022	119-120				Х	
AOI01-03-SB-0-2	2/7/2022	0-2	Х	Х	Х		
AOI01-03-SB-6-8	5/4/2022	6-8	X				
AOI01-03-SB-13-15	5/4/2022	13-15	X				
AOI01-04-SB-0-2	2/7/2022	0-2	X				
AOI01-04-SB-13-15	5/3/2022	13-15	X				
AOI01-04-SB-109-110	5/4/2022	109-110	Х				
AOI01-04-SB-109-110- DUP	5/4/2022	109-110	Х				FD
AOI01-05-SB-0-2	2/7/2022	0-2	Х				
AOI01-05-SB-6-8	5/4/2022	6-8	X				
AOI01-05-SB-13-15	5/4/2022	13-15	Х				
AOI01-06-SB-0-2	2/7/2022	0-2	X				
AOI01-06B-SB-0-2	5/4/2022	0-2	X				
AOI01-06B-SB-6-8	5/4/2022	6-8	X				
AOI01-06B-SB-13-15	5/4/2022	13-15	X				
AOI01-07-SB-0-2	2/8/2022	0-2	X				
AOI01-08-SB-0-2	2/8/2022	0-2	X				
AOI01-09-SB-0-2	5/9/2022	0-2	Х				
AOI01-09-SB-13-15	5/5/2022	13-15	X				
AOI01-09-SB-111-112	5/6/2022	111-112	Х				
SFAASF-01-SB-0-2	2/8/2022	0-2	X				
SFAASF-02-SB-0-2	2/8/2022	0-2	Х	Х	Х		
SFAASF-02-SB-0-2-D	2/8/2022	0-2	Х				FD
SFAASF-03-SB-0-2	5/7/2022	0-2	Х				
SFAASF-03-PA-SB-0-2	2/7/2022	0-2	Х				
SFAASF-03-PA-SB-13-15	5/1/2022	13-15	Х				
SFAASF-03-PA-SB-183-184	5/2/2022	183-184	Х				
SFAASF-04-SB-0-2	2/7/2022	0-2	Х				
SFAASF-04-SB-13-15	4/28/2022	13-15	Х				
SFAASF-04-SB-180-181	4/30/2022	180-181	Х				

Table 5-1. Samples by Medium AASF, Santa Fe, New Mexico Site Inspection Report

		sic mspc		5010			
Sample Identification	Sample Collection Date	Sample Depth (ft bgs)	PFAS (USEPA Method 537 Modified)	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	Grain Size (ASTM D422)	Comments
SFAASF-05-SB-0-2	2/7/2022	0-2	Х				
SFAASF-05-SB-6-8	5/4/2022	6-8	Х				
SFAASF-05-SB-13-15	5/4/2022	13-15	Х				
SFAASF-05-SB-13-15-DUP	5/4/2022	13-15	Х				FD
Groundwater Samples	•						
AOI01-01-GW	5/20/2022	NA	Х				
AOI01-02-GW	5/20/2022	NA	Х				
AOI01-02-GW-DUP	5/20/2022	NA	Х				FD
AOI01-04-GW	5/20/2022	NA	Х				
SFAASF-03-GW	5/19/2022	NA	X				
SFAASF-04-GW	5/19/2022	NA	X				
Blank Samples						1	
SFAASF-EB-01	2/7/2022	NA	X				EB
SFAASF-EB-02	2/8/2022	NA	X				EB
SFAASF-EB-03	4/25/2022	NA	X				EB
SFAASF-EB-04	4/26/2022	NA	X				EB
SFAASF-EB-05	4/26/2022	NA	X				EB
SFAASF-EB-06	4/27/2022	NA	X				EB
SFAASF-EB-07	4/28/2022	NA	X				EB
SFAASF-EB-08	4/28/2022	NA	X				EB
SFAASF-EB-09	4/29/2022	NA	X				EB
SFAASF-EB-10	4/30/2022	NA	X				EB
SFAASF-EB-11	5/1/2022	NA	X				EB
SFAASF-EB-12	5/2/2022	NA	X				EB
SFAASF-EB-13	5/3/2022	NA	X				EB
SFAASF-EB-14	5/4/2022	NA	X				EB
SFAASF-EB-15	5/4/2022	NA	X				EB
SFAASF-EB-16	5/5/2022	NA	X				EB
SFAASF-EB-17	5/6/2022	NA	X				EB
SFAASF-EB-18	5/7/2022	NA	X				EB
SFAASF-EB-19	5/9/2022	NA	X				EB
SFAASF-EB-20	5/19/2022	NA	X				EB
SFAASF-EB-21	5/20/2022	NA	X				EB
SFAASF-FB-01	2/7/2022	NA	X				FB
SFAASF-FB-02	2/8/2022	NA	X				FB
SFAASF-FB-03	4/25/2022	NA	X				FB
SFAASF-FB-04	4/26/2022	NA	X				FB
SFAASF-FB-05	4/27/2022	NA	X				FB
SFAASF-FB-06	4/28/2022	NA	X				FB
SFAASF-FB-07	4/29/2022	NA	X				FB
STAAST-TD-V/	T/29/2022	1 N/A	Λ				1 D

Table 5-1. Samples by MediumAASF, Santa Fe, New MexicoSite Inspection Report

		I	· · · · · ·				
Sample Identification	Sample Collection Date	Sample Depth (ft bgs)	PFAS (USEPA Method 537 Modified)	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	Grain Size (ASTM D422)	Comments
SFAASF-FB-08	4/30/2022	NA	Х				FB
SFAASF-FB-09	5/1/2022	NA	Х				FB
SFAASF-FB-10	5/2/2022	NA	Х				FB
SFAASF-FB-11	5/3/2022	NA	Х				FB
SFAASF-FB-12	5/4/2022	NA	Х				FB
SFAASF-FB-13	5/5/2022	NA	Х				FB
SFAASF-FB-14	5/6/2022	NA	Х				FB
SFAASF-FB-15	5/7/2022	NA	Х				FB
SFAASF-FB-16	5/8/2022	NA	Х				FB
SFAASF-FB-17	5/9/2022	NA	Х				FB
SFAASF-FB-18	5/19/2022	NA	Х				FB
SFAASF-FB-19	5/20/2022	NA	Х				FB
Notes: EB = Equipment blank FB = Field blank FD = Field duplicate NA = Not applicable							

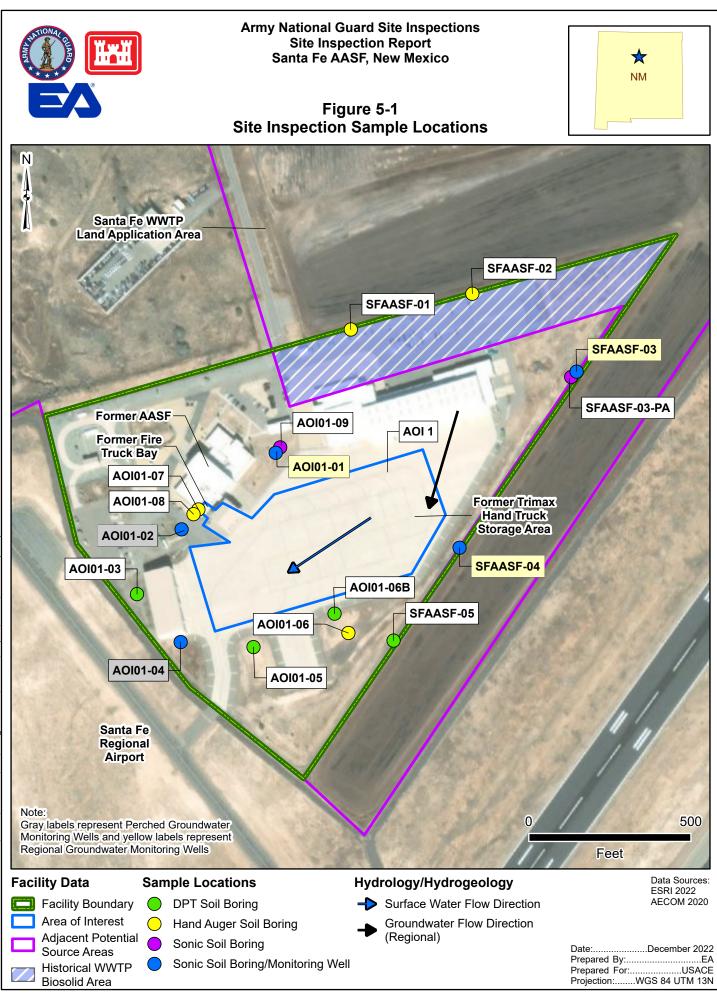
1009

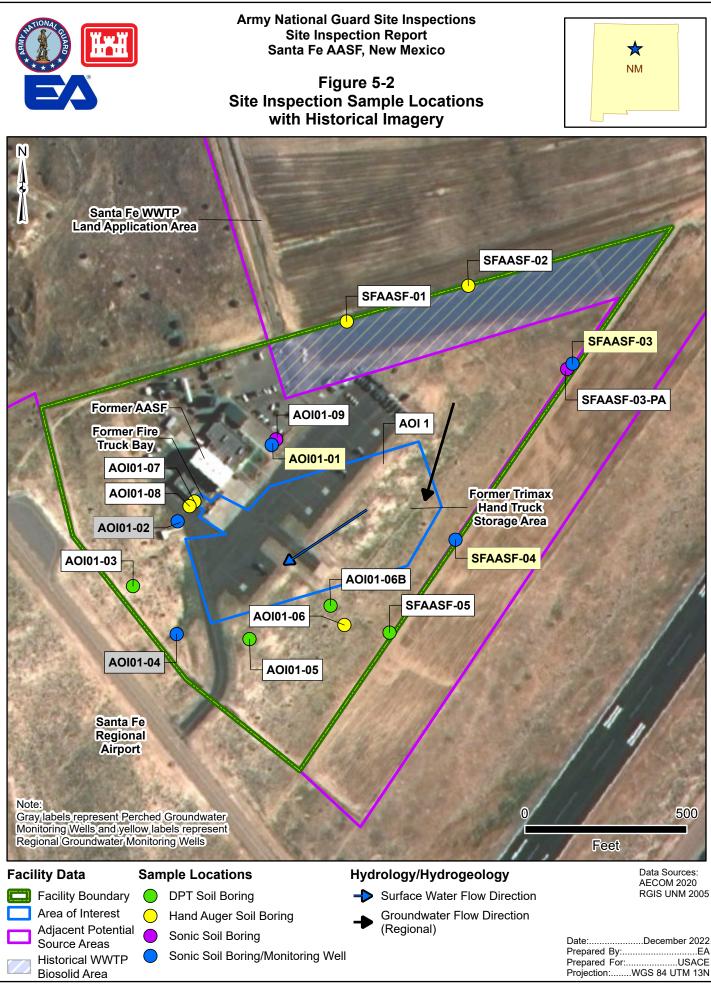
1010 1011 1012	Table 5-2. Soil A	Boring Depths ASF, Santa Fe Site Inspectio	, New Mexico	een Intervals	
	Areas of Interest	Boring Location	Soil Boring Depth (ft bgs)	Well Screen Interval (ft bgs)	Current Well Status
		AOI01-01	192	170-190	Existing
		AOI01-02	119	107-117	Existing
		AOI01-03	15	-	-
		AOI01-04	115	105-115	Existing
		AOI01-05	15	-	-
	1	AOI01-06	2	-	-
		AOI01-06b	15	-	-
		AOI01-07	2	-	-
		AOI01-08	2	-	-
		AOI01-09	115	110-115	P&A
	Historical WWTP Land Application	SFAASF-01	2	-	-
	Area	SFAASF-02	2	-	-
		SFAASF-03	197	175-195	Existing
	Santa Fe AASF Boundary	SFAASF-03-PA	197	175-195	P&A
		SFAASF-04	193	171-191	Existing
		SFAASF-05	15	-	-
012	Notes: P&A = Plugged and abandoned			1	1

1014

1015

1016


Table 5-3. Groundwater Elevation


AASF, Santa Fe, New Mexico Site Inspection Report

Monitoring Well	Top of Casing Elevation	Depth to Water ¹	Groundwater Elevation		
ID	(ft amsl)	(ft btoc)	(ft amsl)		
AOI01-01	6,328.84	176.46	6,152.38		
AOI01-02	6,324.96	110.96	6,214.00		
AOI01-04	6,323.20	110.04	6,213.16		
SFAASF-03	6,337.69	184.81	6,152.88		
AOI01-04 6,323.20 SFAASF-03 6,337.69 SFAASF-04 6,332.85		180.59	6,152.26		
Notes:	une 2022				
btoc = Below top of					
ID = Identification					

1017

Table 5-7 Soil Boring Denths and Well Screen Intervals

6. SITE INSPECTION RESULTS

1026 This section presents the analytical results of the SI. The SLs used in this evaluation are 1027 presented in Section 6.1. A discussion of the results is provided in Sections 6.3 and 6.4. Table 1028 6-1 provides applicable screening levels. Tables 6-2 through 6-5 present PFAS results for the 1029 relevant compounds in soil and groundwater. Tables that contain all results are provided in 1030 Appendix F and the laboratory reports are provided in Appendix G.

1031

1032 6.1 **SCREENING LEVELS**

1033 The DoD has adopted a policy to retain facilities in the CERCLA process based on risk-based

1034 SLs for soil and groundwater, as described in a memorandum from the OSD dated 6 July 2022

1035 (Assistant Secretary of Defense 2022). The ARNG program under which this SI was performed

1036 follows this DoD policy. Should the maximum concentration for sampled media exceed the SLs

1037 established in the OSD memorandum, the AOI may proceed to the next phase under CERCLA.

1038 The SLs established in the OSD memorandum apply to the five compounds presented on

- 1039 Table 6-1.
- 1040
- 1041

Table 6-1. Screening Levels (Soil and Groundwater) Industrial / Commercial						
		Industrial / Commercial				
	Residential	Composite Worker				

Analyte ²	Residential (Soil) (μg/kg) ¹ 0 to 2 ft bgs	Composite Worker (Soil) (µg/kg) ¹ 2 to 15 ft bgs	Tap Water (Groundwater) (ng/L) ¹
PFOA	19	250	6
PFOS	13	160	4
PFBS	1,900	25,000	601
PFHxS	130	1,600	39
PFNA	19	250	6
Notes:			

Notes:

1. Assistant Secretary of Defense. 2022. Risk-Based Screening Levels in Groundwater and Soil using USEPA's Regional Screening Level Calculator. Hazard Quotient = 0.1. May 2022.

2. Screening values for HFPO-DA were established after SI planning and execution; and thus, not included as an analyte. Future CERCLA phases will include HFPO-DA if warranted.

 $\mu g/kg = Microgram(s)$ per kilogram. ng/L = Nanogram(s) per liter.

1042

1043 The data in the subsequent sections are compared against the SLs presented in **Table 6-1**. The 1044 SLs for groundwater are based on direct ingestion. The SLs for soil are based on incidental

1045 ingestion and are applied to the depth intervals reasonably anticipated to be encountered by the

1046 receptors identified at the facility: the residential scenario is applied to surface soil results (0-2 ft

1047 bgs) and the industrial/commercial worker scenario is applied to all shallow subsurface soil

1048 results (2–15 ft bgs). The SLs are not applied to deep subsurface soil results (greater than 15 ft

1049 bgs) because 15 ft is the anticipated limit of construction activities.

1050 6.2 SOIL PHYSICOCHEMICAL ANALYSES

1051 To provide basic soil parameter information, soil samples were analyzed for TOC and pH, which 1052 are important for evaluating transport through the soil medium. **Appendix F** contains the results 1053 of the TOC and pH sampling.

1054

1055 The data collected in this investigation will be used in subsequent investigations, where appropriate, to assess fate and transport of PFAS contaminants. According to the Interstate 1056 1057 Technology Regulatory Council (ITRC), several important PFAS partitioning mechanisms include hydrophobic and lipophobic effects, electrostatic interactions, and interfacial behaviors. 1058 1059 At relevant environmental pH values, certain PFAS are present as organic anions; and are 1060 therefore, relatively mobile in groundwater (Xiao et al. 2015) but tend to associate with the 1061 organic carbon fraction that may be present in soil or sediment (Higgins and Luthy 2006; Guelfo 1062 and Higgins 2013). When sufficient organic carbon is present, organic carbon normalized 1063 distribution coefficients can help in evaluating transport potential, though other geochemical

- 1064 factors (e.g., pH and presence of polyvalent cations) may also affect PFAS sorption to solid
- 1065 phases (ITRC 2018).
- 1066

1067 **6.3 AOI 1**

1068 This section presents the analytical results for soil and groundwater in comparison to SLs for 1069 AOI 1, which includes Former Firetruck Bay and Tri-MaxTM Hand Truck Storage Area. The soil 1070 and groundwater results are summarized on **Tables 6-2** through **6-5**. Soil and groundwater

- 1071 results are presented on **Figures 6-1** through **6-7**.
- 1072

1073 In the sections below, estimated analyte concentrations are followed by a 'J' qualifier.

1074 Concentrations that are estimated and biased higher are followed by a 'J+' qualifier.

1075

1076 6.3.1 AOI 1 - Soil Analytical Results

Tables 6-2 through 6-4 summarize the detected compounds in soil. Figures 6-1 through 6-5
 present the ranges of detections in soil.

1079

1080 Soil was sampled at 10 boring locations associated with potential release areas at AOI 1. Soil

1081 was sampled from three intervals at locations AOI01-01, AOI01-02, AOI01-03, AOI01-04,

AOI01-05, AOI01-06B, and AOI01-09; and one interval at locations AOI01-06, AOI01-07, and AOI01-08.

1084

1085 PFOS was detected in seven of 10 surface soil sample locations with concentrations exceeding 1086 the applicable SL in three surface soil sample locations (AOI01-02, AOI01-07, and AOI01-08). 1087 The highest PFOS concentration of 920 μ g/kg was detected at AOI01-07. PFOA, PFNA, and 1088 PFHxS were detected in surface soil at AOI 1 at concentrations that did not exceed the applicable 1089 residential SLs. PFOA was detected in 8 of 10 surface soil sample locations at concentrations 1090 below the SL of 19 μ g/kg. PFOA had a maximum reported concentration of 1.2 μ g/kg (AOI01-1091 07). PFHxS was detected in 5 the 10 surface soil sample locations at concentrations below the

1092 SL of 130 μ g/kg. PFHxS had a maximum reported concentration of 8.3 μ g/kg (AOI01-07).

1093 PFNA was detected in 3 of the 10 surface soil sample locations at concentrations below the SL

1094 of 19 μ g/kg. PFNA had a maximum reported concentration of 3.8 μ g/kg (AOI01-07). PFBS 1095 was not detected in any of the 10 surface soil sample locations at AOI 1.

1096

1097 Shallow subsurface soil³ samples collected from 2 to 15 ft bgs did not exceed the SLs for the

relevant compounds in any of the sample locations. PFOS was detected in AOI01-02, AOI01-03,

1099 and AOI01-04 at concentrations ranging up to 5.9 µg/kg. PFOA was detected in two locations,

- 1100 AOI01-02 and AOI01-04, with a maximum concentration of 0.59 J μ g/kg (AOI01-02). PFHxS
- 1101 was detected in three soils samples, AOI01-02, AOI01-03, and AOI01-04, with a maximum
- 1102 concentration of 3 μ g/kg (AOI01-02). PFNA was detected in one location (AOI01-04) at a 1103 concentration of 0.37 J μ g/kg.
- 1103

PFBS was not detected in any of the deep subsurface soil samples. In AOI01-02, PFHxS was
detected at a concentration of 0.32 J µg/kg. In AOI01-04, PFOS, PFOA, PFHxS,
and PFNA were detected at concentrations of 2.2 J+ µg/kg, 0.48 J µg/kg, 1.1 J µg/kg, and

- 1108 0.32 J µg/kg, respectively.
- 1109

1110 6.3.2 AOI 1 - Groundwater Results

1111 **Figures 6-6** and **6-7** present the ranges of detections in groundwater. **Table 6-5** summarizes the groundwater results.

1113

1114 Groundwater samples were collected from three permanent monitoring wells associated with the

- potential release area AOI 1. Two wells, AOI01-02 and AOI01-04, are screened in perched
- 1116 groundwater between 105 to 117 ft bgs; one well, AOI01-01, is screened regional groundwater
- between 170 to 190 ft bgs. PFOA and PFHxS were detected in perched groundwater at
- 1118 concentrations exceeding the applicable SLs. The maximum concentrations of PFOA and PFHxS
- 1119 of 38 ng/L and 230 ng/L, respectively, were detected at AOI01-04. PFBS was detected below the
- applicable SL in both perched groundwater wells. PFOS and PFNA were not detected in perchedgroundwater.
- 1121 1122

1123 PFOS, PFOA, PFBS, PFHxS, and PFNA were not detected in AOI01-01, which is screened in 1124 regional groundwater.

1125

1126 A shake test was administered to samples collected from each of the three monitoring wells in 1127 AOI 1. Foam was not observed in any of the samples.

1128

1129 **6.3.3 AOI 1 - Conclusions**

1130 Based on the results of the SI, four relevant compounds (PFOA, PFOS, PFHxS, and PFNA) were

- 1131 detected in AOI 1. PFOS exceeded the SL in surface soil. Three of the five relevant compounds
- 1132 (PFOA, PFHxS, and PFBS) were detected in groundwater at AOI 1. PFOA and PFHxS exceeded
- 1133 SLs in groundwater. Based on the exceedance of the SLs, further evaluation at AOI 1 is
- 1134 warranted.

³ Shallow subsurface soil also referred to as intermediate depth.

11356.4HISTORICAL WASTEWATER TREATMENT PLANT BIOSOLID1136APPLICATION AREA SAMPLE LOCATIONS

Based on historical aerial photographs, application of biosolids extended into the current Santa Fe AASF lease area; biosolid land application extended to the north end of the current AASF building prior to the 2012 renovations of the facility. This section presents the analytical results for soil in comparison to SLs for sample locations within the historical WWTP biosolid land application area that extends onto the current Santa Fe AASF lease area. **Tables 6-2** through **6-5** summarize detected compounds in soil. **Figures 6-1** through **6-5** present the ranges of detections in soil.

11456.4.1Historical Wastewater Treatment Plant Biosolid Application Area – Soil Analytical1146Results

Tables 6-2 through 6-4 summarize the detected compounds in soil. Figures 6-1 through 6-5
present the ranges of detections in soil.

1149

1150 Soil was sampled at two boring locations (SFAASF-01 and SFAASF-02) within the historical

1151 WWTP biosolid application area, as identified using historical aerial photography. Only surface 1152 soil was sampled at these locations.

1153

1154 PFOS and PFOA concentrations in surface soils exceeded SLs both sample locations within the

historical WWTP biosolid application area. PFBS, PFNA, and PFHxS in soil, when detected, did

not exceed the SLs. PFOS exceeded the applicable SL in both surface soil sample locations. The

1157 highest PFOS concentration of $60 \mu g/kg$ was detected at SFAASF-02. PFOA was detected in

both surface soil sample locations with the concentration exceeding the applicable SL in one

- 1159 surface soil sample locations (SFAASF-02), which had a reported concentration of 33 μ g/kg.
- 1160 PFHxS and PFNA were detected below their respective applicable SLs in both sample locations.

1161 PFBS was detected below the applicable SL in surface soil at one location (SFAASF-02). 1162

11636.4.2Historical Wastewater Treatment Plant Biosolid Application Area – Groundwater1164Results

1165 Groundwater was not sampled within the historical WWTP biosolid application area; however,

1166 groundwater samples at AOI01-01 are considered downgradient from the historical WWTP

biosolid application area and upgradient of AOI 1, and samples from SFAASF-03 and SFAASF-

- 1168 04 are also considered downgradient from offsite biosolid application areas. There were no
- detections of the relevant compounds in these samples. Subsurface soil was not sampled at these
- 1170 locations and perched water was not encountered, thus the fate and transport of the relevant
- 1171 compounds in the surface soil is unknown.
- 1172

1173 6.4.3 Historical Wastewater Treatment Plant Biosolid Application Area – Conclusions

1174 During the SI, PFBS, PFNA, and PFHxS were detected below SLs in surface soil samples. PFOS

- and PFOA were detected above SLs. Elevated PFAS concentrations within the historical WWTP
- 1176 biosolid land application area may be a result of the historical application of WWTP biosolids to
- 1177 the land currently leased by NMARNG or the current application of WWTP biosolids on the

adjacent property. Sub-surface soils and groundwater were not sampled at these locations. Based

- 1179 on the exceedance of SLs in surface soil within the historical WWTP biosolid application area, 1180 further evaluation is warranted.
- 1181

1182 6.5 BOUNDARY SAMPLE LOCATIONS

1183 This section presents the analytical results for soil and groundwater in comparison to SLs for the 1184 boundary sample locations. **Tables 6-2** through **6-5** summarize the detected compounds in soil

boundary sample locations. Tables 6-2 through 6-5 summarize the detected compound
and groundwater. Figures 6-1 through 6-7 present the ranges of detections in soil and
groundwater.

1187

1188 6.5.1 Boundary Sample Locations – Soil Analytical Results

Tables 6-2 through 6-4 summarize the detected compounds in soil. Figures 6-1 through 6-5
 present the ranges of detections in soil.

1191

1192 Soil was sampled at four boring locations associated with the facility boundary. Soil was

sampled from three intervals at locations SFAASF-03-PA, SFAASF-04, and SFAASF-05. Only
 surface soil was sampled at SFAASF-03.

1195

1196 PFOS and PFOA were detected below SLs in surface soils at the facility boundary. PFBS,

1197 PFNA, and PFHxS were not detected. PFOS was detected below the SL in three of four

boundary surface soil samples. The highest PFOS concentration of 0.94 µg/kg was detected at

1199 SFAASF-04. PFOA was detected below the SL in three of four surface soil sample locations

1200 with a maximum concentration of 0.96 µg/kg at SFAASF-05. PFHxS, PFNA, and PFBS were

1201 not detected. Relevant compounds were not detected in subsurface soil collected from these

1202 locations.

1203

1204 6.5.2 Boundary Sample Locations – Groundwater Results

Table 6-5 summarizes the groundwater results. Figures 6-6 and 6-7 present the ranges ofdetections in groundwater.

1207

1208 Groundwater samples were collected from two well locations along the facility boundary

1209 (SFAASF-03 and SFAASF-04). The boundary wells were completed in regional groundwater

1210 due to the lack of observed perched groundwater. None of the relevant compounds were detected 1211 in groundwater samples collected from boundary wells.

1212

1213 A shake test was administered to samples collected from both monitoring wells along the facility 1214 boundary. Foam was not observed in either sample.

1215

1216 6.5.3 Boundary Sample Locations – Conclusions

1217 Based on the results of the SI, PFBS, PFNA, and PFHxS were not detected in samples at the

1218 facility boundary. PFOS and PFOA were detected below SLs in surface soil. Relevant

1219 compounds were not detected in sub-surface soil.

1220

- 1221 Relevant compounds were not detected in groundwater monitoring wells installed for the
- 1222 purpose of characterizing off-facility contamination. Samples representing off-facility
- groundwater quality to the west (SFAASF-03 and SFAASF-04) and to the northwest (AOI01-01)
- suggest that PFAS compounds are not present in the regional groundwater upgradient of AOI 1.
- 1225 Perched groundwater was not observed at boundary monitoring well locations during the SI.
- 1226
- 1227 Based on the lack of SL exceedances in groundwater and soil at the boundary, further evaluation
- is not warranted.

Table 6 7 DECA DECS DEDS DENA and D	FHxS Results in Surface Soil, Site Inspection Report, Santa Fe AASF
$1 \mathbf{a} \mathbf{b} \mathbf{c} 0 \mathbf{-2} . 1 \mathbf{\Gamma} \mathbf{O} \mathbf{A} , \mathbf{\Gamma} \mathbf{\Gamma} \mathbf{O} \mathbf{S} , \mathbf{\Gamma} \mathbf{\Gamma} \mathbf{D} \mathbf{S} , \mathbf{\Gamma} \mathbf{\Gamma} \mathbf{N} \mathbf{A} , \mathbf{a} \mathbf{n} \mathbf{u} \mathbf{\Gamma}$	First Results in Surface Son, Site Inspection Report, Santa Fe AASF

	Location ID				AOI01-02		AOI01-02		AOI01-03		AOI01-04		01-05	AOI01-06		AOI01-06B		AOI01-07	
	ample Name	AOI01-0	1-SB-0-2	AOI01-0)2-SB-0-2		-SB-0-2-D	AOI01-0.	3-SB-0-2	AOI01-04	4-SB-0-2	AOI01-0	5-SB-0-2	AOI01-0)6-SB-0-2	AOI01-06	6B-SB-0-2	AOI01-0)7-SB-0-2
	t Sample ID						2-SB-0-2												
	Sample Date	2/8/2			2022	2/8/2		2/7/2		2/7/2			2022		2022	5/4/2			2022
	epth (bgs ft)	0-	-2	0	-2	0	-2	0-	2	0-	-2	0-	-2	0	-2	0	-2	0	-2
	ng Level ^{1,2}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B				,	,	,									,				
	900	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
	130	0.41	J	0.5	J	0.96		1.4		0.64		ND	U	ND	U	ND	U	8.3	
	19	ND	U	0.32	J	0.51	J	ND	U	ND	U	ND	U	ND	U	ND	U	3.8	
	13	3.1		61		86		6.5		3.6		ND	U	ND	U	ND	U	920	
Perfluorooctanoic acid (PFOA)	19	0.64		0.26	J	0.53	J	0.39	J	0.36	J	ND	U	ND	U	ND	U	1.2	
Limit of Detection (LOD). J+ = Estimated concentration, biased high. UJ = The analyte was not detected at a level greater than or equal to adjusted Limit of Detection (LOD). However, the associated numer approximate. µg/kg = Microgram(s) per kilogram. 1. Assistant Secretary of Defense. July 2022. Risk-Based Screening Groundwater and Soil using EPA's Regional Screening Level Calcu- Hazard Quotient (HQ)=0.1. May 2022. 2. The Screening Levels for soil are based on a residential scenario ingestion of contaminated soil. Values exceeding the Screening Level are shaded gray. bgs = Below ground surface. ft = Foot (feet). ND = Analyte not detected above the LOD (LOD values are preser Appendix F). Qual = Qualifier.	rical value is g Levels in culator. for direct																		

Table 6-2. PFOA, PFOS, PFBS, PFNA, and PFHxS Results in Surface Soil, Site Inspection Report, Santa Fe AASF

	Location ID		01-08	AOI01-09		SFAASF-01		SFAASF-02		SFAASF-02		SFAASF-03-PA		SFAASF-03		SFAA	SF-04	SFAA	ASF-05
	Sample Name			OI01-08-SB-0-2 AOI-01-09-SB-0-2			SFAASF-01-SB-0-2						SFAASF-03-PA-SB-0-2		SFAASF-03-SB-0-2		SFAASF-04-SB-0-2		-05-SB-
	Parent Sample ID										02-SB-0-2								
	Sample Date	2/8/2			2022		2022	2/8/2			2022		2022		2022		2022		2022
	Depth (bgs ft)	0-	-2	0	-2	0	-2	0	-2	0	-2	0	-2	0	-2	0	-2	0-	-2
Analyte ^{1,2}	Screening Level ^{1,2}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qu
PFAS by LC/MS/MS compliant with QSM Version																			
Perfluorobutanesulfonic acid (PFBS)	1900	ND	U	ND	U	ND	U	0.58	J	0.59	J	ND	U	ND	U	ND	U	ND	U
Perfluorohexanesulfonic acid (PFHxS)	130	ND	J	ND	U	2.7		4.5		4.7		ND	U	ND	U	ND	U	ND	U
Perfluorononanoic acid (PFNA)	19	ND	U	0.4	J	1.8		2.9		2.9		ND	U	ND	U	ND	U	ND	U
Perfluorooctanesulfonic acid (PFOS)	13	21		7.5		42		60		49		0.48	J	ND	U	0.94		0.93	
Perfluorooctanoic acid (PFOA)	19	0.47	J	0.68		19		30		33		0.53	J	ND	U	0.6	J	0.96	
 U = The analyte was not detected at a level greater that Limit of Detection (LOD). J+ = Estimated concentration, biased high. UJ = The analyte was not detected at a level greater that adjusted Limit of Detection (LOD). However, the associapproximate. µg/kg = Microgram(s) per kilogram. Assistant Secretary of Defense. July 2022. Risk-Base Groundwater and Soil using EPA's Regional Screening Hazard Quotient (HQ)=0.1. May 2022. The Screening Levels for soil are based on a resident ingestion of contaminated soil. Values exceeding the Screening Level are shaded gray. bgs = Below ground surface. 	n or equal to the ciated numerical value is ed Screening Levels in Level Calculator. ial scenario for direct																		

Table 6-3. PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Shallow Subsurface Soil, Site Inspection Report, Santa Fe AASF

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- I								
	Location ID	AOI0	1-01	AOI0	1-02	AOI0	1-03	AOI01	-03	AOI01	-04	AOI0	1-05	AOI01	-05	AOI0	i-06B
	AOI01-01-	SB-13-15	AOI01-02-	SB-13-15	AOI01-03-SB-13-15		AOI01-03	-SB-6-8	AOI01-04-SB-13-1		5AOI01-05-SB-13-1		5 AOI01-05-SB-6-8		AOI01-06E	-SB-13-15	
	Parent Sample ID																
	Sample Date	4/25/2	022	4/27/2	022	5/4/20)22	5/4/20)22	5/3/20)22	5/4/20	022	5/4/20)22	5/4/2	.022
	Depth (bgs ft)	13-1	15	13-1	5	13-1	5	6-8	;	13-1	5	13-1	15	6-8	;	13-	15
Analyte ^{1,2}	Screening Level ^{1,2}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15 ((µg/kg)																
Perfluorobutanesulfonic acid (PFBS)	25000	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorohexanesulfonic acid (PFHxS)	1600	ND	U	3		0.27	J	0.23	J	1.2		ND	U	ND	U	ND	U
Perfluorononanoic acid (PFNA)	250	ND	U	ND	U	ND	U	ND	U	0.37	J	ND	U	ND	U	ND	U
Perfluorooctanesulfonic acid (PFOS)	160	ND	U	1.2		5.9		0.66		3.2		ND	U	ND	U	ND	U
Perfluorooctanoic acid (PFOA)	250	ND	U	0.59	J	ND	U	ND	U	0.52	J	ND	U	ND	U	ND	U
NT-t										•				•		•	

Notes:

1. Assistant Secretary of Defense. July 2022. Risk-Based Screening Levels in Groundwater and Soil using EPA's Regional Screening Level Calculator. Hazard Quotient (HQ)=0.1. May 2022.

2. The Screening Levels for soil are based on incidental ingestion of soil in a industrial/commercial worker

scenario.

J = Estimated concentration.

U = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD).

However, the associated numerical value is approximate.

Values exceeding the Screening Level are shaded gray.

ft bgs = Foot (feet) below ground surface.

ND = Analyte not detected above the LOD (LOD values are presented in Appendix F).

 $\mu g/kg = Microgram(s)$ per kilogram.

Qual = Qualifier.

Table 0-3. FFC	DA, PFUS, PFBS, PFNA, and PFH	ixs Delet	cuons m	Shanow 2	bubsuria	e son, su	e mspecuor	i Keport, S	апта ге А	Азг					
	Location ID	AOI01	-06B	AOI	1-09	SFAA	SF-03-PA	SFAA	SF-04	SFAA	SF-05	SFA	ASF-05	SFAA	SF-05
	AOI01-06	B-SB-6-8	AOI01-09	-SB-13-15	SFAASF-0	3-PA-SB-13-15	5 SFAASF-0	4-SB-13-15	SFAASF-0	5-SB-13-15	SFAASF-05	5-SB-13-15-DUP	SFAASF-	05-SB-6-8	
											SFAASF	-05-SB-13-15			
Sample Date			5/4/2022		2022	5/1/2022		4/28/2022		5/4/2022		5/4/2022		5/4/2	2022
	Depth (bgs ft)	6-	8	13-	15	1	3-15	13-	-15	13-	-15	1	3-15	6-	-8
Analyte ^{1,2}	Screening Level ^{1,2}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15	(µg/kg)														
Perfluorobutanesulfonic acid (PFBS)	25000	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorohexanesulfonic acid (PFHxS)	1600	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorononanoic acid (PFNA)	250	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorooctanesulfonic acid (PFOS)	160	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorooctanoic acid (PFOA)	250	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
	250	11D	5	цр	0	1.12	5	TID	0	1,10	0	1.12	5	1.D	

Notes:

1. Assistant Secretary of Defense. July 2022. Risk-Based Screening Levels in Groundwater and Soil using EPA's

Regional Screening Level Calculator. Hazard Quotient (HQ)=0.1. May 2022.

2. The Screening Levels for soil are based on incidental ingestion of soil in a industrial/commercial worker scenario.

J = Estimated concentration.

U = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD).

However, the associated numerical value is approximate.

Values exceeding the Screening Level are shaded gray. ft bgs = Foot (feet) below ground surface. ND = Analyte not detected above the LOD (LOD values are presented in Appendix F).

 $\mu g/kg = Microgram(s)$ per kilogram.

Qual = Qualifier.

			<i>,</i>	, ,						son, site inspect			1		-	
Location ID		DI01-01		I01-02		AOI01-02		DI01-04		AOI01-04		OI01-09		ASF-03-PA		AASF-04
Sample Name	AOI01-0	1-SB-181-182	AOI01-02	2-SB-113-115	AOI01-02	2-SB-113-115-DUP	AOI01-04	4-SB-109-110	AOI01-0	4-SB-109-110-DUP	AOI01-0	9-SB-111-112	SFAASF-0	3-PA-SB-183-18	4 SFAASF-	04-SB-180-18
Parent Sample ID					AOI01	-02-SB-113-115			AOI0	1-04-SB-109-110						
Sample Date	4/2	26/2022	4/2	8/2022		4/28/2022	5/4	1/2022		5/4/2022	5/	/6/2022	5	/2/2022	4/	30/2022
Depth (bgs ft)	1	81-182	11	3-115		113-115	10	9-110		109-110	1	11-112	1	83-184	1	80-181
	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15 (μg/kg) Perfluorobutanesulfonic acid (PFBS)	ND	U	ND	U	ND	U	ND	TI	ND	U	ND	TT	ND	U	ND	U
Perfluorobutanesulfonic acid (PFBS)	ND ND	U U	0.32	U I	ND ND	U	ND 1.1	U	ND	UJ	ND ND	U	ND ND	<u> </u>	ND	U U
Perfluorononanoic acid (PFNA)	ND	<u> </u>	0.32 ND	U	ND	U	0.32	J	ND	U	ND	U	ND	<u> </u>	ND	U
Perfluorooctanesulfonic acid (PFOS)	ND	U	ND	U	ND	U	2.2	J+	ND	UJ	ND	U	ND	U	ND	U
Perfluorooctanoic acid (PFOA)	ND	U	ND	U	ND	U	0.48	J	ND	U	ND	U	ND	U	ND	U
Notes: J = Estimated concentration. U = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD). J+ = Estimated concentration, biased high. UJ = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection (LOD). However, the associated numerical value is approximate. $\mu g/kg = Microgram(s)$ per kilogram. ft bgs = Foot (feet) below ground surface. ND = Analyte not detected above the LOD (LOD values are presented in Appendix F). Qual = Qualifier.																

Table 6-4. PFOA, PFOS, PFBS, PFNA, and PFHxS Detections in Deep Subsurface Soil, Site Inspection Report, Santa Fe AASF

Table 6-5. PFOA, PFOS, PFBS, PFNA, and PFHxS Results in Groundwater, Site Inspection Report, Santa Fe AASF													
	Location ID	AOI	01-01	AOI	01-02	AOI	01-02	AOI	01-04	SFAA	ASF-03	SFAA	ASF-04
	Sample Name			AOI01	-02-GW	AOI01-02-GW-DUP		AOI01	-04-GW	SFAASF-03-GW		SFAAS	F-04-GW
	Parent Sample ID					AOI01-02-GW							
	Sample Date	5/20/	2022	5/20	/2022	5/20	/2022	5/20	/2022	5/19	/2022	5/19	9/2022
Analyte ¹	Screening Level ¹	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15 (ng/L)													
Perfluorobutanesulfonic acid (PFBS)	601	ND	U	120		130		30		ND	U	ND	U
Perfluorohexanesulfonic acid (PFHxS)	39	ND	U	72		74		230		ND	U	ND	U
Perfluorononanoic acid (PFNA)	6	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Perfluorooctanesulfonic acid (PFOS)	4	ND	U	ND	U	ND	Ū	ND	U	ND	U	ND	U
Perfluorooctanoic acid (PFOA)	6	ND	U	2.5		2.3	J+	38		ND	U	ND	U

Notes:

1. Assistant Secretary of Defense. July 2022. Risk-Based Screening Levels in Groundwater and Soil

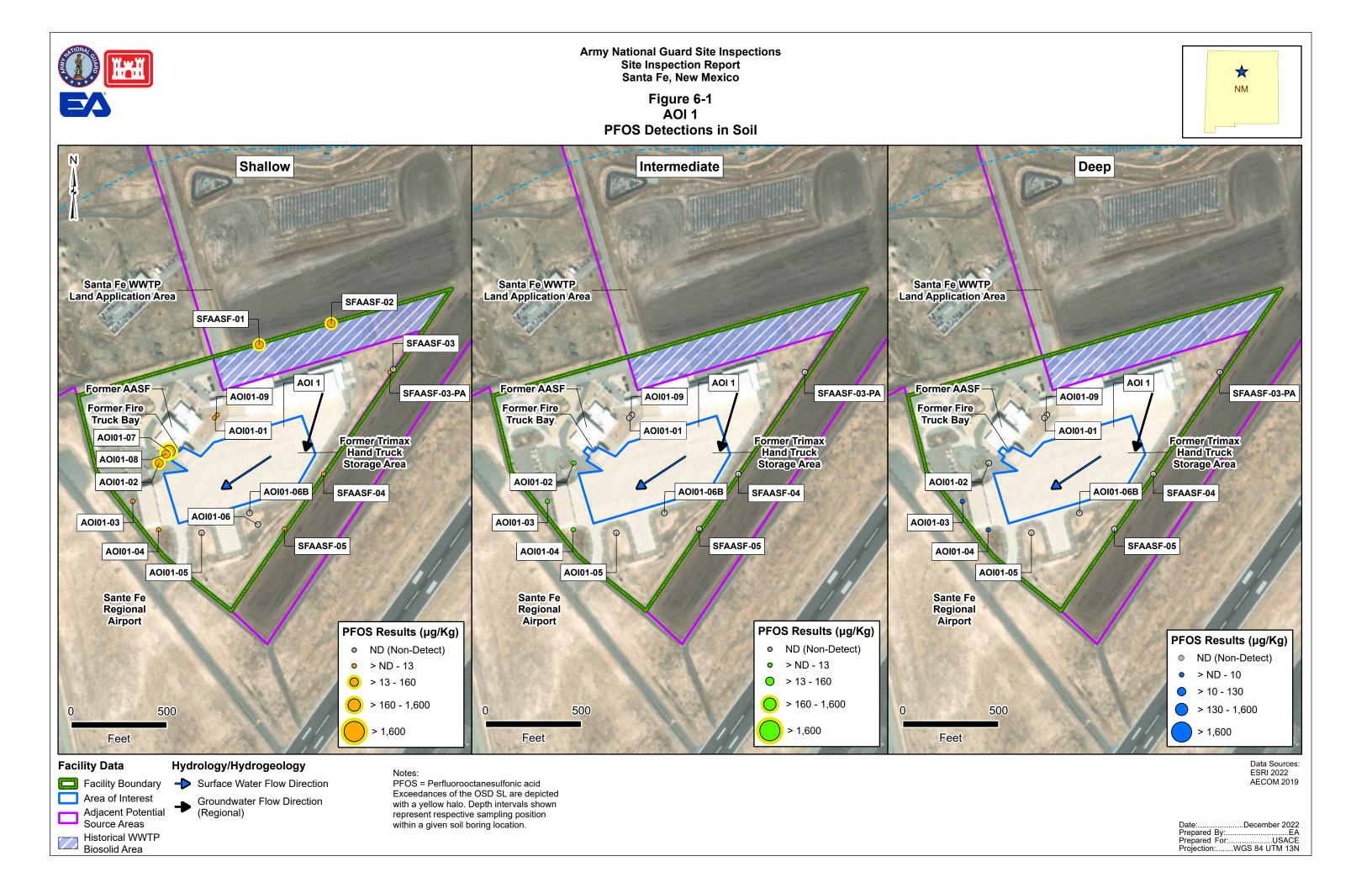
using EPA's Regional Screening Level Calculator. Hazard Quotient (HQ)=0.1. May 2022.

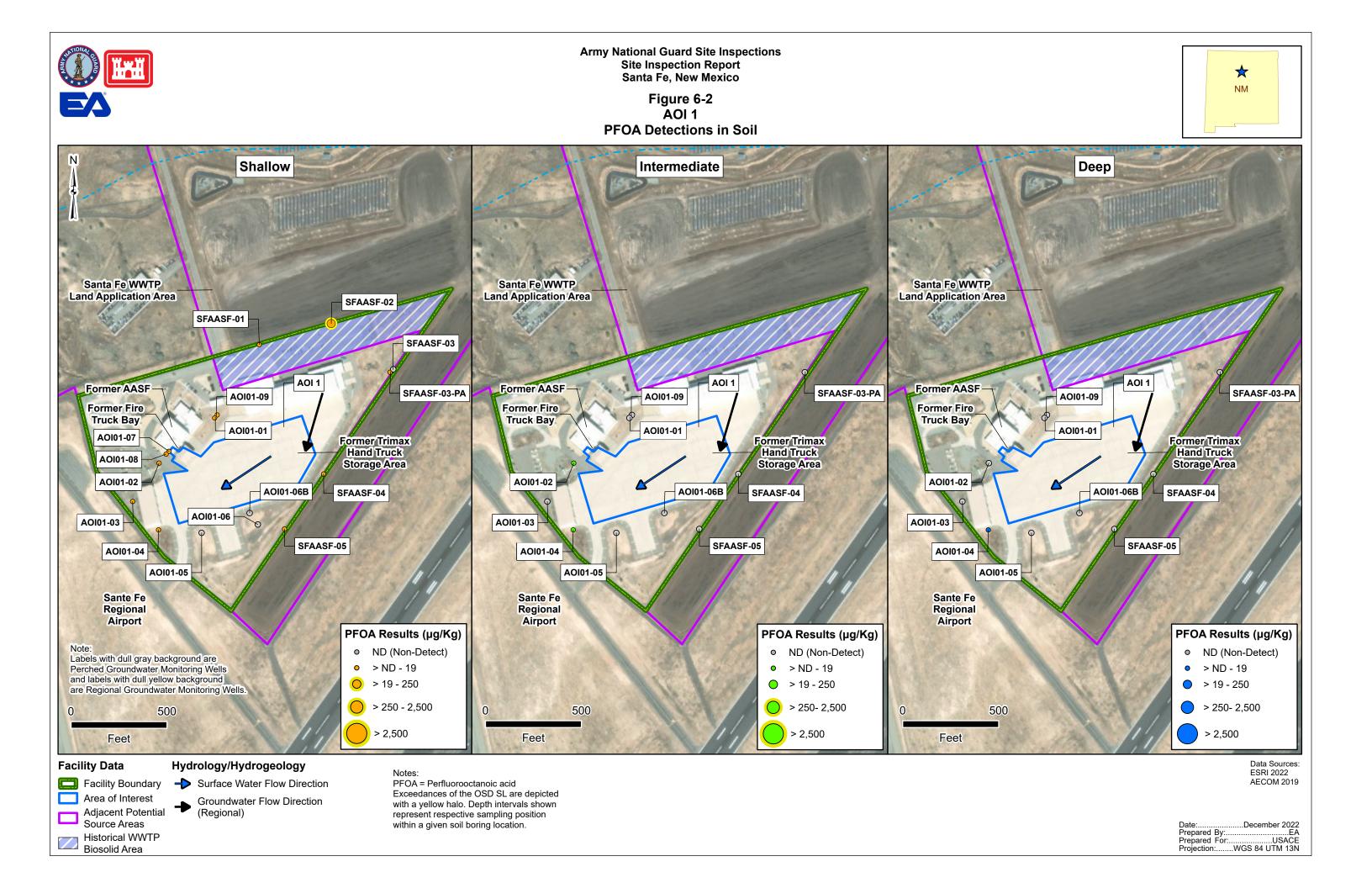
J = Estimated concentration.

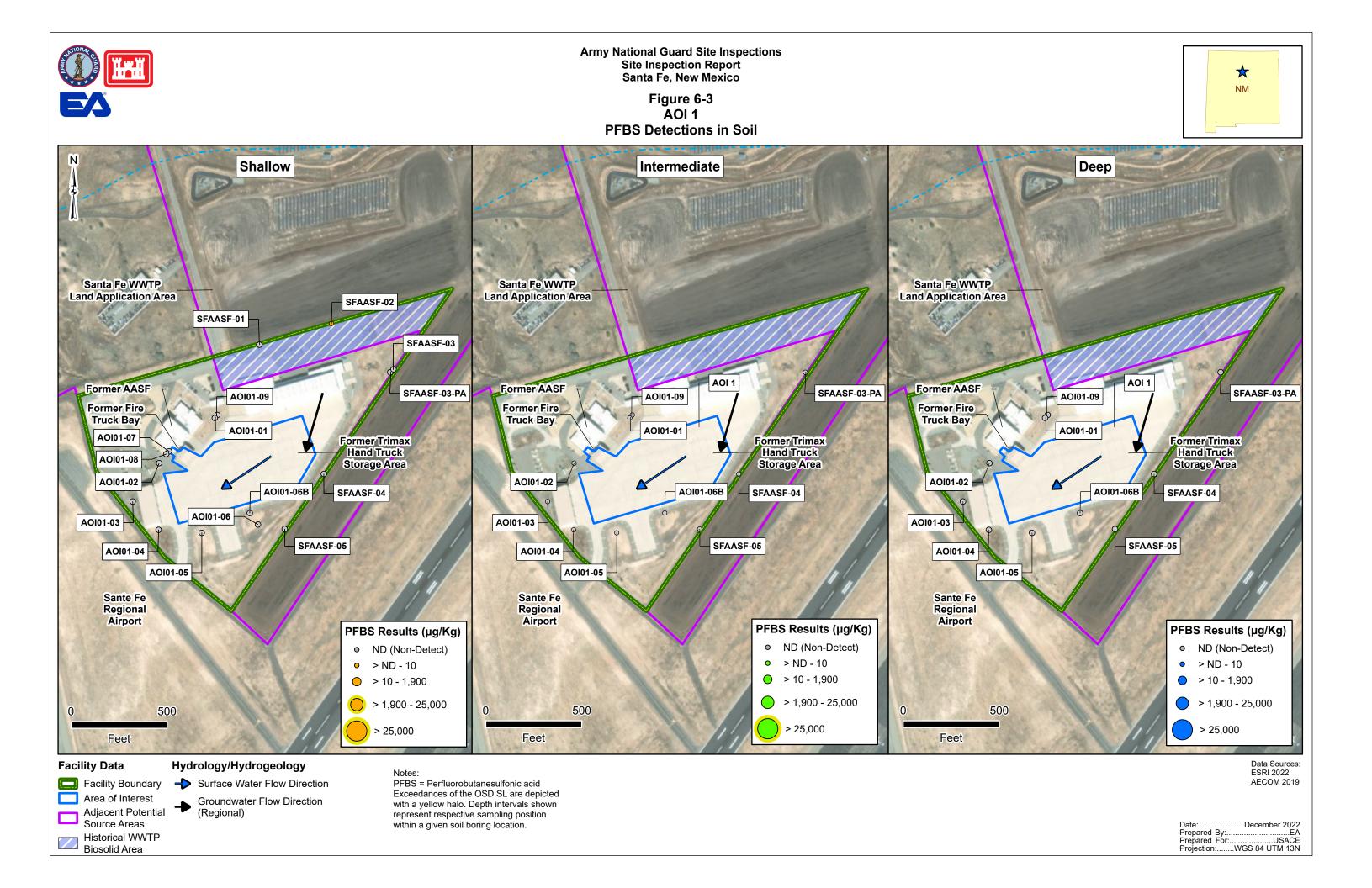
U = The analyte was not detected at a level greater than or equal to the adjusted Limit of Detection

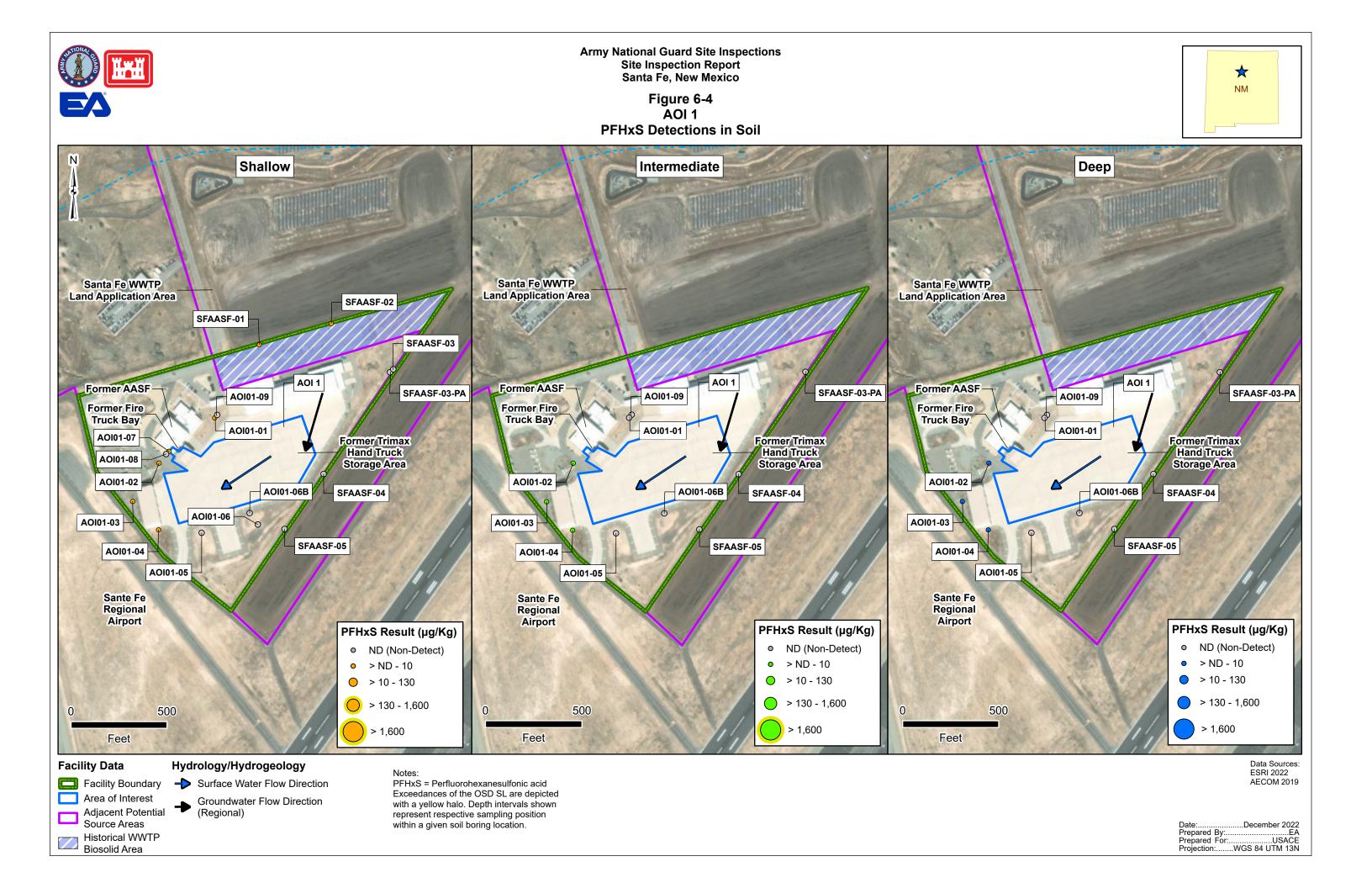
(LOD).

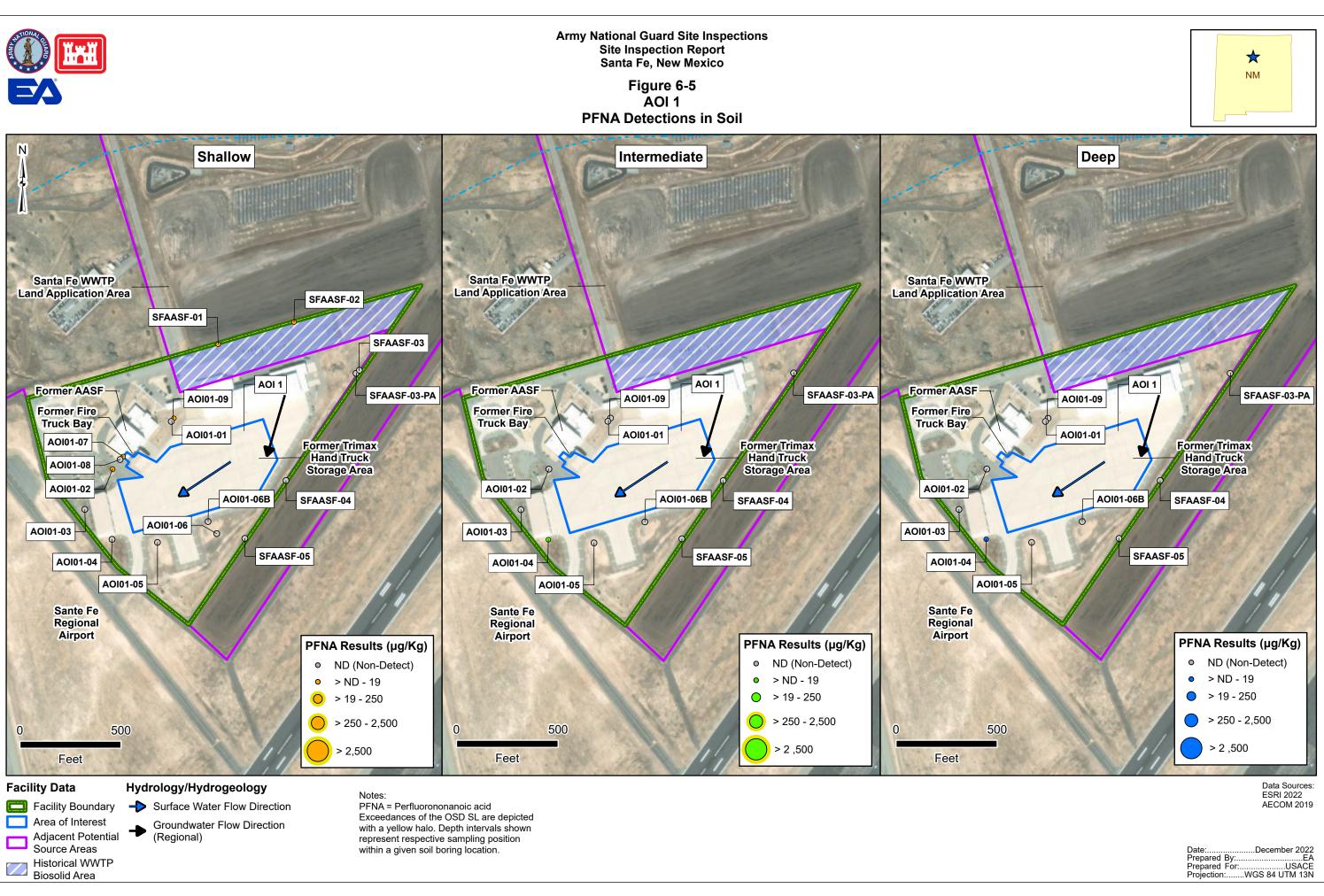
J+ = Estimated concentration, biased high.


Values exceeding the Screening Level are shaded gray.

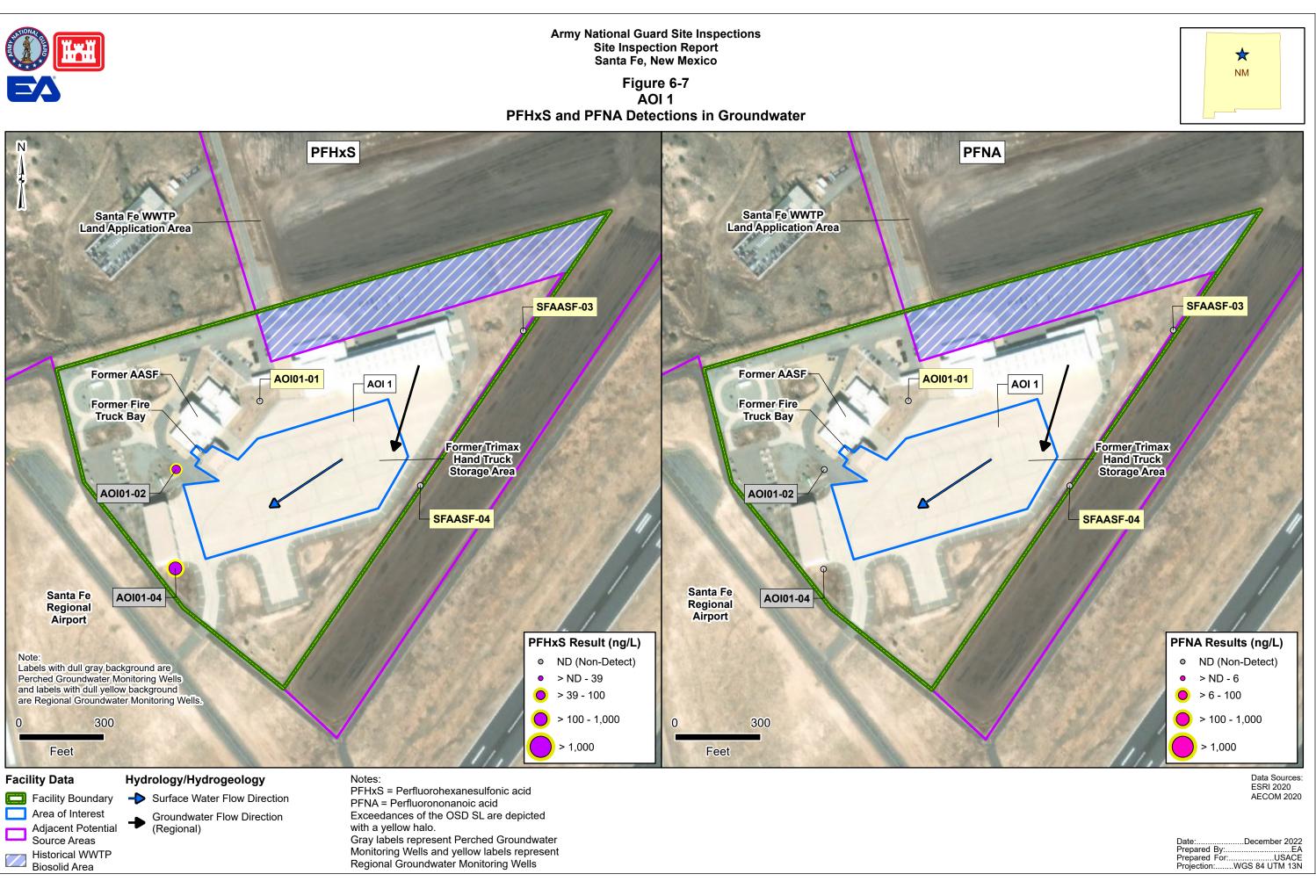

ND = Analyte not detected above the LOD (LOD values are presented in Appendix F).


ng/L = Nanogram(s) per liter.


Qual = Qualifier.


		7	
	I	٦.	
-	_		





Army National Guard Site Inspections Site Inspection Report Santa Fe, New Mexico Figure 6-6 AOI 1 **PFOA, PFOS and PFBS Detections in Groundwater** PFOA PFOS Santa Fe WWTP Land Application Area Santa Fe WWTP Land Application Area Santa Fe WWTP Land Application Area SFAASF-03 SFAASF-03 🚝 AOI 1 🚝 AOI 1 Former AASF Former AASF **Former AASF Former Fire Former Fire** Former Fire **Truck Bay** Truck Bay Truck Bay AOI01-01 AOI01-01 **Former Trimax Former Trimax** Hand Truck Hand Truck Storage Area Storage Area AOI01-02 AOI01-02 AOI01-02 SFAASF-04 SFAASF-04 AOI01-04 AOI01-04 AOI01-04 Sante Fe Sante Fe Sante Fe Regional Regional Regional Airport Airport Airport PFOS Results (ng/L) PFOA Results (ng/L) ND (Non-Detect) ND (Non-Detect) > ND - 6 > ND - 4 0 0 ○ > 6 - 40 \bigcirc > 4 - 40 > 40 - 70 > 40 - 70 (500 500 500 0 0 0 > 70 > 70 Feet Feet Feet Notes: Facility Data Hydrology/Hydrogeology PFOA = Perfluorooctanesulfonic acid E Facility Boundary → Surface Water Flow Direction PFOS = Perfluorooctanoic acid PFBS = Perfluorobutanesulfonic acid Area of Interest Groundwater Flow Direction Exceedances of the OSD SL are depicted ≁ Adjacent Potential (Regional) with a yellow halo. Source Areas Gray labels represent Perched Groundwater Historical WWTP Monitoring Wells and yellow labels represent

Regional Groundwater Monitoring Wells

Biosolid Area

7. EXPOSURE PATHWAYS

1265 The conceptual site model (CSM) for the AOI, revised based on the SI findings, is presented on 1266 Figure 7-1. Please note that while the CSM discussion assists in determining if a receptor may 1267 be impacted, the decision to move from SI to RI or interim action is determined based upon 1268 exceedances of the SLs for the relevant compounds and whether the release is more than likely attributable to the DoD. A CSM was also created for the Historical WWTP Biosolid Application 1269 1270 Area. Because the potential source of contamination in this area is not likely a result of DoD 1271 activities, a complete pathway will not initiate the decision to move from SI to RI or to trigger a 1272 removal action but can result in additional investigation. 1273

A CSM presents the current understanding of the site conditions with respect to known and
suspected sources, potential transport mechanisms and migration pathways, and potentially
exposed human receptors. A human exposure pathway is considered potentially complete when
the following conditions are present:

- 1279 1 Contaminant source
- 1280 2 Environmental fate and transport
- 1281 3 Exposure point
- 12824Exposure route12835Potentially expo
- 1283 5 Potentially exposed populations. 1284

1285 If any of these elements are missing, the pathway is incomplete. The CSM figure uses an empty 1286 circle symbol to represent an incomplete exposure pathway. Areas with no identified complete 1287 pathway generally warrant no further action. However, the pathway is considered potentially complete if the relevant compounds are detected, in which case the CSM figure uses a half-filled 1288 1289 circle symbol to represent a potentially complete exposure pathway. Additionally, a completely 1290 filled circle symbol is used to indicate when a potentially complete exposure pathway has 1291 detections of relevant compounds above the SLs. Areas with an identified potentially complete 1292 pathway that have detections of the relevant compounds above the SLs may warrant further investigation. Although the CSM indicates whether potentially complete exposure pathways may 1293 1294 exist, the recommendation for future study in a RI or no action at this time is based on the 1295 comparison of the SI analytical results for the relevant compounds to the SLs. 1296

1297 In general, the potential PFAS exposure pathways are ingestion and inhalation. Human exposure 1298 via the dermal contact pathway may occur, and current risk practice suggests it is an insignificant 1299 pathway compared to ingestion; however, exposure data for dermal pathways are sparse and 1300 continue to be the subject of PFAS toxicological study. The receptors evaluated are consistent 1301 with those listed in USEPA guidance for risk screening (USEPA 2001). Receptors at the Facility 1302 include facility workers (e.g., staff and visiting soldiers), and construction workers. Construction 1303 workers are only considered as potential future receptors due to the lack of current construction 1304 activity at the Facility. Receptors also include off-facility residential for drinking water receptors. 1305 Trespassers are not considered as receptors due to the presence of secured entry and exit points 1306 at the Facility. The CSM for AOI 1, revised based on the SI findings, is presented on Figure 7-1. 1307 The CSM created for the Historical WWTP Biosolid Application Area is presented on

1308 Figure 7-2.

1310 7.1 SOIL EXPOSURE PATHWAY

The SI results for soil were used to determine whether a potentially complete pathway exists
between the source and potential receptors at AOI 1 or the historical WWTP biosolid application
area based on the aforementioned criteria.

1315 7.1.1 AOI 1

AOI 1 encompasses potential PFAS release areas associated with an AFFF-equipped firetruck parked within the former AASF building and Tri-MaxTM 70/30 hand trucks stored at various places around the flight line and paved parking apron. AFFF releases could have occurred directly onto surface soil but may also have infiltrated soil via cracks in pavement or joints between areas that are paved with different materials.

1321

1314

1322 PFOS was detected at 7 of 10 surface soil sample locations with concentrations exceeding the

applicable SL in three surface soil sample locations completed at AOI 1. PFOA, PFHxS, and

1324 PFNA were detected at concentrations less than SLs at multiple locations within AOI 1. Facility

1325 workers and construction workers could contact constituents in surface soil via incidental

1326 ingestion and inhalation of dust. Therefore, the surface soil exposure pathways for facility

- 1327 workers and construction workers are potentially complete.
- 1328

1329 PFOS, PFOA, PFHxS, and PFNA were detected in sub-surface soil at concentrations less than

1330 SLs. Ground disturbing activities to subsurface soil could also result in exposure to those

1331 compounds by construction workers via ingestion. Therefore, the exposure pathways for

1332 inhalation and ingestion are potentially complete for future construction workers. The CSM is

1333 presented in **Figure 7-1**.

1334

1335 PFAS were detected in AOI 1 groundwater samples, indicating a complete soil to perched 1336 groundwater pathway. It is not known if the perched groundwater is in hydrologic

1337 communication with the deeper regional aquifer.

1338

1339 7.1.2 Historical Wastewater Treatment Plant Biosolid Application Area

1340 The historical WWTP Biosolid Application Area encompasses the potential PFAS release area

- located within the facility boundary. Biosolids historically applied to this area may havecontained PFAS.
- 1343

PFOS was detected at both surface soil sample locations with concentrations exceeding the
applicable SL. PFOA was detected at both locations, with the concentration exceeding the SL at
SFAASF-02. PFBS, PFHxS, and PFNA were detected at concentrations less than SLs at one or
more locations. Facility workers and construction workers could contact constituents in surface
soil via incidental ingestion and inhalation of dust. Therefore, the surface soil exposure pathway
for facility workers and construction workers are potentially complete.

1350

1351 Subsurface soil samples were not collected during the SI. As a result, the pathways of subsurface

- 1352 soil to construction workers via inhalation and ingestion are considered potentially complete
- 1353 pending further assessment.

1354 Due to the presence of PFAS in soil, a potentially complete soil to groundwater pathway exists. 1355 The CSM is presented in Figure 7-2.

1356

1357 7.2 **GROUNDWATER EXPOSURE PATHWAY**

1358 The SI results for relevant compounds in groundwater were used to determine whether a

potentially complete pathway exists between the source and potential receptors based on the 1359

- aforementioned criteria. 1360
- 1361

1362 7.2.1 AOI 1

1363 PFHxS and PFOA were detected above applicable SLs in AOI 1 perched groundwater. PFBS

1364 was detected below the SL. Domestic wells are present in a direction that is potentially

downgradient of AOI 1. Although it is unclear if the contaminated perched groundwater is in 1365 1366

communication with the regional aquifer, the potential for a complete pathway is present. As a result, the groundwater exposure pathway is considered potentially complete for off-facility

1367

1368 residents via ingestion. The CSM is presented in Figure 7-1.

1369

1370 7.2.2 Historical Wastewater Treatment Plant Biosolid Application Area

1371 Relevant compounds were not detected in groundwater downgradient from the historical

1372 wastewater treatment plant biosolid application area. However, subsurface soil was not sampled

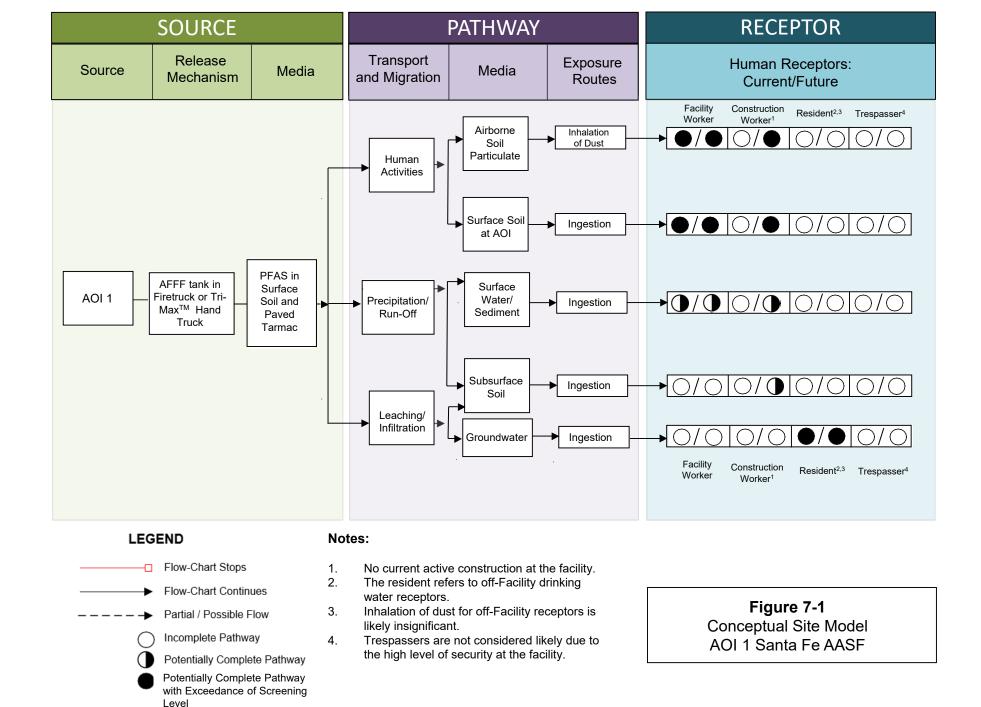
1373 and perched water was not encountered, and the fate and transport of PFAS at this location is

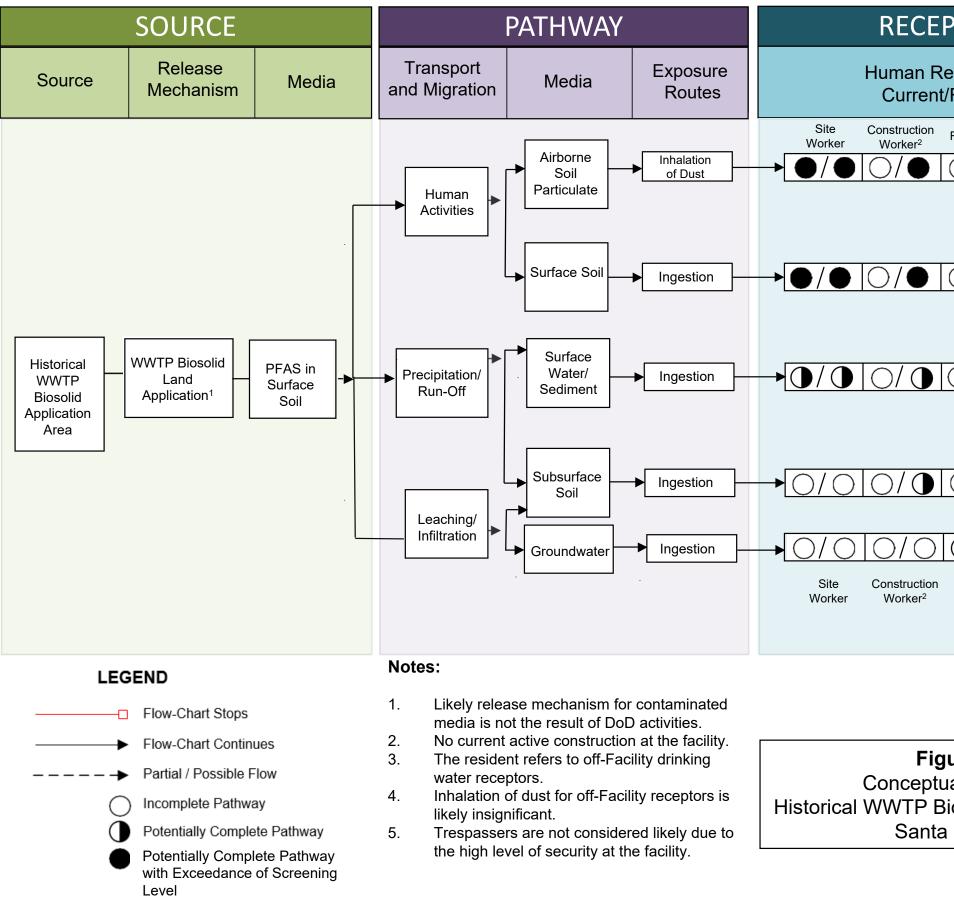
1374 unknown. As a result, the groundwater exposure pathway to off-facility residents

1375 via ingestion is potentially complete pending further assessment. The CSM is presented in

1376 Figure 7-2. 1377

1378 SURFACE WATER/ SEDIMENT EXPOSURE PATHWAY 7.3


1379 Surface water flow at the Facility is generally to the southwest. Two stormwater retention basins


1380 are present adjacent to the tarmac and a stormwater detention pond is present north of the former

1381 AASF. PFAS was not detected in surface soil collected from the stormwater retention basins 1382 adjacent to the tarmac; however, samples were not collected from the stormwater retention pond.

1383 The stormwater retention pond may receive runoff from PFAS-contaminated areas. As a result,

1384 the surface water/sediment exposure pathway is considered potentially complete.

PTOR	
eceptors: /Future	
Resident ^{3,4}	Trespasser⁵
$\bigcirc / \bigcirc \bigcirc$	O/O
$\bigcirc \bigcirc \bigcirc$	O/O
O/O	O/O
O/O	O/O
\mathbf{O}/\mathbf{O}	0/0
Resident ^{3,4}	Trespasser₅

Figure 7-2 Conceptual Site Model Historical WWTP Biosolid Application Area Santa Fe AASF

1391

8. SUMMARY AND OUTCOME

1393 This section summarizes SI activities and findings. The most significant findings are summarized 1394 in this section and are reproduced directly or abstracted from information contained in this

report. The outcome provides general and comparative interpretations of the findings relative to
the SLs.

1398 8.1 SITE INSPECTION ACTIVITIES SUMMARY

The SI field activities were conducted during two mobilizations. Field activities for the first mobilization were conducted from 7 to 8 February 2022 and consisted of hand augering and surface soil sample collection. The second mobilization was conducted 25 April through 3 June 2022. Field activities included sonic and DPT drilling, collection of soil samples, installation of permanent monitoring wells, groundwater gauging and sampling, and collection of spatial data. Field activities were conducted in accordance with the UFP-QAPP Addendum (EA 2021a), except as noted in **Section 5.8**.

1406

To fulfill the project DQOs set forth in the approved SI UFP-QAPP Addendum (EA 2021),
samples were collected and analyzed for a subset of 24 compounds by LC/MS/MS compliant
with QSM 5.3 Table B-15. The 24 PFAS analyzed as part of the ARNG SI program are specified
in Section 5.6 of this SI Report. Samples collected and analyzed are as follows:

1411 1412

1413

- Thirty-eight (38) soil grab samples from 16 boring locations
- Five (5) grab groundwater samples from five permanent monitoring wells
- 1414 1415 1416

1417

• Forty-six (46) quality assurance/quality control samples.

An SI is conducted when the PA determines an AOI exists based on probable use, storage, and/or disposal of PFAS-containing materials. The SI includes multi-media sampling at the AOI to determine whether or not a release has occurred. The SI may conclude further investigation is warranted, a removal action is required to address immediate threats, or no further action is required. Additionally, the CSM was refined to assess whether a potentially complete pathway exists between the source and potential receptors for potential exposure at the AOI, which is described in **Section 7**.

1425 1426 **8.2 OUTCOME**

Based on the results of this SI, further evaluation under CERCLA is warranted in an RI for AOI 1427 1428 1 (Table 8-1). The Historical WWTP Biosolid Application Area will also be assessed to 1429 determine if the contamination present poses a detrimental impact on human health for personnel 1430 at the Facility or the environment. Based on the CSMs developed and revised based on the SI 1431 findings, the exposure pathways are potentially complete for facility workers and construction workers during surface soil-disturbing activities and to construction workers during subsurface 1432 1433 soil-disturbing activities from historical DoD activities. These pathways are also potentially 1434 complete from historical non-ARNG activities at the historical WWTP biosolid application area. 1435 Additionally, there are potentially complete exposure pathways for residential drinking water

1436	receptors from releases during historical DoD activities and from historical non-ARNG sources
1437	at the Facility. Sample analytical concentrations collected during this SI were compared against
1438	the project SLs in soil and groundwater, as described in Table 6-1.
1439	
1440	A summary of the results of the SI data relative to the SLs is as follows:
1441	
1442	• At AOI 1:
1443	
1444	— PFOS was detected in surface soil above the SL in three of the 10 sampling locations
1445	with a maximum concentration of 920 μ g/kg. PFOA, PFNA, and PFHxS were
1446	detected in soil samples at concentrations which did not exceed the SLs. PFBS was
1447	not detected in any soil samples collected from AOI 1.
1448	
1449	— PFOA and PFHxS were detected in groundwater at concentrations above the SL with
1450	a maximum concentration of 38 ng/L and 230 ng/L, respectively. PFHxS exceeded
1451	the SL in two of the three groundwater wells. Both wells with exceedances are
1452	screened in perched groundwater, downgradient of the suspected source area. PFBS
1453	was detected in both downgradient wells, but concentrations did not exceed the SL.
1454	PFOA and PFNA were not detected in groundwater at AOI 1.
1455	
1456	• At the Historical WWTP Biosolids Area:
1457	
1458	— PFOA was detected in both surface soil sample locations and exceeded the SL in
1459	one location with a maximum concentration of 33 μ g/kg.
1460	
1461	— PFOS was detected in both surface soil sample locations above the SL with a
1462	maximum concentration of 60 μ g/kg.
1463	
1464	— PFBS, PFHxS, and PFNA were detected below SLs in one or more surface soil
1465	samples.
1466	
1467	 Neither subsurface soil nor groundwater were sampled in this area.
1468	
1469	• At the facility boundary:
1470	
1471	— PFOA and PFOS were detected in three of four surface soil samples at
1472	concentrations below SLs. PFNA, PFBS, and PFHxS were not detected in surface
1473	soil samples.
1474	
1475	— PFOA, PFOS, PFBS, PFNA, and PFHxS were not detected in shallow or deep
1476	subsurface soil samples.
1477	
1478	— PFOA, PFOS, PFBS, PFNA, and PFHxS were not detected in groundwater
1479	samples.
1480	

- 1481 Of the six PFAS compounds presented in the 6 July 2022 OSD memorandum, HFPO-DA
- 1482 (commonly referred to as GenX) was not included as an analyte at the time of this SI, as
- 1483 screening values were established after SI planning and execution. However, ARNG will add
- 1484 HFPO-DA to the list of constituents sampled during the next phase of CERCLA if warranted.
- 1485

Table 8-1 summarizes the SI results for soil and groundwater used to determine if AOI 1 should
be considered for further investigation under CERCLA and undergo an RI. It also summarizes SI
results to determine if the historical WWTP biosolid application area should be considered for
non-CERCLA evaluation.

- 1490
- 1491

Table 0-1. Summary of Site Inspection Findings					
Area	Potential Release Area	Soil	Groundwater- On-Site	Groundwater – Facility Boundary	Future Action
AOI 1	Former Firetruck Bay and Tri-Max [™] Hand Truck Storage Area			\bigcirc	Proceed to RI
Historical WWTP Biosolid Application Area	Historical WWTP Biosolid Application			\bigcirc	Further Evaluation ¹
 Notes: This area will be assessed during the RI to determine if the contamination present poses a detrimental impact on human health for personnel at the facility or the environment 					

Table 8-1. Summary of Site Inspection Findings

1492

1494	9. REFERENCES
1495 1496	AECOM Technical Services, Inc (AECOM). 2020. Final Preliminary Assessment Report, Santa Fe Army Aviation Support Facility, Santa Fe, New Mexico. August.
1497	
1498	Assistant Secretary of Defense. 2022. Investigation Per- and Polyfluoroalkyl Substances within
1499	the Department of Defense Cleanup Program. United States Department of Defense. 6
1500	July.
1501	
1502	City of Santa Fe. 2022. City of Santa Fe Fire Department. <u>https://santafenm.gov/fire-department</u> .
1503	Accessed on 23 December.
1504	
1505 1506	Department of the Army. 2016. EM-200-1-2, Environmental Quality, Technical Project Planning Process. 29 February.
1500	Tunning Trocess. 2) Teoruary.
1508	Department of Defense (DoD). 2019a. Department of Defense (DoD), Department of Energy
1509	(DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories,
1510	Version 5.3. May.
1511	<i>version 5.5.</i> May.
1512	———. 2019b. General Data Validation Guidelines. November.
1512	. 20190. General Data Fallation Galdelines. 1000ember.
1515	——. 2020. Data Validation Guidelines Module 3: Data Validation Procedure for Per- and
1515	Polyfluoroalkyl Substances Analysis by QSM Table B-15. May.
1516	= conj(a) + constant constan
1517	EA, Engineering, Science, and Technology, PBC (EA). 2020a. Final Programmatic Uniform
1518	Federal Policy Quality Assurance Project Plan, Site Inspections for Per- and
1519	Polyfluoroalkyl Substances Impacted Sites, ARNG Installations, Nationwide. December.
1520	
1521	——. 2020b. Final Programmatic Accident Prevention Plan, Revision 1. November.
1522	
1523	———. 2021a. Accident Prevention Plan/ Site Safety and Health Plan Addendum, Santa Fe
1524	Army Aviation Support Facility, New Mexico. August.
1525	
1526	——. 2021b. Final Site Inspection Uniform Federal Policy Quality Assurance Project Plan
1527	(UFP-QAPP) Addendum, Santa Fe Army Aviation Support Facility, Santa Fe, New
1528	Mexico, Per- and Polyfluoroalkyl Substances Impacted Sites ARNG Installations,
1529	Nationwide. December.
1530	
1531	Guelfo, J.L. and C.P. Higgins. 2013. Subsurface transport potential of perfluoroalkyl acids and
1532	aqueous film-forming foam (AFFF)-impacted sites. Environmental Science and
1533	Technology 47(9):4164-71.
1534	
1535	Higgins, C.P. and R.G. Luthy. 2006. Sorption of perfluorinated surfactants on sediments.
1536	Environ. Sci. Technol. 40(23):7251-7256.
1537	

1538	Interstate Technology Regulatory Council (ITRC). 2018. Environmental Fate and Transport for
1539	Per- and Polyfluoroalkyl Substances. March.
1540	
1541	Johnson, P.S., D.J. Koning, S. S. Timmons, and B. Felix. 2016. Geology and Hydrology of
1542	Groundwater-Fed Springs and Wetlands at La Cienega, Santa Fe County, New Mexico:
1543	New Mexico bureau of Geology and Mineral Resources Open-File Report 161.
1544	
1545	New Mexico Environment Department (NMED). 2021. Risk Assessment Guidance for
1546	Investigations and Remediation, Volume 1. November.
1547	
1548	NMED Ground Water Quality Bureau. 2011. Re: Discharge Permit Renewal, DP-135, City of
1549	Santa Fe – Sludge Disposal Facility.
1550	
1551	New Mexico Office of the Engineer (NMOSE). 2022. Point of Diversion Locations.
1552	https://gis.ose.state.nm.us/gisapps/ose pod locations/. Accessed on 14 December.
1553	
1554	Rhoderick. J. 2022. New Mexico Environment Department. Email to P. Hess (Army National
1555	Guard G9). 18 January.
1556	
1557	U.S. Environmental Protection Agency (USEPA). 1980. Comprehensive Environmental
1558	Response, Compensation, and Liability Act (CERCLA). 11 December.
1559	
1560	——. 1994. National Oil and Hazardous Substances Pollution Contingency Plan (Final Rule).
1561	40 Code of Federal Regulations Part 300; 59 Federal Register 47384. September.
1562	
1563	———. 2001. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation
1564	Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk
1565	Assessments). December.
1566	
1567	——. 2017. UCMR 3 (2013-2015) Occurrence Data by State. Occurrence Data for the
1568	Unregulated Contaminant Monitoring Rule.
1569	
1570	U.S. Fish and Wildlife Service. 2022. Endangered Species. http://ecos.fws.gov/ipac/. Accessed
1571	on 14 July.
1572	
1572	Xiao, F., M. F. Simcik, T.R. Halbach, and J.S Gulliver. 2015, Perfluorooctane sulfonate (PFOS)
1574	and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area:
1575	Migration and implications for human exposure. Water Research 72:64-74.
1010	

Appendix A

Data Usability Assessment and Data Validation Reports

DATA USABILITY ASSESSMENT

3 The Data Usability Assessment is an evaluation at the conclusion of data collection activities that

4 uses the results of both data verification and validation in the context of the overall project

5 decisions or objectives. Using both quantitative and qualitative methods, the assessment

- determines whether project execution and the resulting data have met installation-specific data
 quality objectives (DQOs). Both sampling and analytical activities are considered to assess
- 8 whether the collected data are of the right type, quality, and quantity to support the decision-
- 9 making.
- 10
- 11 Data quality indicators (DQIs) (precision, accuracy, representativeness, comparability,

12 completeness, and sensitivity) are important components in assessing data usability. These DQIs

13 are evaluated in the subsequent sections. The results of the evaluation demonstrate that the data

14 presented in this Site Inspection (SI) Report are of high quality overall. Although most of the SI

15 data are considered reliable, some degree of uncertainty can be associated with the data

16 collected. Specific factors that may contribute to the uncertainty of the data evaluation are

- 17 described below. The Data Validation Report (Appendix A) presents explanations for all
- 18 qualified data in greater detail.

1920 **PRECISION**

21

22 Precision is the degree of agreement among repeated measurements of the same characteristic on

23 the same sample or on separate samples collected as close as possible in time and place. Field

sampling precision is measured with the field duplicate relative percent differences (RPD), and

25 laboratory precision is measured with RPDs for laboratory duplicates, such as laboratory control

sample (LCS) and laboratory control sample duplicate (LCSD) pairs and matrix spike (MS) and

- 27 matrix spike duplicate (MSD) pairs.
- 28

29 LCS/LCSD pairs were prepared by addition of known concentrations of each analyte to a matrix-

- 30 free media known to be free of target analytes. Results for LCS/LCSD pairs met the criterion of
- 31 RPD≤30 percent (%), as specified in the Final Site Inspection Uniform Federal Policy (UFP)-
- 32 Quality Assurance Project Plan (QAPP) Addendum, Santa Fe Army Aviation Support Facility,
- 33 Santa Fe, New Mexico dated December 2021 (EA 2021), demonstrating that the analytical
- 34 system was in control during sample preparation and analysis.
- 35

36 Matrix spike (MS)/matrix spike duplicate (MSD) pairs were prepared, analyzed, and reported for

ach preparation batch for PFAS analysis at a rate of 5%. MS/MSD results met the criterion of

38 RPD≤30%, as specified in the UFP-QAPP Addendum (EA 2021), demonstrating good analytical

- 39 precision for the matrix being tested.
- 40
- 41 Field duplicate samples were collected at a rate of 10% to assess the overall sampling and
- 42 measurement precision for this sampling effort. The field duplicate samples were within the
- 43 project established precision limits presented in the UFP-QAPP Addendum (50% for solid
- 44 samples, 30% for water samples) (EA 2021) or differences were less than the average limit of
- 45 quantitation (LOQ), indicating acceptable sampling and analytical precision, with the following
- 46 exceptions. Perfluorohexanesulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS)

were detected in parent sample AOI01-04-SB-109-110 but not in duplicate sample AOI01-04SB-109-110-DUP. The results were J or UJ qualified and are usable as qualified.

49

50 ACCURACY

51

52 Accuracy is a measure of confidence in a measurement. The smaller the difference between the

- 53 measurement of a parameter and its "true" or expected value, the more accurate the
- 54 measurement. The more precise or reproducible the result, the more reliable or accurate the
- 55 result. Accuracy is measured through percent recoveries in calibration verification samples,
- 56 LCS/LCSD, and MS/MSD, and through extraction internal standards (EIS).
- 57
- 58 LCS/LCSD samples were prepared by addition of known concentrations of each analyte to a
- 59 matrix-free media known to be free of target analytes. LCS/LCSD samples were analyzed for
- 60 each analytical batch and demonstrated that the analytical system was in control during
- 61 sample preparation and analysis, with the following exceptions. perfluorohexanoic acid
- 62 (PFHxA), perfluoroheptanoic acid, perfluorodecanoic acid, perfluorotridecanoic acid,
- 63 perfluorotetradecanoic acid, PFHxS, perfluoroheptanesulfonic acid, perfluorononanesulfonic
- 64 acid and/or 4:2 fluorotelomer sulfonic acid recoveries were low in LCS/LCSDs associated with
- 65 field and equipment blanks. No data were qualified.
- 66

67 MS/MSDs were performed on soil samples SFAASF-04-SB-0-2 and AOI01-01-SB-13-15 and 68 groundwater sample SFAASF-04-GW. Analyte recoveries in MS/MSD samples demonstrated

- 69 that the analytical system was in control for both soil and water.
- 70

71 EIS were added by the laboratory during sample extraction to measure relative responses of 72 target analytes and used to correct for bias associated with matrix interferences and sample 73 preparation efficiencies, injection volume variances, mass spectrometry ionization efficiencies, 74 and other associated preparation and analytical anomalies. Several field samples displayed EIS 75 area counts less than the lower quality control (QC) limit of 50%. Four positive field sample 76 results were associated with EIS recoveries less than the OC limit, but greater than 20%, and 77 were qualified "J+"; these qualified results are considered usable as estimated values with a 78 positive bias. Twenty non-detect field sample results associated with EIS recoveries less than 79 the QC limit, but greater than 20%, were qualified UJ; these qualified results are also considered 80 usable. The non-detect results for N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA) and N-ethylperfluorooctane sulfonamidoacetic acid (NEtFOSAA) in one soil 81 sample and the non-detect result for NMeFOSAA in three other soil samples were associated 82 83 with EIS recoveries less than 20%, and were qualified "X" by the validator, indicating that these 84 results needed further evaluation during the Data Usability Assessment. As stated above, EIS 85 recoveries are used to correct sample results for bias resulting from sample matrix as well as 86 analytical variability; because the sample data are corrected based on the EIS recoveries, low 87 recoveries do not necessarily impact data usability. Therefore, the project team has determined 88 that results with very low EIS recoveries are usable for project purposes, and these five non-89 detect NMeFOSAA and NEtFOSAA soil results were UJ qualified.

- 90 Calibration verifications were performed routinely to ensure that instrument responses for all
- 91 calibrated analytes were within established QC criteria. All calibration verifications were within
- 92 the project established precision limits presented in the UFP-QAPP Addendum (EA 2021).
- 93

94 Transition ion ratios were outside the OSM-specified limits for one soil result and two 95 groundwater results, which were qualified J. These data are usable as qualified.

97 **REPRESENTATIVENESS**

98

96

99 Representativeness qualitatively expresses the degree to which data accurately reflect site 100 conditions. Factors that affect the representativeness of analytical data include appropriate

101 sample population definitions, proper sample collection and preservation techniques, analytical

102 holding times, use of standard analytical methods, and determination of matrix or analyte

- 103 interferences.
- 104

105 Relating to the use of standard analytical methods, the laboratory followed the method as

106 established in PFAS by liquid chromatography with tandem mass spectrometry (LC/MS/MS)

107 compliant with QSM Version 5.3 Table B-15, including the specific preparation requirements

108 (i.e., ENVI-Carb or equivalent used), mass calibration, spectra, all the ion transitions identified

109 in Table B-15 were monitored, standards that contained both branch and linear isomers when

110 available were used, and isotopically labeled standards were used for quantitation. The

- 111 laboratory used approved standard methods in accordance with the UFP-QAPP Addendum
- 112 (EA 2021) for all analyses.
- 113

114 Field QC samples were collected to assess the representativeness of the data collected. Field

115 duplicates were collected at a rate of 10% and MS/MSD samples were collected at a rate of 5%.

116 Appropriate preservation techniques were followed by the field staff, and maximum holding

117 times for extraction and analysis were met by the laboratory.

118

119 Instrument blanks and method blanks were prepared by the laboratory in each batch as a negative

120 control. Instrument blanks and method blanks were non-detect for all target analytes with the

121 following exceptions. PFOS was detected in one laboratory blank associated with the analysis of field samples. Two PFOS results less than the LOQ were qualified U based on this detection.

122

123 124 Equipment blanks (EBs) and field blanks (FBs) were also collected for groundwater and soil

125 samples. PFOS was above the detection limit in multiple EBs and FBs. PFBS was detected in

126 four EBs. PFOSA was detected in two EBs and one FB. PFHxA, PFOA, and PFBA were

127 detected in two EBs, and PFHxS was detected in one EB. Two detections of PFOS in associated

128 field samples (one parent sample and one duplicate) were less than five times the concentration

detected in the blank, but greater than the LOQ and were qualified J+. These qualified results 129

130 are considered usable as estimated values with a positive bias. The detections of PFOS in

131 associated field samples that were less than the limit of detection were the same results

132 associated with a laboratory blank detection (see above) and were qualified as U. These results

133 are usable as qualified and treated as non-detects. PFOS detections in associated samples that

134 were greater than five times the concentration detected in the blank were not qualified.

135	COMPARABILITY
136	
137	Comparability is the extent to which data from one study can be compared directly to either past
138	data from the current project or data from another study. Using standardized sampling and
139	analytical methods, units of reporting, and site selection procedures help ensure comparability.
140	Standard field sampling and typical laboratory protocols were used during the SI and are
141	considered comparable to ongoing investigations.
142	
143	COMPLETENESS
144	
145	Completeness is a measure of the amount of valid data obtained from a measurement system
146	compared to the amount of data expected under normal conditions. The laboratory provided data
147	meeting system QC acceptance criteria for all samples tested. Project completeness was
148	determined by evaluating the planned versus actual quantities of data. Percent completeness per
149	parameter is as follows and reflects the exclusion of "R" flagged data:
150	
151	 PFAS in groundwater by LC/MS/MS compliant with QSM Version 5.3 Table B-15 at
152	100%
153	
154	 PFAS in soil by LC/MS/MS compliant with QSM Version 5.3 Table B-15 at 100%.
155	
156	SENSITIVITY
157	
158	Sensitivity is the capability of a test method or instrument to discriminate between measurement
159	responses representing different levels (e.g., concentrations) of a variable of interest. Examples
160	of QC measures for determining sensitivity include laboratory fortified blanks, a detection limit
161	study, and calibration standards at the LOQ. In order to meet the needs of the data users, project
162	data must meet the measurement performance criteria for sensitivity and project LOQs specified
163	in the UFP-QAPP Addendum (EA 2021). The laboratory provided applicable calibration
164	standards at the LOQ and reported all field sample results at the lowest possible dilution.

165

168 DATA USABILITY SUMMARY

- 169
- 170 Overall, the data are usable for evaluating the presence or absence of PFAS at the Facility.

Additionally, any analytes detected below the LOQ and above the detection limit were reported

- 171 Sufficient usable data were obtained to meet the objectives of the SI and to complete the
- 172 comparison to risk-based screening levels.

and qualified "J" as estimated values by the laboratory.

Data Validation Report

Santa Fe Army Aviation Support Facility Santa Fe, New Mexico Project # 3031200026.3000.****

Prepared for:

Army National Guard Headquarters

11/11/2021

111 S. George Mason Drive, Arlington, VA 22204

Table of Contents

1.0	Introduction		1
2.0	Data Validation	n Methodology	1
3.0	Explanation of	Data Quality Indicators	2
	3.1 Labora	tory Control Sample Accuracy and Precision	2
	3.2 Matrix	Spike Accuracy and Precision	2
	3.3 Blank I	Detections	2
	3.4 Labora	tory and Field Duplicate Precision	3
4.0	Definitions of (Qualifiers that May be Used During Data Validation	3
5.0	Qualification R	eason Code	3
6.0	Chain of Custo	dy and Sample Receipt Condition Documentation	3
7.0	Specific Data V	alidation Findings	3
	7.1 Per-a	nd Polyfluoroalkyl Substances Analysis	3
	7.1.1	Holding Time Compliance	
	7.1.2	Initial Calibration Compliance	4
	7.1.3	Initial Calibration Verification Accuracy	4
	7.1.4	Instrument Sensitivity Check Standard Accuracy	4
	7.1.5	Continuing Calibration Verification Accuracy	4
	7.1.6	Laboratory Blank Detections	4
	7.1.7	Equipment and Field Blank Detections	4
	7.1.8	Laboratory Control Sample Accuracy	4
	7.1.9	Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision	4
	7.1.10	Laboratory Duplicate Precision	4
	7.1.11	Extracted Internal Standard Accuracy	4
	7.1.12	Data Reporting and Analytical Procedures	5
8.0	Field Duplicate	Precision	5
9.0	•	Conclusions	
10.0	References		6
11.0	Limitations		7

List of Tables

Table 1: Field Sample Submitted to Eurofins	1
Table 2: Qualifiers Applied During Validation	5

List of Acronyms

%	percent
4:2 FTS	4:2 fluorotelomer sulfonic acid
ARNG	Army National Guard
CCV COC	continuing calibration verification chain of custody
DoD	Department of Defense
EA EIS Eurofins	EA Engineering, Science, and Technology, Inc., PBC extracted internal standard Eurofins Environment Testing America
ICAL ICV ID ISC	initial calibration initial calibration verification identification instrument sensitivity check
LCS LCSD LOD LOQ	laboratory control sample laboratory control sample duplicate limit of detection limit of quantitation
MS MSD	matrix spike matrix spike duplicate
ng/L	nanograms per liter
PFAS	per- and polyfluoroalkyl substances
QAPP QC QSM	quality assurance project plan quality control Quality Systems Manual for Environmental Laboratories
RPD	relative percent difference
UFP	Uniform Federal Policy
Wood	Wood Environment & Infrastructure, Solutions, Inc.

1.0 Introduction

EA Engineering, Science, and Technology, Inc., PBC (EA) collected one aqueous sample on 14 October 2021 and submitted the sample to Eurofins Environment Testing America (Eurofins), located in Lancaster, Pennsylvania, where the sample was received on 15 October 2021 and assigned to job number 410-59356-1. Eurofins analyzed the sample for per- and polyfluoroalkyl substances (PFAS) by liquid chromatography tandem mass spectrometry compliant with Table B-15 of the Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3. The field sample identification (ID), collection date and time, and laboratory sample ID are presented in Table 1.

Table 1: Field Sample Submitted to Eurofins

Santa Fe Army Aviation Support Facility, Santa Fe, New Mexico

Field Sample ID	Collection Date and Time	Laboratory Sample ID
SFAASF-PW-01	10/14/21 10:47	410-59356-1

2.0 Data Validation Methodology

Wood Environment & Infrastructure Solutions, Inc. (Wood) performed DoD Stage 2B validation with review of the manual integration on data from the samples. The Stage 2B validation includes review of sample and instrument quality control (QC) results in the laboratory's analytical report and reported on QC summary forms, without review or validation of the raw analytical data. This data validation has been performed in accordance with:

- EA, 2020. Final Programmatic Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP), Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, Army National Guard (ARNG) Installations, Nationwide, December.
- DoD, 2019a. DoD QSM, Version 5.3. May.
- DoD, 2019b. General Data Validation Guidelines, Revision 1. November.
- DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15. May.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package and electronic data deliverable completeness;
- Laboratory case narrative review;
- Chain of custody (COC) compliance;
- Holding time compliance;
- QC sample frequency;
- Initial calibration (ICAL), initial calibration verification (ICV), and continuing calibration verification (CCV) compliance with method specified criteria;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;

- Accuracy and bias as demonstrated by recovery of surrogate spikes, laboratory control sample (LCS), and matrix spike (MS) samples;
- Internal standard recoveries;
- Analytical precision as relative percent difference (RPD) of analyte concentration between LCS/LCS duplicate (LCSD), laboratory duplicates, or MS/MS duplicate (MSD);
- Sampling and analytical precision as RPD of analyte concentration between primary samples and field duplicates;
- Assessment of field contamination as demonstrated by equipment and field blanks; and
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

3.0 Explanation of Data Quality Indicators

Summary explanations of the specific data quality indicators reviewed during this data quality review are presented below.

3.1 Laboratory Control Sample Accuracy and Precision

LCSs and LCSDs are aliquots of analyte free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery and precision are an indication of a laboratory's ability to successfully perform an analytical method in an interference free matrix.

3.2 Matrix Spike Accuracy and Precision

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 Blank Detections

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Equipment blanks are prepared by passing analyte free water through or over sample collection equipment and collecting the water in sample containers. Equipment blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.

Field blanks are prepared by pouring an aliquot of analyte free water into a sample container in the field. Field blanks are analyzed for the analytical suite required for the project. Field blanks are used to monitor for possible sample contamination originating from the water used for equipment decontamination.

Laboratory blanks are processed by the laboratory using the same procedures as the field samples.

3.4 Laboratory and Field Duplicate Precision

Laboratory and field duplicate analyses verify acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

4.0 Definitions of Qualifiers that May be Used During Data Validation

The qualifiers used in the text are the qualifiers applied for each individual QC issue and may not reflect the final qualifiers applied to the data.

- J The reported result is an estimated quantity with an unknown bias.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- U The analyte was not detected and was reported as less than the limit of detection (LOD). The LOD has been adjusted for any dilution or concentration of the sample.
- UJ The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
- X The sample results were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

5.0 Qualification Reason Codes

Wood applied the following reason codes to the data during validation:

EMPC The ion transition ratio is outside of expected limits.

TR The detected concentration is less than the limit of quantitation (LOQ).

6.0 Chain of Custody and Sample Receipt Condition Documentation

The sample was received at the laboratory under proper COC, intact, properly preserved, and at a temperature within the QAPP-specified temperature range of 2 to 6 degrees Celsius.

7.0 Specific Data Validation Findings

Data validation findings are presented in Sections 7.1 through 8.0.

7.1 Per- and Polyfluoroalkyl Substances Analysis

PFAS results generated by Eurofins may be considered usable with the limitations summarized in Sections 7.1 through 8.0.

7.1.1 Holding Time Compliance

The sample was extracted for PFAS within the QAPP-specified maximum holding time of 14 days from sample collection for water samples and the extract was analyzed within the QAPP-specified maximum hold time of 28 days from extraction.

7.1.2 Initial Calibration Compliance

The ICAL associated with the analysis of this sample met the QAPP-specified criteria of the calibration standards calculating to 70 to 130 percent (%) of their true concentrations and either correlation coefficients greater than or equal to 0.99 or relative standard deviations of the response factors less than or equal to 20%.

7.1.3 Initial Calibration Verification Accuracy

ICV recoveries were within the QAPP-specified 70% to 130% limits.

7.1.4 Instrument Sensitivity Check Standard Accuracy

Instrument sensitivity check (ISC) recoveries were within the QSM-specified 70 to 130% limits and samples were analyzed no more than 12 hours after a reported ISC.

7.1.5 Continuing Calibration Verification Accuracy

CCV recoveries were within the QAPP-specified 70 to 130% limits.

7.1.6 Laboratory Blank Detections

PFAS were not detected in the laboratory blank associated with the sample reviewed in this report.

7.1.7 Equipment and Field Blank Detections

EA did not collect equipment or field blanks with the sample reviewed in this report.

7.1.8 Laboratory Control Sample Accuracy and Precision

LCS recoveries were within QSM 5.3-specified limits and RPDs between LCS and LCSD results were less than the QSM-specified maxima of 30%.

7.1.9 Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision

Eurofins did not perform MS and MSD analyses on the sample reviewed in this report.

7.1.10 Laboratory Duplicate Precision

Eurofins did not perform a duplicate analysis on the sample reviewed in this report.

7.1.11 Extracted Internal Standard Accuracy

Extracted internal standard (EIS) recoveries were within the QAPP-specified limits of 50 to 150% of areas measured in the ICAL midpoint standard or 50 to 150% of the areas measured in the initial CCV on days when ICAL is not performed, with the following exception:

• Recovery of the EIS M2-4:2 fluorotelomer sulfonic acid (4:2 FTS) was high at 160% in sample SFAASF-PW-01. 4:2 FTS was not detected in the sample and data usability is not adversely affected by the high EIS recovery.

7.1.12 Data Reporting and Analytical Procedures

Eurofins I qualified results when ion transition ratios were outside of expected limits. Wood J qualified Eurofins' I qualified results. (Qualifier and reason code: J, EMPC)

Eurofins J qualified results with detected concentrations less than the LOQ. Wood agrees these results are quantitatively uncertain and has maintained the laboratory's J qualifiers. (J, TR)

8.0 Field Duplicate Precision

EA did not collect a field duplicate with the sample reviewed in this report.

9.0 Summary and Conclusions

Wood reviewed a total of 24 records from sample SFAASF-PW-01.

During validation Wood J qualified four results because the detected concentrations were less than the LOQ and/or because the ion transition ratio was outside of expected limits.

Data qualified during validation are summarized in Table 2.

Table 2: Qualifiers Applied During Validation

Santa Fe Army Aviation Support Facility, Santa Fe, New Mexico

Sample ID	Analyte	Concentration	Qualifier and Reason Code
SFAASF-PW-01	Perfluoroheptanoic acid	0.49 ng/L	J EMPC, TR
SFAASF-PW-01	Perfluorooctanoic acid	0.56 ng/L	J TR
SFAASF-PW-01	Perfluorobutanesulfonic acid	0.62 ng/L	J TR
SFAASF-PW-01	Perfluorooctanesulfonic acid	0.48 ng/L	J TR

Note:

ng/L = nanograms per liter

10.0 References

- EA, 2020. Final Programmatic UFP-QAPP, Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, ARNG Installations, Nationwide, December.
- DoD, 2019a. DoD QSM, Version 5.3. May.
- DoD, 2019b. General Data Validation Guidelines, Revision 1. November.
- DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15.

11.0 Limitations

This report was prepared for ARNG by Wood Environment & Infrastructure Solutions, Inc. The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in Wood services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This Data Validation report is intended to be used by ARNG for the Nationwide ARNG Installations Site Inspections for Per- and Polyfluoroalkyl Substances project only, subject to the terms and conditions of its contract with Wood. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

Data Validation Report

Santa Fe Army Aviation Support Facility Santa Fe, New Mexico Project # 3031200026.3000.****

Prepared for:

Army National Guard Headquarters 111 S. George Mason Drive, Arlington, VA 22204

2/25/2022

This page intentionally left blank

Table of Contents

1.0	Introduction	ntroduction1			
2.0	Data Validatior	Validation Methodology1			
3.0	Explanation of Data Quality Indicators				
	3.1 Labora	tory Control Sample Accuracy and Precision	2		
	3.2 Matrix	Spike Accuracy and Precision	2		
	3.3 Blank I	3.3 Blank Detections			
	3.4 Labora	tory and Field Duplicate Precision	3		
4.0	Definitions of (Qualifiers that May be Used During Data Validation	3		
5.0		eason Codes			
6.0	Chain of Custo	dy and Sample Receipt Condition Documentation	3		
7.0	Specific Data V	alidation Findings	4		
	7.1 Per- ar	nd Polyfluoroalkyl Substances Analysis	4		
	7.1.1	Holding Time Compliance	4		
	7.1.2	Initial Calibration Compliance	4		
	7.1.3	Initial Calibration Verification Accuracy	4		
	7.1.4	Instrument Sensitivity Check Standard Accuracy	4		
	7.1.5	Continuing Calibration Verification Accuracy	4		
	7.1.6	Laboratory Blank Detections	4		
	7.1.7	Equipment and Field Blank Detections	4		
	7.1.8	Laboratory Control Sample Accuracy and Precision	4		
	7.1.9	Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision	4		
	7.1.10	Laboratory Duplicate Precision	5		
	7.1.11	Extracted Internal Standard Accuracy	5		
	7.1.12	Data Reporting and Analytical Procedures	5		
8.0	Field Duplicate	Precision	6		
9.0	Summary and	Conclusions	6		
10.0	References		6		
11.0	Limitations		7		

List of Tables

Table 1: Field Samples Submitted to Eurofins Table 2: Field Duplicate Detections Table 3: Qualifiers Applied During Validation

List of Acronyms

%	percent
ARNG	Army National Guard
CCV	continuing calibration verification
COC	chain of custody
DoD	Department of Defense
EA	EA Engineering, Science, and Technology, Inc., PBC
EIS	extracted internal standard
Eurofins	Eurofins Environment Testing America
ICAL	initial calibration
ICV	initial calibration verification
ID	identification
ISC	instrument sensitivity check
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MS	matrix spike
MSD	matrix spike duplicate
NEtFOSAA	ethyl perfluorooctanesulfonamidoacetic acid
NMeFOSAA	methyl perfluorooctanesulfonamidoacetic acid
PFAS	per- and polyfluoroalkyl substances
QAPP	quality assurance project plan
QC	quality control
QSM	Quality Systems Manual for Environmental Laboratories
RPD	relative percent difference
UFP	Uniform Federal Policy
Wood	Wood Environment & Infrastructure, Solutions, Inc.

1.0 Introduction

EA Engineering, Science, and Technology, Inc., PBC (EA) collected 19 samples, including 15 soil samples, two equipment blanks, and two field blanks on 7 and 8 February 2022 and submitted the sample to Eurofins Environment Testing America (Eurofins), located in Lancaster, Pennsylvania, where the samples were received on 9 February 2022 and assigned to job number 410-72247-1. Eurofins analyzed the sample for per- and polyfluoroalkyl substances (PFAS) by liquid chromatography tandem mass spectrometry compliant with Table B-15 of the Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3. The field sample identification (ID), collection date and time, and laboratory sample ID are presented in Table 1.

2.0 Data Validation Methodology

Wood Environment & Infrastructure Solutions, Inc. (Wood) performed DoD Stage 2B validation with review of the manual integration on data from the samples. The Stage 2B validation includes review of sample and instrument quality control (QC) results in the laboratory's analytical report and reported on QC summary forms, without review or validation of the raw analytical data. This data validation has been performed in accordance with:

- EA, 2020. Final Programmatic Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP), Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, Army National Guard (ARNG) Installations, Nationwide, December.
- DoD, 2019a. DoD QSM, Version 5.3. May.
- DoD, 2019b. General Data Validation Guidelines, Revision 1. November.
- DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15. May.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package and electronic data deliverable completeness;
- Laboratory case narrative review;
- Chain of custody (COC) compliance;
- Holding time compliance;
- QC sample frequency;
- Initial calibration (ICAL), initial calibration verification (ICV), and continuing calibration verification (CCV) compliance with method specified criteria;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;
- Accuracy and bias as demonstrated by recovery of surrogate spikes, laboratory control sample (LCS), and matrix spike (MS) samples;
- Internal standard recoveries;
- Analytical precision as relative percent difference (RPD) of analyte concentration between LCS/LCS duplicate (LCSD), laboratory duplicates, or MS/MS duplicate (MSD);

- Sampling and analytical precision as RPD of analyte concentration between primary samples and field duplicates;
- Assessment of field contamination as demonstrated by equipment and field blanks; and
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

3.0 Explanation of Data Quality Indicators

Summary explanations of the specific data quality indicators reviewed during this data quality review are presented below.

3.1 Laboratory Control Sample Accuracy and Precision

LCSs and LCSDs are aliquots of analyte free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery and precision are an indication of a laboratory's ability to successfully perform an analytical method in an interference free matrix.

3.2 Matrix Spike Accuracy and Precision

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 Blank Detections

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Equipment blanks are prepared by passing analyte free water through or over sample collection equipment and collecting the water in sample containers. Equipment blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.

Field blanks are prepared by pouring an aliquot of analyte free water into a sample container in the field. Field blanks are analyzed for the analytical suite required for the project. Field blanks are used to monitor for possible sample contamination originating from the water used for equipment decontamination.

Laboratory blanks are processed by the laboratory using the same procedures as the field samples.

3.4 Laboratory and Field Duplicate Precision

Laboratory and field duplicate analyses verify acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

4.0 Definitions of Qualifiers that May be Used During Data Validation

The qualifiers used in the text are the qualifiers applied for each individual QC issue and may not reflect the final qualifiers applied to the data.

- J The reported result is an estimated quantity with an unknown bias.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- U The analyte was not detected and was reported as less than the limit of detection (LOD). The LOD has been adjusted for any dilution or concentration of the sample.
- UJ The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
- X The sample results were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

5.0 Qualification Reason Codes

Wood applied the following reason codes to the data during validation:

EMPC The ion transition ratio is outside of expected limits.

- ISL Low extracted internal standard (EIS) recovery.
- TR The detected concentration is less than the limit of quantitation (LOQ).

6.0 Chain of Custody and Sample Receipt Condition Documentation

The sample was received at the laboratory under proper COC, intact, properly preserved, and at a temperature within the QAPP-specified temperature range of 2 to 6 degrees Celsius, with the following exception:

- According to the case narrative:
 - The collection date recorded on the COC for sample SFAASF-01-SB-0-2 was 28 February 2022 and the matrix was recorded as being water. Eurofins logged in the sample using the date and matrix recorded on the label.
 - Samples AOI01-04-SB-0-2 and AOI01-03-SB-0-2 were listed as AOI1-04-SB-0-2 and AOI1-03-SB-0-2 on the COC. Eurofins contacted the client and were instructed to log the samples as AOI01-04-SB-0-2 and AOI01-03-SB-0-2.
- The samples arrived at the laboratory with a temperature below the range specified in the QAPP, however, it does not appear that the samples were frozen and data usability is not adversely affected by the low temperature.

• • •

7.0 Specific Data Validation Findings

Data validation findings are presented in Sections 7.1 through 8.0.

7.1 Per- and Polyfluoroalkyl Substances Analysis

PFAS results generated by Eurofins may be considered usable with the limitations summarized in Sections 7.1 through 8.0.

7.1.1 Holding Time Compliance

The samples were extracted for PFAS within the QAPP-specified maximum holding time of 14 days from sample collection for water samples or 28 days from collection for soil samples and the extracts were analyzed within the QAPP-specified maximum hold time of 28 days from extraction.

7.1.2 Initial Calibration Compliance

The ICAL associated with the analysis of these samples met the QAPP-specified criteria of the calibration standards calculating to 70 to 130 percent (%) of their true concentrations and either correlation coefficients greater than or equal to 0.99 or relative standard deviations of the response factors less than or equal to 20%.

7.1.3 Initial Calibration Verification Accuracy

ICV recoveries were within the QAPP-specified 70% to 130% limits.

7.1.4 Instrument Sensitivity Check Standard Accuracy

Instrument sensitivity check (ISC) recoveries were within the QSM-specified 70 to 130% limits and samples were analyzed no more than 12 hours after a reported ISC.

7.1.5 Continuing Calibration Verification Accuracy

CCV recoveries were within the QAPP-specified 70 to 130% limits.

7.1.6 Laboratory Blank Detections

PFAS were not detected in the laboratory blanks associated with the samples reviewed in this report.

7.1.7 Equipment and Field Blank Detections

Target analytes were not detected in the equipment and field blanks associated with the samples reviewed in this report.

7.1.8 Laboratory Control Sample Accuracy and Precision

LCS and LCSD recoveries were within QSM 5.3-specified limits and RPDs between LCS and LCSD results were less than the QAPP-specified maximum of 30%.

7.1.9 Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision

Eurofins performed MS and MSD analyses on sample SFAASF-04-SB-0-2. MS and MSD recoveries were within QSM 5.3-specified limits and RPDs between MS and MSD results were less than the QAPP-specified maximum of 30%.

• • •

7.1.10 Laboratory Duplicate Precision

Eurofins did not perform duplicate analyses on any of the samples reviewed in this report.

7.1.11 Extracted Internal Standard Accuracy

The EISs reported in the Isotope Dilution Summaries associated with the samples reviewed in this report were incorrectly calculated using the average initial calibration (ICAL) response, however, the EISs were reported correctly in Form VIII: PFAS ISOTOPE DILUTION SUMMARY AREA AND RETENTION TIME SUMMARY, in accordance with the criteria listed below. For this report, Wood used this form to evaluate the recoveries of the EISs.

EIS area counts were within the QAPP-specified limits of 50 to 150% of areas measured in the ICAL midpoint standard or 50 to 150% of the areas measured in the initial CCV on days when ICAL is not performed, with the following exception:

- Recoveries of EIS d₃-N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) and d₃-N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) were low in the analysis of samples AOI01-01-SB-0-2 (37%, 23%), AOI01-02-SB-0-2-D (16%, 9.4%), AOI01-04-SB-0-2 (27%, 18%), AOI01-07-SB-0-2 (48%, 33%), AOI01-08-SB-0-2 (40%, 34%), SFAASF-03-SB-0-2 (40%, 29%), SFAASF-04-SB-0-2 (26%, 16%), and SFAASF-05-SB-0-2 (27%, 19%). Data limitations are summarized below.
 - Wood X qualified the non-detect NEtFOSAA and NMeFOSAA results from sample AOI01-02-SB-0-2-D; and the non-detect NMeFOSAA results from samples AOI01-04-SB-0-2, SFAASF-04-SB-0-2, and SFAASF-05-SB-0-2 due to extremely low EIS recoveries. (Qualification and reason code: X, ISL)
 - Wood J+ qualified the detected NEtFOSAA result from sample SFAASF-05-SB-0-2 because of low EIS recovery. (Qualifier and reason code: J+, ISL)
 - Wood UJ qualified the non-detect NEtFOSAA and NMeFOSAA results from samples SFAASF-03-SB-0-2, AOI01-01-SB-0-2, AOI01-07-SB-0-2, and AOI01-08-SB-0-2; and the nondetect NEtFOSAA results from samples AOI01-04-SB-0-2 and SFAASF-04-SB-0-2 because of the low EIS recoveries. (Qualifier and reason code: UJ, ISL)
- Recoveries of EIS d₃-NMeFOSAA were low in the analysis of samples AOI01-02-SB-0-2 (41%), SFAASF-01-SB-0-2 (39%), and SFAASF-02-SB-0-2-D (48%). Wood J+ qualified the detected NMeFOSAA results from samples SFAASF-01-SB-0-2 and SFAASF-02-SB-0-2-D; and UJ qualified the non-detect NMeFOSAA result from sample AOI01-02-SB-0-2 because of the low EIS recoveries. (Qualifier and reason code: J+/UJ, ISL)

7.1.12 Data Reporting and Analytical Procedures

Eurofins I qualified results when ion transition ratios were outside of expected limits. Wood J qualified Eurofins' I qualified results. (Qualifier and reason code: J, EMPC)

Eurofins J qualified results with detected concentrations less than the LOQ. Wood agrees these results are quantitatively uncertain and has maintained the laboratory's J qualifiers. (J, TR)

8.0 Field Duplicate Precision

Wood collected field duplicates with samples:

- SFAASF-02-SB-0-2 (SFAASF-02-SB-0-2-D); and
- AOI01-02-SB-0-2 (AOI01-02-SB-0-2-D).

Target analyte detections are summarized in Table 2. Precision values were less than the QAPP-specified maximum of 50% or differences between analyte concentrations were less than the LOQ.

9.0 Summary and Conclusions

Wood reviewed a total of 360 records from field samples during the validation and applied the following qualifiers to the data:

- X: Wood X qualified five records (1.4%) due to extremely low EIS recoveries.
- J+: Wood J+ qualified three records (0.83%) as having potential high analytical bias due to low EIS recoveries..
- J/UJ: Wood J or UJ qualified 59 records (16%) due to low EIS recoveries, detected concentrations were less than the LOQ and/or the ion transition ratio was outside of expected limits.

Data qualified during validation are summarized in Table 3.

10.0 References

- EA, 2020. Final Programmatic UFP-QAPP, Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, ARNG Installations, Nationwide, December.
- DoD, 2019a. DoD QSM, Version 5.3. May.
- DoD, 2019b. General Data Validation Guidelines, Revision 1. November.
- DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15.

11.0 Limitations

This report was prepared for EA by Wood Environment & Infrastructure Solutions, Inc. The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in Wood services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This Data Validation report is intended to be used by EA for the Nationwide ARNG Installations Site Inspections for Per- and Polyfluoroalkyl Substances project only, subject to the terms and conditions of its contract with Wood. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

Page 7 of 7

Tables

Table 1 Field Samples Submitted to Eurofins Environment Testing America Santa Fe Army Aviation Support Facility

Santa Fe, New Mexico

Sample Identification	Matrix	Collection Date	Laboratory Sample Identification	Notes
SFAASF-03-SB-0-2	Solid	2/7/2022 11:30	410-72247-1	
SFAASF-04-SB-0-2	Solid	2/7/2022 12:10	410-72247-2	
SFAASF-05-SB-0-2	Solid	2/7/2022 12:53	410-72247-3	
AOI01-06-SB-0-2	Solid	2/7/2022 13:10	410-72247-4	
AOI01-05-SB-0-2	Solid	2/7/2022 13:25	410-72247-5	
AOI01-04-SB-0-2	Solid	2/7/2022 13:40	410-72247-6	
AOI01-03-SB-0-2	Solid	2/7/2022 14:00	410-72247-7	
SFAASF-EB-01	Water	2/7/2022 11:50	410-72247-8	Equipment Blank
SFAASF-FB-01	Water	2/7/2022 12:00	410-72247-9	Field Blank
SFAASF-01-SB-0-2	Solid	2/8/2022 10:20	410-72247-10	
SFAASF-02-SB-0-2	Solid	2/8/2022 10:55	410-72247-11	
SFAASF-02-SB-0-2-D	Solid	2/8/2022 10:55	410-72247-12	Field Duplicate
AOI01-08-SB-0-2	Solid	2/8/2022 11:56	410-72247-13	
AOI01-07-SB-0-2	Solid	2/8/2022 12:22	410-72247-14	
AOI01-02-SB-0-2	Solid	2/8/2022 12:58	410-72247-15	
AOI01-02-SB-0-2-D	Solid	2/8/2022 12:58	410-72247-16	Field Duplicate
AOI01-01-SB-0-2	Solid	2/8/2022 13:50	410-72247-17	
SFAASF-EB-02	Water	2/8/2022 10:40	410-72247-18	Equipment Blank
SFAASF-FB-02	Water	2/8/2022 12:00	410-72247-19	Field Blank

Table 2 Field Duplicate Detections Santa Fe Army Aviation Support Facility Santa Fe, New Mexico

	Average Limit			Relative	
Analyte	of	Primary Sample	Field Duplicate	Percent	Notes
, i i i i i i i i i i i i i i i i i i i	Quantitation			Difference	
		02-SB-0-2 and SFAAS	F-02-SB-0-2-D		
Perfluorohexanoic acid	0.66 ng/g	3.8	3.9	2.6%	
Perfluoroheptanoic acid	0.66 ng/g	8.2	9.1	10%	
Perfluorooctanoic acid	0.66 ng/g	30	33	10%	
Perfluorononanoic acid	0.66 ng/g	2.9	2.9	0%	
Perfluorodecanoic acid	0.66 ng/g	6.1	5.4	12%	
Perfluorotridecanoic acid	0.66 ng/g	0.26 J	0.22 J	17%	
Perfluorotetradecanoic acid	0.66 ng/g	0.68	0.60 J	13%	
Perfluorobutanesulfonic acid	2.2 ng/g	0.58 J	0.59 J	1.7%	
Perfluorohexanesulfonic acid	0.66 ng/g	4.5	4.7	4.3%	
Perfluorooctanesulfonic acid	0.66 ng/g	60	49	20%	
NEtFOSAA	2.2 ng/g	12	9.8	20%	
NMeFOSAA	2.2 ng/g	1.4 J	1.1 J	24%	
Perfluoropentanesulfonic acid	3.3 ng/g	0.64 J	0.74 J	14%	
Perfluoroheptanesulfonic acid	0.66 ng/g	0.82	0.73	12%	
Perfluorodecanesulfonic acid	0.66 ng/g	13	9.5	31%	
Perfluorooctanesulfonamide	0.66 ng/g	2.3	1.7	30%	
Perfluoropentanoic acid	0.66 ng/g	1.9	1.9	0%	
Perfluoroundecanoic acid	0.66 ng/g	1.1	0.87	23%	
Perfluorododecanoic acid	0.66 ng/g	2.3	2.1	9.1%	
	Samples AOI01-0	02-SB-0-2 and AOI01	-02-SB-0-2-D		
Perfluorooctanoic acid	0.65 ng/g	0.26 J	0.53 J	68%	± LOQ
Perfluorononanoic acid	0.65 ng/g	0.32 J	0.51 J	46%	
Perfluorodecanoic acid	0.65 ng/g	0.34 J	0.46 U	NC	
Perfluorohexanesulfonic acid	0.65 ng/g	0.50 J	0.96	63%	± LOQ
Perfluorooctanesulfonic acid	0.65 ng/g	61	86	34%	
Perfluorodecanesulfonic acid	0.65 ng/g	0.33 J	0.46 U	NC	

Notes:

NC = not calculable

ng/g = nanograms per gram

Qualifier Definitions:

J = The reported result was an estimated value.

U = The analyte was not detected and was reported as less than the limit of detection (LOD). The LOD has been adjusted for any dilution or concentration of the sample.

Reason Code:

± LOQ = The difference between sample and field duplicate analyte concentrations is less than the limit of quantitation, demonstrating acceptable sampling and analytical precision.

Table 3 Qualifiers Added During Validation Santa Fe Army Aviation Support Facility Santa Fe, New Mexico

Sample Identification	Analyte	Result	Qualifier and Reason Code(s)
AOI01-01-SB-0-2	NEtFOSAA	0.41 ng/g	UJ ISL
AOI01-01-SB-0-2	NMeFOSAA	0.41 ng/g	UJ ISL
AOI01-01-SB-0-2	Perfluorohexanesulfonic acid	0.41 ng/g	J TR
AOI01-01-SB-0-2	Perfluorohexanoic acid	0.25 ng/g	J TR
AOI01-02-SB-0-2	NMeFOSAA	0.43 ng/g	UJ ISL
AOI01-02-SB-0-2	Perfluorodecanesulfonic acid	0.33 ng/g	J TR
AOI01-02-SB-0-2	Perfluorodecanoic acid	0.34 ng/g	J TR
AOI01-02-SB-0-2	Perfluorohexanesulfonic acid	0.50 ng/g	J TR
AOI01-02-SB-0-2	Perfluorononanoic acid	0.32 ng/g	J TR
AOI01-02-SB-0-2	Perfluorooctanoic acid	0.26 ng/g	J TR
AOI01-02-SB-0-2-D	NEtFOSAA	0.46 ng/g	X ISL
AOI01-02-SB-0-2-D	NMeFOSAA	0.46 ng/g	X ISL
AOI01-02-SB-0-2-D	Perfluorononanoic acid	0.51 ng/g	J TR
AOI01-02-SB-0-2-D	Perfluorooctanoic acid	0.53 ng/g	J TR
AOI01-03-SB-0-2	Perfluorooctanoic acid	0.39 ng/g	J TR
AOI01-04-SB-0-2	NEtFOSAA	0.42 ng/g	UJ ISL
AOI01-04-SB-0-2	NMeFOSAA	0.42 ng/g	X ISL
AOI01-04-SB-0-2	Perfluorohexanoic acid	0.32 ng/g	J TR
AOI01-04-SB-0-2	Perfluorooctanoic acid	0.36 ng/g	J TR
AOI01-07-SB-0-2	NEtFOSAA	0.44 ng/g	UJ ISL
AOI01-07-SB-0-2	NMeFOSAA	0.44 ng/g	UJ ISL
AOI01-07-SB-0-2	Perfluoroheptanoic acid	0.43 ng/g	J TR
AOI01-07-SB-0-2	Perfluoropentanesulfonic acid	0.30 ng/g	J TR
AOI01-07-SB-0-2	Perfluoropentanoic acid	0.48 ng/g	J TR
AOI01-07-SB-0-2	Perfluoroundecanoic acid	0.56 ng/g	J TR
AOI01-08-SB-0-2	NEtFOSAA	0.47 ng/g	UJ ISL
AOI01-08-SB-0-2	NMeFOSAA	0.47 ng/g	UJ ISL
AOI01-08-SB-0-2	Perfluorohexanesulfonic acid	0.30 ng/g	J TR
AOI01-08-SB-0-2	Perfluorooctanoic acid	0.47 ng/g	J EMPC, TR
SFAASF-01-SB-0-2	NMeFOSAA	0.93 ng/g	J+ ISL, TR
SFAASF-01-SB-0-2	Perfluoroheptanesulfonic acid	0.45 ng/g	J TR
SFAASF-01-SB-0-2	Perfluoropentanesulfonic acid	0.45 ng/g	J TR
SFAASF-01-SB-0-2	Perfluoropentanoic acid	0.52 ng/g	J TR
SFAASF-01-SB-0-2	Perfluorotetradecanoic acid	0.60 ng/g	J TR
SFAASF-01-SB-0-2	Perfluorotridecanoic acid	0.27 ng/g	J TR
SFAASF-02-SB-0-2	NMeFOSAA	1.4 ng/g	J TR
SFAASF-02-SB-0-2	Perfluorobutanesulfonic acid	0.58 ng/g	J TR
SFAASF-02-SB-0-2	Perfluoropentanesulfonic acid	0.64 ng/g	J TR
SFAASF-02-SB-0-2	Perfluorotridecanoic acid	0.26 ng/g	J TR
SFAASF-02-SB-0-2-D	NMeFOSAA	1.1 ng/g	J+ ISL, TR
SFAASF-02-SB-0-2-D	Perfluorobutanesulfonic acid	0.59 ng/g	J TR
SFAASF-02-SB-0-2-D	Perfluoropentanesulfonic acid	0.39 ng/g 0.74 ng/g	J TR
SFAASF-02-SB-0-2-D	Perfluorotetradecanoic acid	0.60 ng/g	J TR
SFAASF-02-SB-0-2-D	Perfluorotridecanoic acid		J TR
SFAASF-02-SB-0-2-D SFAASF-03-SB-0-2	NEtFOSAA	0.22 ng/g	UJ ISL
		0.43 ng/g	
SFAASF-03-SB-0-2	NMeFOSAA Derflueredecensis acid	0.43 ng/g	UJ ISL
SFAASF-03-SB-0-2	Perfluorodecanoic acid	0.22 ng/g	J TR

Table 3 Qualifiers Added During Validation Santa Fe Army Aviation Support Facility Santa Fe, New Mexico

Sample Identification	Analyte	Result	Qualifier and Reason Code(s)
SFAASF-03-SB-0-2	Perfluorohexanoic acid	0.45 ng/g	J TR
SFAASF-03-SB-0-2	Perfluorooctanesulfonic acid	0.48 ng/g	J TR
SFAASF-03-SB-0-2	Perfluorooctanoic acid	0.53 ng/g	J TR
SFAASF-03-SB-0-2	Perfluoropentanoic acid	0.29 ng/g	J TR
SFAASF-04-SB-0-2	NEtFOSAA	0.43 ng/g	UJ ISL
SFAASF-04-SB-0-2	NMeFOSAA	0.43 ng/g	X ISL
SFAASF-04-SB-0-2	Perfluorodecanesulfonic acid	0.37 ng/g	J TR
SFAASF-04-SB-0-2	Perfluorodecanoic acid	0.47 ng/g	J TR
SFAASF-04-SB-0-2	Perfluorododecanoic acid	0.22 ng/g	J TR
SFAASF-04-SB-0-2	Perfluoroheptanoic acid	0.47 ng/g	J TR
SFAASF-04-SB-0-2	Perfluorohexanoic acid	0.48 ng/g	J TR
SFAASF-04-SB-0-2	Perfluorooctanoic acid	0.60 ng/g	J TR
SFAASF-04-SB-0-2	Perfluoropentanoic acid	0.23 ng/g	J TR
SFAASF-05-SB-0-2	NEtFOSAA	0.48 ng/g	J+ ISL, EMPC, TR
SFAASF-05-SB-0-2	NMeFOSAA	0.42 ng/g	X ISL
SFAASF-05-SB-0-2	Perfluorodecanesulfonic acid	0.28 ng/g	J TR
SFAASF-05-SB-0-2	Perfluorodecanoic acid	0.27 ng/g	J TR
SFAASF-05-SB-0-2	Perfluoroheptanoic acid	0.33 ng/g	J TR
SFAASF-05-SB-0-2	Perfluorohexanoic acid	0.43 ng/g	J TR
SFAASF-05-SB-0-2	Perfluoropentanoic acid	0.24 ng/g	J TR

Notes:

ng/g = nanograms per gram NEtFOSAA = ethyl perfluorooctanesulfonamidoacetic acid NMeFOSAA = methyl perfluorooctanesulfonamidoacetic acid

Qualifiers:

- J = The reported result was an estimated value.
- J+ = The reported result was an estimated value with a potential high bias.
- UJ = The analyte was not detected and was reported as less than the limit of detection. However, the associated numerical value is approximate.
- X = The sample results were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Reason Codes:

EMPC = Ion transition ratio is outside of expected limits.

ISL = Low extracted internal standard recovery.

TR = The detected analyte concentration is less than the limit of quantitation.

Data Validation Report

Santa Fe Army Aviation Support Facility Santa Fe, New Mexico Project # 3031200026.3000.****

Prepared for:

Army National Guard Headquarters 111 S. George Mason Drive, Arlington, VA 22204

6/27/2022

This page intentionally left blank

Table of Contents

1.0	Introduction2				
2.0	Data Validatio	ata Validation Methodology			
3.0	Explanation of	Explanation of Data Quality Indicators			
	3.1 Labora	atory Control Sample Accuracy and Precision			
	3.2 Matrix	Spike Accuracy and Precision	3		
	3.3 Blank	B.3 Blank Detections			
	3.4 Labora	atory and Field Duplicate Precision	4		
4.0	Definitions of	Qualifiers that May be Used During Data Validation	4		
5.0	Qualification F	leason Codes	4		
6.0	Chain of Custo	bdy and Sample Receipt Condition Documentation	5		
7.0	Specific Data \	/alidation Findings	5		
	7.1 Per- a	nd Polyfluoroalkyl Substances Analysis	5		
	7.1.1	Holding Time Compliance	5		
	7.1.2	Initial Calibration Compliance	5		
	7.1.3	Initial Calibration Verification Accuracy	6		
	7.1.4	Instrument Sensitivity Check Standard Accuracy	6		
	7.1.5	Continuing Calibration Verification Accuracy	6		
	7.1.6	Laboratory Blank Detections	6		
	7.1.7	Equipment and Field Blank Detections	7		
	7.1.8	Laboratory Control Sample Accuracy and Precision	9		
	7.1.9	Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision	10		
	7.1.10	Laboratory Duplicate Precision	10		
	7.1.11	Extracted Internal Standard Accuracy	10		
	7.1.12	Data Reporting and Analytical Procedures	11		
8.0	Field Duplicate	Precision	11		
9.0	Summary and	Conclusions	12		
10.0	References		12		
11.0	Limitations		13		

List of Tables

Table1: Field Samples Submitted to Eurofins

Table 2: Target Analyte Detections in Primary and Field Duplicate Samples

Table 3: Qualifiers Applied During Validation

List of Acronyms

°C	degrees Celsius
%	percent
ARNG	Army National Guard
CCV	continuing calibration verification
COC	chain of custody
DoD	Department of Defense
EA	EA Engineering, Science, and Technology, Inc., PBC
EIS	extracted internal standard
Eurofins	Eurofins Environment Testing America
FTS	fluorotelomer sulfonic acid
g	grams
ICAL	initial calibration
ICV	initial calibration verification
ID	identification
ISC	instrument sensitivity check
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
mL	milliliters
MS	matrix spike
MSD	matrix spike duplicate
NEtFOSAA	ethyl perfluorooctanesulfonamidoacetic acid
ng/g	nanograms per gram
ng/L	nanograms per liter
NMeFOSAA	methyl perfluorooctanesulfonamidoacetic acid
PFAS	per- and polyfluoroalkyl substances
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFHpA	perfluoroheptanoic acid
PFHpS	perfluoroheptanesulfonic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNS	perfluorononanesulfonic acid
PFOA	perfluorononanesulfonic acid

PFOS PFOSA PFTeDA PFTrDA	perfluorooctanesulfonic acid perfluorooctanesulfonamide perfluorotetradecanoic acid perfluorotridecanoic acid
QAPP QC QSM	quality assurance project plan quality control Quality Systems Manual for Environmental Laboratories
RPD	relative percent difference
UFP	Uniform Federal Policy
Wood	Wood Environment & Infrastructure, Solutions, Inc.

1.0 Introduction

EA Engineering, Science, and Technology, Inc., PBC (EA) collected 26 soil samples (including 3 field duplicates) and 41 water samples (including 1 field duplicate, 18 equipment blanks, and 17 field blanks) between 25 April and 20 May 2022. EA submitted the samples to Eurofins Environment Testing America (Eurofins), located in Lancaster, Pennsylvania, where the samples were received between 27 April and 21 May 2022 and assigned to job number 410-81788-1, 410-82129-1, 410-82454-1, 410-82468-1, 410-83020-1, 410-83061-1, 410-83313-1, and 410-84932-1. Eurofins analyzed the samples for per- and polyfluoroalkyl substances (PFAS) by liquid chromatography tandem mass spectrometry compliant with Table B-15 of the Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3. The field sample identifications (IDs), collection dates and times, and laboratory sample IDs are presented in Table 1.

2.0 Data Validation Methodology

Wood Environment & Infrastructure Solutions, Inc. (Wood) performed DoD Stage 2B validation with review of the manual integration on PFAS data from the samples. The Stage 2B validation includes review of sample and instrument quality control (QC) results in the laboratory's analytical report and reported on QC summary forms, without review or validation of the raw analytical data. This data validation has been performed in accordance with:

- EA, 2020. Final Programmatic Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP), Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, Army National Guard (ARNG) Installations, Nationwide, December.
- DoD, 2019a. DoD QSM, Version 5.3. May.
- DoD, 2019b. General Data Validation Guidelines, Revision 1. November.
- DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15. May.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package and electronic data deliverable completeness;
- Laboratory case narrative review;
- Chain of custody (COC) compliance;
- Holding time compliance;
- QC sample frequency;
- Initial calibration (ICAL), initial calibration verification (ICV), and continuing calibration verification (CCV) compliance with method specified criteria;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;
- Accuracy and bias as demonstrated by recovery of surrogate spikes, laboratory control sample (LCS), and matrix spike (MS) samples;
- Internal standard recoveries;

- Analytical precision as relative percent difference (RPD) of analyte concentration between LCS/LCS duplicate (LCSD), laboratory duplicates, or MS/MS duplicate (MSD);
- Sampling and analytical precision as RPD of analyte concentration between primary samples and field duplicates;
- Assessment of field contamination as demonstrated by equipment and field blanks; and
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

3.0 Explanation of Data Quality Indicators

Summary explanations of the specific data quality indicators reviewed during this data quality review are presented below.

3.1 Laboratory Control Sample Accuracy and Precision

LCSs and LCSDs are aliquots of analyte free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery and precision are an indication of a laboratory's ability to successfully perform an analytical method in an interference free matrix.

3.2 Matrix Spike Accuracy and Precision

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 Blank Detections

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Equipment blanks are prepared by passing analyte free water through or over sample collection equipment and collecting the water in sample containers. Equipment blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.

Field blanks are prepared by pouring an aliquot of analyte free water into a sample container in the field. Field blanks are analyzed for the analytical suite required for the project. Field blanks are used to monitor for possible sample contamination originating from the water used for equipment decontamination.

Laboratory blanks are processed by the laboratory using the same procedures as the field samples.

• • •

3.4 Laboratory and Field Duplicate Precision

Laboratory and field duplicate analyses verify acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

4.0 Definitions of Qualifiers that May be Used During Data Validation

The qualifiers used in the text are the qualifiers applied for each individual QC issue and may not reflect the final qualifiers applied to the data.

- J The reported result is an estimated quantity with an unknown bias.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- U The analyte was not detected and was reported as less than the limit of detection (LOD). The LOD has been adjusted for any dilution or concentration of the sample.
- UJ The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
- X The sample results were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

5.0 Qualification Reason Codes

Wood applied the following reason codes to the data during validation:

- EBG The analyte was detected in the associated equipment blank and the concentration detected in the sample was greater than the limit of quantitation (LOQ) and less than five times the concentration detected in the blank.
- EBL The analyte was detected in the associated equipment blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- EMPC The ion transition ratio is outside of expected limits.
- FBL The analyte was detected in the associated field blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- FDD Imprecision between primary and field duplicate results.
- ISL Low extracted internal standard (EIS) recovery.
- LBL The analyte was detected in the associated laboratory blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- TR The detected concentration is less than the LOQ.

6.0 Chain of Custody and Sample Receipt Condition Documentation

Samples were received at the laboratory under proper COC, intact, properly preserved, and at temperatures within the QAPP-specified temperature range of 2 to 6 degrees Celsius (°C), with the following exceptions:

- According to the case narratives, all sample arrived at the laboratory at temperatures less than the QAPP-specified minimum of 2 °C, with measured temperatures between 0.4 and 1.9 °C. There is no evidence that the samples were frozen or otherwise compromised and in accordance with the DoD data validation guidelines, no data were qualified based on the low sample receipt temperatures.
- According to the case narrative, the samples reported AOI01-01-SB-13-15 and AOI01-01-SB-181-182 were recorded on the COC as AOI01-01-13-15 and AOI01-01-181. At EA's request, Eurofins updated the sample IDs.
- According to the case narrative, the samples reported as AOI01-02-SB-13-15, AOI01-02-SB-113-115, and AOI01-02-SB-113-115-DUP were recorded on the COC as AOI01-02-13-15, AOI01-02-113-115, and AOI01-02-113-115-DUP. At EA's request, Eurofins updated the sample IDs.
- According to the case narrative, the samples reported as SFAASF-03-PA-SB-13-15 and SFAASF-03-PA-SB-183-184 were recorded on the COC as SFAASF-03-SB-13-15 and SFAASF-03-SB-183. At EA's request, Eurofins updated the sample IDs.
- According to the case narrative, the sample reported as SFAASF-04-SB-180-181 was recorded on the COC as SFAASF-04-SB-180. At EA's request, Eurofins updated the sample ID.
- According to the case narrative, the samples reported as AOI01-04-SB-109-110 and AOI01-04-SB-109-110-DUP were recorded on the COC as AOI01-04-SB-109 and AOI01-04-SB-109-DUP. At EA's request, Eurofins updated the sample IDs.
- EA requested that Eurofins update IDs for the samples recorded on the COC as AOI01-06-SB-0-2 AOI01-06-SB-6-8, and AOI01-06-SB-13-15 to AOI01-06B-SB-0-2, AOI01-06B-SB-6-8, and AOI01-06B-SB-13-15, respectively. Eurofins reissued the report and EDD with the updated sample IDs.

7.0 Specific Data Validation Findings

Data validation findings are presented in Sections 7.1 through 8.0.

7.1 Per- and Polyfluoroalkyl Substances Analysis

PFAS results generated by Eurofins may be considered usable with the limitations summarized in Sections 7.1 through 8.0.

7.1.1 Holding Time Compliance

The samples were extracted for PFAS within the QAPP-specified maximum holding time of 14 days from sample collection for water samples or 28 days from collection for soil samples and the extracts were analyzed within the QAPP-specified maximum hold time of 28 days from extraction.

7.1.2 Initial Calibration Compliance

The ICAL associated with the analysis of these samples met the QAPP-specified criteria of the calibration standards calculating to 70 to 130 percent (%) of their true concentrations and either correlation

coefficients greater than or equal to 0.99 or relative standard deviations of the response factors less than or equal to 20%.

7.1.3 Initial Calibration Verification Accuracy

ICV recoveries were within the QAPP-specified 70% to 130% limits.

7.1.4 Instrument Sensitivity Check Standard Accuracy

Instrument sensitivity check (ISC) recoveries were within the QSM-specified 70 to 130% limits and samples were analyzed no more than 12 hours after a reported ISC.

7.1.5 Continuing Calibration Verification Accuracy

CCV recoveries were within the QAPP-specified 70 to 130% limits.

7.1.6 Laboratory Blank Detections

PFAS were not detected in the laboratory blanks associated with the samples reviewed in this report, with the following exceptions:

- Perfluorooctanesulfonic acid (PFOS) was detected at a concentration of 0.604 nanograms per liter (ng/L) in the laboratory blank associated with the extraction of samples AOI01-01-GW, AOI01-02-GW, AOI01-02-GW-DUP, AOI01-04-GW, SFAASF-03-GW, and SFAASF-04-GW; equipment blanks SFAASF-EB-20 and SFAASF-EB-21; and field blanks SFAASF-FB-18 and SFAASF-FB-19. Data limitations are summarized below.
 - Wood U qualified the PFOS results from samples AOI01-04-GW and SFAASF-03-GW at the LOQs of 1.8 ng/L and 1.7 ng/L, respectively, because the concentrations detected in the samples, at 0.54 ng/L and 0.92 ng/L, respectively, were greater than the LODs but less than the LOQs. (Qualifier and reason code: U, LBL)
 - PFOS either was not detected in the remaining field samples or the concentrations detected in the samples were greater than the LOQ and greater than five times the concentration detected in the blank. Data usability is not adversely affected by the blank detection.
 - Wood does not qualify data from QC samples that are being used to assess data from field samples and no data from the equipment or field blanks were qualified based on the laboratory blank detection.
- PFOS was detected at a concentration of 0.632 ng/L in the laboratory blank associated with the extraction of equipment blanks SFAASF-EB-04 and SFAASF-EB-05, field blanks SFAASF-FB-03 and SFAASF-FB-04, and the non-reportable extraction of equipment blank SFAASF-EB-03. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detection.
- PFOS was detected at a concentration of 0.526 ng/L in the laboratory blank associated with the extraction of equipment blank SFAASF-EB-03 and the non-reportable extractions equipment and field blanks SFAASF-EB-05, SFAASF-FB-03, and SFAASF-FB-04. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detection.
- PFOS was detected at a concentration of 0.652 ng/L in the laboratory blank associated with the extraction of equipment blank SFAASF-EB-07 and the non-reportable extraction of field blank

SFAASF-FB-06. PFOS was not detected in the associated equipment blank and no data were qualified based on the blank detection.

- PFOS was detected at a concentration of 0.659 ng/L in the laboratory blank associated with the extraction of field blanks SFAASF-FB-05 and SFAASF-FB-06, and the non-reportable extraction of equipment blank SFAASF-EB-07. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detection.
- PFOS and perfluorooctanesulfonamide (PFOSA) were detected at concentrations of 0.911 ng/L and 0.560 ng/L, respectively, in the laboratory blank associated with the extraction of equipment blanks SFAASF-EB-10 and SFAASF-EB-11, and field blank SFAASF-FB-09. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detections.
- PFOS was detected at a concentration of 0.831 ng/L in the laboratory blank associated with the extraction of equipment blanks SFAASF-EB-12, SFAASF-EB-14, SFAASF-EB-15; and field blanks SFAASF-FB-10, SFAASF-FB-11, and SFAASF-FB-12. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detection.
- PFOS was detected at a concentration of 0.503 ng/L in the laboratory blank associated with the extraction of field blanks SFAASF-FB-07 and SFAASF-FB-08, and the non-reportable extraction of equipment blank SFAASF-EB-10. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the blank detection.

7.1.7 Equipment and Field Blank Detections

Wood used the following equation to assess the detections in the aqueous equipment blank against detections in the associated solid samples.

$$Concentration\left(\frac{ng}{g}\right) = \frac{Concentration\left(\frac{ng}{L}\right) * 250 \ mL * 4 \ mL}{1 \ mL * 1,000 \ \frac{mL}{L} * 1 \ g}$$

Where:

ng/g = nanograms per gram

250 mL is a standard aqueous sample volume in milliliters,

4 mL is the standard extract volume for a soil sample,

1 mL is the standard extract volume for a water sample,

1,000 is the conversion from milliliters to liters, and

1 g is the standard soil mass used for extraction in grams.

Target analytes were not detected in the equipment and field blanks associated with the samples reviewed in this report, with the following exceptions:

• PFOS was detected at a concentration of 0.70 ng/L (equivalent to 0.70 ng/g) in equipment blank SFAASF-EB-14, associated with sample AOI01-04-SB-109-110 and its field duplicate AOI01-04-SB-109-110-DUP. Data limitations are summarized below:

- Wood J+ qualified the PFOS result from sample AOI01-04-SB-109-110 because the concentration detected in the sample was greater than the LOQ and less than five times the concentration detected in the blank. (Qualifier and reason code: J+, EBG)
- PFOS was not detected in sample AOI01-04-SB-109-110-DUP and data usability is not adversely affected by the blank detection.
- PFOS was detected at a concentration of 1.0 ng/L in field blank SFAASF-FB-18, associated with samples SFAASF-03-GW and SFAASF-04-GW. Data limitations are summarized below.
 - Wood U qualified the PFOS result from sample SFAASF-03-GW at the LOQ of 1.7 ng/L because the concentrations detected in the sample, at 0.92 ng/L, was greater than the LOD but less than the LOQ. (Qualifier and reason code: U, FBL)
 - PFOS was not detected in sample SFAASF-04-GW and data usability is not adversely affected by the blank detection.
- PFOS and PFOSA were detected at concentrations of 1.2 ng/L and 1.4 ng/L, respectively, in equipment blank SFAASF-EB-20, associated with samples SFAASF-03-GW and SFAASF-04-GW. Data limitations are summarized below.
 - Wood U qualified the PFOS result from sample SFAASF-03-GW at the LOQ of 1.7 ng/L because the concentrations detected in the sample, at 0.92 ng/L, was greater than the LOD but less than the LOQ. (Qualifier and reason code: U, EBL)
 - PFOSA was not detected in either sample, PFOS was not detected in sample SFAASF-04-GW, and data usability is not adversely affected by the blank detections.
- PFOS was detected at a concentration of 0.87 ng/L in field blank SFAASF-FB-19, associated with samples AOI01-01-GW, AOI01-02-GW, AOI01-02-GW-DUP, and AOI01-04-GW. Data limitations are summarized below.
 - Wood U qualified the PFOS result from sample AOI01-04-GW at the LOQ of 1.8 ng/L because the concentration detected in the sample, at 0.54 ng/L, was greater than the LOD but less than the LOQ. (Qualifier and reason code: U, FBL)
 - PFOS was not detected in the remaining associated samples and data usability is not adversely affected by the blank detection.
- Perfluorohexanoic acid (PFHxA [0.42 ng/L]), perfluorooctanoic acid (PFOA [0.45 ng/L]), perfluorohexanesulfonic acid (PFHxS [2.0 ng/L]), and PFOS (5.7 ng/L) were detected in equipment blank SFAASF-EB-21, associated with samples AOI01-01-GW, AOI01-02-GW, AOI01-02-GW-DUP, and AOI01-04-GW. Data limitations are summarized below.
 - Wood J+ qualified the PFOA result from sample AOI01-02-GW-DUP because the concentration detected in the sample was greater than the LOQ and equal to than five times the concentration detected in the blank. (Qualifier and reason code: J+, EBG)
 - Wood U qualified the PFOS result from sample AOI01-04-GW at the LOQ of 1.8 ng/L because the concentration detected in the sample, at 0.54 ng/L, was greater than the LOD but less than the LOQ. (Qualifier and reason code: U, EBL)
 - The remaining analytes either were not detected in the associated samples or the detected concentrations were greater than the LOQ and greater than five times the concentrations detected in the blank. Data usability is not adversely affected by the blank detections.

- PFOS was detected at concentrations of 0.63 ng/L and 0.61 ng/L in equipment and field blanks SFAASF-EB-03 and SFAASF-FB-03, associated with sample AOI01-01-SB-13-15. PFOS was not detected in the associated sample and data usability is not adversely affected by the blank detections.
- PFOS was detected at a concentration of 0.53 ng/L in field blank SFAASF-FB-04, associated with sample AOI01-01-SB-181-182. PFOS was not detected in the associated sample and data usability is not adversely affected by the blank detection.
- PFHxA (0.54 ng/L), PFOA (0.66 ng/L), PFOSA (3.3 ng/L), and perfluorobutanoic acid (PFBA [3.2 ng/L]) were detected in equipment blank SFAASF-EB-05, associated with sample AOI01-01-SB-181-182. These analytes were not detected in the associated sample and data usability is not adversely affected by the blank detections.
- Perfluorobutanesulfonic acid (PFBS) and PFBA were detected at concentrations of 0.67 ng/L and 3.1 ng/L, respectively, in equipment blank SFAASF-EB-07 and PFOS was detected at a concentration of 0.60 ng/L in field blank SFAASF-FB-06, associated with sample AOI01-02-SB-113-115 and its field duplicate AOI01-02-SB-113-115-DUP. These analytes were not detected in the associated samples and data usability is not adversely affected by the blank detections.
- PFBS and PFOS were detected at concentration of 0.52 ng/L and 0.69 ng/L, respectively, in equipment blank SFAASF-EB-11 and PFOS was detected at a concentration of 0.72 ng/L in field blank SFAASF-FB-09, associated with sample SFAASF-03-PA-SB-13-15. Target analytes were not detected in the associated sample and data usability is not adversely affected by the blank detection.
- PFOS and PFOSA were detected at concentrations of 0.84 ng/L and 0.53 ng/L, respectively, in field blank SFAASF-FB-10, associated with sample SFAASF-03-PA-SB-183-184. Target analytes were not detected in the associated sample and data usability is not adversely affected by the blank detections.
- PFBS was detected at a concentration of 1.1 ng/L in equipment blank SFAASF-EB-10, associated with sample SFAASF-04-SB-180-181. Target analyte was not detected in the associated sample and data usability is not affected by the blank detection.
- PFOS was detected at a concentration of 0.64 ng/L in equipment blank SFAASF-EB-16, associated with sample AOI01-09-SB-13-15. Target analyte was not detected in the associated sample and data usability is not adversely affected by the blank detection.
- PFBS and PFOS were detected at concentrations of 0.47 ng/L and 0.48 ng/L, respectively, in equipment blank SFAASF-EB-18, associated with sample SFAASF-03-SB-0-2. Target analytes were not detected in the associated sample and data usability id not adversely affected by the blank detections.

7.1.8 Laboratory Control Sample Accuracy and Precision

LCS and LCSD recoveries were within QSM 5.3-specified limits and RPDs between LCS and LCSD results were less than the QAPP-specified maximum of 30%, with the following exceptions:

PFHxA (66%, 64%), perfluoroheptanoic acid (PFHpA [68%, LCS]), perfluorodecanoic acid (PFDA [66%, LCS]), perfluorotridecanoic acid (PFTrDA [56%, LCS]), perfluorotetradecanoic acid (PFTeDA [68%, 68%]), PFHxS (67%, LCSD), perfluoroheptanesulfonic acid (PFHpS [67%, 65%]), and perfluorononanesulfonic acid (PFNS [66%, 68%]) recoveries were low in the LCS and/or LCSD associated with the extraction of equipment blank SFAASF-EB-07. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the low LCS recoveries.

- 4:2 Fluorotelomer sulfonic acid (FTS) recovery was high at 144% in the LCSD associated with the extraction of field blanks SFAASF-FB-05 and SFAASF-FB-06. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the high LCSD recovery.
- 4:2 FTS recovery was high at 151% in the LCS and LCSD associated with the extraction of equipment blank SFAASF-EB-03 and the non-reportable extractions equipment and field blanks SFAASF-EB-05, SFAASF-FB-03, and SFAASF-FB-04. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the high LCS and LCSD recoveries.

7.1.9 Matrix Spikes/ Matrix Spike Duplicates Accuracy and Precision

Eurofins performed MS and MSD analyses on samples AOI01-01-SB-13-15 and SFAASF-04-GW. MS and MSD recoveries were within QSM 5.3-specified limits and RPDs between MS and MSD results were less than the QAPP-specified maximum of 30%.

7.1.10 Laboratory Duplicate Precision

Eurofins did not perform duplicate analyses on any of the samples reviewed in this report.

7.1.11 Extracted Internal Standard Accuracy

Eurofins' reported EIS recoveries are based on the average response from the initial calibration instead of the area counts from either the ICAL midpoint standard or the areas measured in the initial CCV. For this assessment Wood recalculated EIS recoveries for field samples based on QC summary form VIII.

Wood did not recalculate EISs that were only associated with QC samples because data from field samples would not be qualified based on EIS recoveries in the associated QC samples.

EIS area counts were within the QAPP-specified limits of 50 to 150% of areas measured in the ICAL midpoint standard or 50 to 150% of the areas measured in the initial CCV on days when ICAL is not performed, with the following exceptions:

- Recovery of EIS d₃-N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) was low at 48% in sample AOI01-04-SB-109-110. Wood UJ qualified the non-detected NMeFOSAA result from this sample because of the low EIS recovery. (Qualifier and reason code: UJ, ISL)
- Recoveries of the EISs d₃-NMeFOSAA and d₅-N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) were low in sample AOI01-09-SB-111-112 (43%, 47%), SFAASF-03-SB-0-2 (43%, 47%), and SFAASF-05-SB-6-8 (23%, 32%). Wood UJ qualified the non-detected NMeFOSAA and NEtFOSAA results from these samples because of the low EIS recoveries. (Qualifier and reason code: UJ, ISL)
- Recoveries of the EISs d3-NMeFOSAA and d5-NEtFOSAA were low at 43 and 47%, respectively, in sample AOI-01-09-SB-0-2. Data limitations are summarized below.
 - In accordance with the DoD data validation guidelines, Wood UJ qualified the non-detected NMeFOSAA result from this sample because of the low EIS recovery. (Qualifier and reason code: UJ, ISL)
 - In accordance with the DoD data validation guidelines, Wood J+ qualified the detected NEtFOSAA result from this sample because of the low EIS recovery. (Qualifier and reason code: J+, ISL)

- Recovery of the EIS ¹³C₂-PFTeDA was low at 45% in sample AOI01-04-GW. Wood UJ qualified the nondetected PFTeDA result from this sample because of the low EIS recovery. (Qualifier and reason code: UJ, ISL)
- Recovery of the EISs M₂-4:2 FTS and M₂-6:2 FTS were high at 187% and 170%, respectively, in sample SFAASF-03-GW. 4:2 FTS and 6:2 FTS were not detected in this sample and per the DoD data validation guidelines, no data were qualified based on the high EIS recoveries.
- Recovery of the EIS ¹³C₂-PFTeDA was low at 46% in the MS performed on sample SFAASF-04-GW. Wood does not qualify data from field samples based on EIS recoveries in MSs and no data were qualified based on the low EIS recovery.
- Recovery of the EIS M₂-4:2 FTS was high at 192% in equipment blank SFAASF-EB-20. Wood does not qualify data from QC samples that are being used to assess data from field samples and no data were qualified based on the high EIS recovery

7.1.12 Data Reporting and Analytical Procedures

Eurofins I qualified results when ion transition ratios were outside of expected limits. Wood J qualified Eurofins' I qualified results. (Qualifier and reason code: J, EMPC)

Eurofins J qualified results with detected concentrations less than the LOQ. Wood agrees these results are quantitatively uncertain and has maintained the laboratory's J qualifiers. (Qualifier and reason code: J, TR)

8.0 Field Duplicate Precision

Wood collected field duplicates with samples:

- AOI01-02-GW (AOI01-02-GW-DUP);
- AOI01-02-SB-113-115 (AOI01-02-SB-113-115-DUP); and
- AOI01-04-SB-109-110 (AOI01-04-SB-109-110-DUP).

Target analyte detections are summarized in Table 2. Precision values were less than the QAPP-specified maximum of 50% or differences between analyte concentrations were less than the LOQ, with the following exceptions:

- PFHxS and PFOS were detected at concentrations of 1.1 ng/g and 2.2 ng/g, respectively, in sample AOI01-04-SB-109-110, but neither analyte was detected in field duplicate AOI01-04-SB-109-110-DUP. The difference between the detected results and the LODs were greater than the average LOQ of 0.60 ng/L. Data limitations are summarized below.
 - Wood previously J+ qualified the PFOS result from sample AOI01-04-SB-109-110 due to a blank detection. Wood added the FDD reason code to this result because of sampling and/or analytical imprecision. (Reason code: FDD)
 - Wood J qualified the detected PFHxS result from sample AOI01-04-SB-109-110 and UJ qualified the non-detected PFOS and PFHxS results from sample AOI01-04-SB-109-110-DUP because of sampling and/or analytical imprecision. (Qualifiers and reason code: J/UJ, FDD)

9.0 Summary and Conclusions

Wood reviewed a total of 768 records from field samples during the validation and applied the following qualifiers to the data:

- J+: Wood J+ qualified three records (0.4%) as having potential high analytical bias due to detections in the associated equipment blanks or low EIS recoveries;
- J: Wood J qualified 44 records (5.7%) due detected concentrations that were less than the LOQ, ion transition ratios outside of expected limits, and/or imprecision between primary and field duplicate results;
- U: Wood U qualified two records (0.3%) because of detections in the associated laboratory, equipment, and field blanks; and
- UJ: Wood UJ qualified 11 records (1.4%) because of low EIS recoveries or imprecision between primary and field duplicate results.

Data qualified during validation are summarized in Table 3.

10.0 References

EA, 2020. Final Programmatic UFP-QAPP, Site Inspection for Per- and Polyfluoroalkyl Substances Impacted Sites, ARNG Installations, Nationwide, December.

DoD, 2019a. DoD QSM, Version 5.3. May.

DoD, 2019b. General Data Validation Guidelines, Revision 1. November.

DoD, 2020. Data Validation Guidelines Module 3: Data Validation Procedure of Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15.

11.0 Limitations

This report was prepared for EA by Wood Environment & Infrastructure Solutions, Inc. The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in Wood services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This Data Validation report is intended to be used by EA for the Nationwide ARNG Installations Site Inspections for Per- and Polyfluoroalkyl Substances project only, subject to the terms and conditions of its contract with Wood. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

Tables

Table 1 Field Samples Submitted to Eurofins Environment Testing America Army Aviation Support Facility Santa Fe, New Mexico

			Laboratory	
		Collection Date	Sample	
Field Sample Identification	Matrix	and Time	Identification	Notes
SFAASF-EB-03	Water	4/25/2022 11:45	410-81788-1	Equipment blank
SFAASF-FB-03	Water	4/25/2022 11:50	410-81788-2	Field blank
AOI01-01-SB-13-15	Solid	4/25/2022 12:05	410-81788-3	
SFAASF-EB-04	Water	4/26/2022 8:35		Equipment blank
SFAASF-FB-04	Water	4/26/2022 8:40		Field blank
SFAASF-EB-05	Water	4/26/2022 9:00	410-81788-6	Equipment blank
AOI01-01-SB-181-182	Solid	4/26/2022 13:20	410-81788-7	
SFAASF-EB-06	Water	4/27/2022 11:40	410-82129-1	Equipment blank
SFAASF-FB-05	Water	4/27/2022 11:45	410-82129-2	Field blank
AOI01-02-SB-13-15	Solid	4/27/2022 12:00	410-82129-3	
SFAASF-EB-07	Water	4/28/2022 7:45	410-82129-4	Equipment blank
SFAASF-FB-06	Water	4/28/2022 8:05	410-82129-5	Field blank
AOI01-02-SB-113-115	Solid	4/28/2022 11:05	410-82129-6	
AOI01-02-SB-113-115-DUP	Solid	4/28/2022 11:05	410-82129-7	Field duplicate
SFAASF-EB-11	Water	5/1/2022 7:40	410-82454-1	Equipment blank
SFAASF-FB-09	Water	5/1/2022 8:00	410-82454-2	Field blank
SFAASF-03-PA-SB-13-15	Solid	5/1/2022 8:20	410-82454-3	
SFAASF-EB-12	Water	5/2/2022 8:00	410-82454-4	Equipment blank
SFAASF-FB-10	Water	5/2/2022 7:50	410-82454-5	Field blank
SFAASF-03-PA-SB-183-184	Solid	5/2/2022 11:13	410-82454-6	
SFAASF-04-SB-13-15	Solid	4/28/2022 17:15	410-82468-1	
SFAASF-EB-08	Water	4/28/2022 16:35	410-82468-2	Equipment blank
SFAASF-FB-07	Water	4/29/2022 7:35	410-82468-4	Field blank
SFAASF-EB-10	Water	4/30/2022 7:20	410-82468-5	Equipment blank
SFAASF-FB-08	Water	4/30/2022 7:45	410-82468-6	Field blank
SFAASF-04-SB-180-181	Solid	4/30/2022 9:40	410-82468-7	
SFAASF-FB-11	Water	5/3/2022 8:20	410-83020-1	Field blank
SFAASF-EB-13	Water	5/3/2022 14:20	410-83020-2	Equipment blank
AOI01-04-SB-13-15	Solid	5/3/2022 15:15	410-83020-3	
SFAASF-EB-14	Water	5/4/2022 8:20	410-83020-4	Equipment blank
SFAASF-FB-12	Water	5/4/2022 8:40	410-83020-5	Field blank
AOI01-04-SB-109-110	Solid	5/4/2022 11:48	410-83020-6	
AOI01-04-SB-109-110-DUP	Solid	5/4/2022 11:48	410-83020-7	Field duplicate
AOI01-03-SB-6-8	Solid	5/4/2022 15:05	410-83061-1	
AOI01-03-SB-13-15	Solid	5/4/2022 15:30	410-83061-2	
AOI01-05-SB-6-8	Solid	5/4/2022 9:45	410-83061-3	
AOI01-05-SB-13-15	Solid	5/4/2022 10:10	410-83061-4	
AOI01-06B-SB-0-2	Solid	5/4/2022 10:45	410-83061-5	
AOI01-06B-SB-6-8	Solid	5/4/2022 11:20	410-83061-6	
AOI01-06B-SB-13-15	Solid	5/4/2022 11:45	410-83061-7	
SFAASF-05-SB-6-8	Solid	5/4/2022 13:45	410-83061-8	

Table 1 Field Samples Submitted to Eurofins Environment Testing America Army Aviation Support Facility Santa Fe, New Mexico

			Laboratory	
		Collection Date	Sample	
Field Sample Identification	Matrix	and Time	Identification	Notes
SFAASF-05-SB-13-15	Solid	5/4/2022 14:10	410-83061-9	
SFAASF-05-SB-13-15-DUP	Solid	5/4/2022 14:10	410-83061-10	Field duplicate
SFAASF-EB-15	Water	5/4/2022 15:00	410-83061-11	Equipment blank
SFAASF-EB-16	Water	5/5/2022 12:50	410-83313-1	Equipment blank
SFAASF-FB-13	Water	5/5/2022 12:54	410-83313-2	Field blank
AOI01-09-SB-13-15	Solid	5/5/2022 15:35	410-83313-3	
SFAASF-EB-17	Water	5/6/2022 8:20	410-83313-4	Equipment blank
SFAASF-FB-14	Water	5/6/2022 8:32	410-83313-5	Field blank
AOI01-09-SB-111-112	Solid	5/6/2022 14:15	410-83313-6	
SFAASF-EB-18	Water	5/7/2022 11:50	410-83313-7	Equipment blank
SFAASF-FB-15	Water	5/7/2022 11:55	410-83313-8	Field blank
SFAASF-03-SB-0-2	Solid	5/7/2022 12:05	410-83313-9	
SFAASF-FB-16	Water	5/8/2022 7:40	410-83313-10	Field blank
SFAASF-FB-17	Water	5/9/2022 7:15	410-83313-11	Field blank
AOI-01-09-SB-0-2	Solid	5/9/2022 11:45	410-83313-12	
SFAASF-EB-19	Water	5/9/2022 16:00	410-83313-13	Equipment blank
AOI01-02-GW	Water	5/20/2022 15:20	410-84932-1	
AOI01-02-GW-DUP	Water	5/20/2022 15:20	410-84932-2	Field duplicate
AOI01-01-GW	Water	5/20/2022 10:28	410-84932-3	
A0I01-04-GW	Water	5/20/2022 13:10	410-84932-4	
SFAASF-03-GW	Water	5/19/2022 17:15	410-84932-5	
SFAASF-04-GW	Water	5/19/2022 13:35	410-84932-6	
SFAASF-FB-18	Water	5/19/2022 9:15	410-84932-7	Field blank
SFAASF-EB-20	Water	5/19/2022 15:30	410-84932-8	Equipment blank
SFAASF-FB-19	Water	5/20/2022 8:00	410-84932-9	Field blank
SFAASF-EB-21	Water	5/20/2022 8:15	410-84932-10	Equipment blank

Table 2Target Analyte Detections in Primary and Field Duplicate SamplesArmy Aviation Support FacilitySanta Fe, New Mexico

	Average Limit			Relative	
	of		Field Duplicate	Percent	
Analyte	Quantitation	Primary Result	Result	Difference	Notes
Samples AG	DI01-02-SB-113-	115 and AOI01-(02-SB-113-115-D	UP	
Perfluorohexanesulfonic acid	0.67 ng/g	0.32 J	0.46 U	NC	± LOQ
Samples AG	DI01-04-SB-109-	110 and AOI01-(04-SB-109-110-D	UP	
Perfluorohexanoic acid	0.60 ng/g	0.70 J	0.39 U	NC	± LOQ
Perfluoroheptanoic acid	0.60 ng/g	0.44 J	0.39 U	NC	± LOQ
Perfluorooctanoic acid	0.60 ng/g	0.48 J	0.39 U	NC	± LOQ
Perfluorononanoic acid	0.60 ng/g	0.32 J	0.39 U	NC	± LOQ
Perfluorodecanoic acid	0.60 ng/g	0.30 J	0.39 U	NC	± LOQ
Perfluorotridecanoic acid	0.60 ng/g	0.31 J	0.39 U	NC	± LOQ
Perfluorotetradecanoic acid	0.60 ng/g	0.33 J	0.39 U	NC	± LOQ
Perfluorohexanesulfonic acid	0.60 ng/g	1.1	0.39 U	NC	J/UJ, FD
Perfluorooctanesulfonic acid	0.60 ng/g	2.2	0.39 U	NC	J/UJ, FD
NEtFOSAA	2.0 ng/g	0.28 J	0.39 U	NC	± LOQ
Perfluoropentanesulfonic acid	3.00 ng/g	0.38 J	0.39 U	NC	± LOQ
Perfluoroheptanesulfonic acid	0.60 ng/g	0.34 J	0.39 U	NC	± LOQ
Perfluorononanesulfonic acid	0.60 ng/g	0.28 J	0.39 U	NC	± LOQ
Perfluorodecanesulfonic acid	0.60 ng/g	0.30 J	0.39 U	NC	± LOQ
Perfluorooctanesulfonamide	0.60 ng/g	0.34 J	0.39 U	NC	± LOQ
Perfluoropentanoic acid	0.60 ng/g	0.37 J	0.39 U	NC	± LOQ
Perfluoroundecanoic acid	0.60 ng/g	0.30 J	0.39 U	NC	± LOQ
Perfluorododecanoic acid	0.60 ng/g	0.32 J	0.39 U	NC	± LOQ
Sar	nples AOI01-02-	GW and AOI01-0	02-GW-DUP		
Perfluorohexanoic acid	1.7 ng/L	130	120	8.0%	
Perfluoroheptanoic acid	1.7 ng/L	15	14	6.9%	
Perfluorooctanoic acid	1.7 ng/L	2.5	2.3 J+	8.3%	
Perfluorobutanesulfonic acid	1.7 ng/L	120	130	8.0%	
Perfluorohexanesulfonic acid	1.7 ng/L	72	74	2.7%	
Perfluoropentanesulfonic acid	1.7 ng/L	60	61	1.7%	
Perfluorooctanesulfonamide	1.7 ng/L	0.98 J	0.85 U	NC	± LOQ
Perfluorobutanoic acid	4.2 ng/L	40	40	0.0%	
Perfluoropentanoic acid	1.7 ng/L	87	90	3.4%	

Notes:

NC = not calculable

ng/g = nanograms per gram

ng/L = nanograms per liter

Qualifier Definitions:

J = The reported result is an estimated quantity with an unknown bias.

J+ = The result is an estimated quantity, but the result may be biased high.

U = The analyte was not detected and was reported as less than the limit of detection.

Table 2

Target Analyte Detections in Primary and Field Duplicate Samples Army Aviation Support Facility Santa Fe, New Mexico

Reason Codes:

 \pm LOQ = the difference between analyte concentrations is less than the limit of quantitation,

indicating acceptable sampling and analytical precision.

FDD = Imprecision between primary and field duplicate results.

Table 3 Qualifiers Applied During Validation Army Aviation Support Facility Santa Fe, New Mexico

			Qualifier and
Sample Identification	Analyte	Concentration	Reason Code
AOI01-01-GW	Perfluorooctanesulfonamide	0.48 ng/L	J TR
AOI01-02-GW	Perfluorooctanesulfonamide	0.98 ng/L	J TR
AOI01-02-GW-DUP	Perfluorooctanoic acid	2.3 ng/L	J+ EBG
AOI01-02-SB-113-115	Perfluorohexanesulfonic acid	0.32 ng/g	J TR
AOI01-02-SB-13-15	Perfluoroheptanesulfonic acid	0.48 ng/g	J TR
AOI01-02-SB-13-15	Perfluorooctanoic acid	0.59 ng/g	J TR
AOI01-03-SB-13-15	Perfluorohexanesulfonic acid	0.27 ng/g	J TR
AOI01-03-SB-6-8	Perfluorohexanesulfonic acid	0.23 ng/g	J TR
AOI01-04-GW	Perfluorooctanesulfonic acid	1.8 ng/L	U LBL, FBL, EBL
AOI01-04-GW	Perfluorotetradecanoic acid	0.89 ng/L	UJ ISL
AOI01-04-SB-109-110	NEtFOSAA	0.28 ng/g	J TR
AOI01-04-SB-109-110	NMeFOSAA	0.41 ng/g	UJ ISL
AOI01-04-SB-109-110	Perfluorodecanesulfonic acid	0.30 ng/g	J TR
AOI01-04-SB-109-110	Perfluorodecanoic acid	0.30 ng/g	J TR
AOI01-04-SB-109-110	Perfluorododecanoic acid	0.32 ng/g	J TR
AOI01-04-SB-109-110	Perfluoroheptanesulfonic acid	0.34 ng/g	J TR
AOI01-04-SB-109-110	Perfluoroheptanoic acid	0.44 ng/g	J TR
AOI01-04-SB-109-110	Perfluorohexanesulfonic acid	1.1 ng/g	J FDD
AOI01-04-SB-109-110	Perfluorononanesulfonic acid	0.28 ng/g	J TR
AOI01-04-SB-109-110	Perfluorononanoic acid	0.32 ng/g	J TR
AOI01-04-SB-109-110	Perfluorooctanesulfonamide	0.34 ng/g	J TR
AOI01-04-SB-109-110	Perfluorooctanesulfonic acid	2.2 ng/g	J+ EBG, FDD
AOI01-04-SB-109-110	Perfluorooctanoic acid	0.48 ng/g	J TR
AOI01-04-SB-109-110	Perfluoropentanesulfonic acid	0.38 ng/g	J TR
AOI01-04-SB-109-110	Perfluoropentanoic acid	0.37 ng/g	J TR
AOI01-04-SB-109-110	Perfluorotetradecanoic acid	0.33 ng/g	J TR
AOI01-04-SB-109-110	Perfluorotridecanoic acid	0.31 ng/g	J TR
AOI01-04-SB-109-110	Perfluoroundecanoic acid	0.30 ng/g	J TR
AOI01-04-SB-109-110-DUP	Perfluorohexanesulfonic acid	0.39 ng/g	UJ FDD
AOI01-04-SB-109-110-DUP	Perfluorooctanesulfonic acid	0.39 ng/g	UJ FDD
AOI01-04-SB-13-15	Perfluorodecanesulfonic acid	0.29 ng/g	J TR
AOI01-04-SB-13-15	Perfluorodecanoic acid	0.30 ng/g	J TR
AOI01-04-SB-13-15	Perfluorododecanoic acid	0.34 ng/g	J TR
AOI01-04-SB-13-15	Perfluoroheptanesulfonic acid	0.33 ng/g	J TR
AOI01-04-SB-13-15	Perfluoroheptanoic acid	0.40 ng/g	J TR
AOI01-04-SB-13-15	Perfluorohexanoic acid	0.63 ng/g	J TR
AOI01-04-SB-13-15	Perfluorononanesulfonic acid	0.28 ng/g	J TR
AOI01-04-SB-13-15	Perfluorononanoic acid	0.37 ng/g	J TR
AOI01-04-SB-13-15	Perfluorooctanesulfonamide	0.35 ng/g	J TR
AOI01-04-SB-13-15	Perfluorooctanoic acid	0.52 ng/g	J TR
AOI01-04-SB-13-15	Perfluoropentanesulfonic acid	0.34 ng/g	J TR
AOI01-04-SB-13-15	Perfluoropentanoic acid	0.33 ng/g	J TR

Table 3 Qualifiers Applied During Validation Army Aviation Support Facility Santa Fe, New Mexico

			Qualifier and
Sample Identification	Analyte	Concentration	Reason Code
AOI01-04-SB-13-15	Perfluorotetradecanoic acid	0.33 ng/g	J TR
AOI01-04-SB-13-15	Perfluorotridecanoic acid	0.30 ng/g	J TR
AOI01-04-SB-13-15	Perfluoroundecanoic acid	0.31 ng/g	J TR
AOI-01-09-SB-0-2	NEtFOSAA	0.55 ng/g	J+ ISL, TR
AOI-01-09-SB-0-2	NMeFOSAA	0.38 ng/g	UJ ISL
AOI-01-09-SB-0-2	Perfluorodecanesulfonic acid	0.37 ng/g	J TR
AOI-01-09-SB-0-2	Perfluorododecanoic acid	0.54 ng/g	J TR
AOI-01-09-SB-0-2	Perfluorononanoic acid	0.40 ng/g	J TR
AOI-01-09-SB-0-2	Perfluoroundecanoic acid	0.27 ng/g	J TR
AOI01-09-SB-111-112	NEtFOSAA	0.52 ng/g	UJ ISL
AOI01-09-SB-111-112	NMeFOSAA	0.52 ng/g	UJ ISL
SFAASF-03-GW	Perfluorohexanoic acid	0.84 ng/L	J TR, EMPC
SFAASF-03-GW	Perfluorooctanesulfonic acid	1.7 ng/L	U LBL, FBL, EBL
SFAASF-03-SB-0-2	NEtFOSAA	0.43 ng/g	UJ ISL
SFAASF-03-SB-0-2	NMeFOSAA	0.43 ng/g	UJ ISL
SFAASF-04-GW	Perfluorohexanoic acid	0.60 ng/L	J TR, EMPC
SFAASF-05-SB-6-8	NEtFOSAA	0.41 ng/g	UJ ISL
SFAASF-05-SB-6-8	NMeFOSAA	0.41 ng/g	UJ ISL

Notes:

NEtFOSAA = N-ethylperfluorooctanesulfonamidoacetic acid

ng/g = nanograms per gram

ng/L = nanograms per liter

NMeFOSAA = N-methylperfluorooctanesulfonamidoacetic acid

Qualifier Definitions:

- J = The reported result is an estimated quantity with an unknown bias.
- J+ = The result is an estimated quantity, but the result may be biased high.
- U = The analyte was not detected and was reported as less than the limit of detection (LOD). The LOD has been adjusted for any dilution or concentration of the sample.
- UJ = The analyte was not detected and was reported as less than the limit of detection. However, the associated numerical value is approximate.

Table 3 Qualifiers Applied During Validation Army Aviation Support Facility Santa Fe, New Mexico

Reason Codes:

- EBG = The analyte was detected in the associated equipment blank and the concentration detected in the sample was greater than the limit of quantitation (LOQ) and less than five times the concentration detected in the blank.
- EBL = The analyte was detected in the associated equipment blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- EMPC = The ion transition ratio is outside of expected limits.
- FBL = The analyte was detected in the associated field blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- FDD = Imprecision between primary and field duplicate results.
- ISL = Low extracted internal standard recovery.
- LBL = The analyte was detected in the associated laboratory blank and the concentration detected in the sample was greater than the LOD and less than the LOQ.
- TR = The detected concentration is less than the limit of quantitation.

This page intentionally left blank

Appendix B

Field Documentation

This page intentionally left blank

Appendix B1

Logs of Daily Notice of Field Activities

This page intentionally left blank

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
Mobilization 2 6/17/2022	Gina Mullen		EA onsite at 1000 hrs. Health and safety meeting was conducted. GPS locations collected for IDW areas.EA offsite at 1215.	Today's task was to re-collect GPS locations for features that did not meet 1 meter accuracy. GPS locations were successfully collected, except for 0-2 ft soil boring AOI01-06. Neither the stake marking the location nor bentonite plug could be located. The originally collected GPS location will be included in the SI report.	GPS data collection was completed . Total progress is summarized below: 5/5 monitoring wells surveyed - COMPLETE 5/5 monitoring wells sampled - COMPLETE 5/5 monitoring wells developed - COMPLETE 5/6* monitoring wells installed - COMPLETE 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE *6th well abandoned on 5/7/2022 as previously noted.	Jeff Bogart (NMARNG)
6/3/2022	Sindy Lauricella		EA onsite at 0800 hrs. High Mesa arrived at 0930 and health and safety meeting was conducted. Monitoring wells were surveyed and gauged. EA materials were removed from storage. High Mesa offsite at 1230. EA offsite at 1300.	N/A	Total progress is summarized below: 5/5 monitoring wells surveyed - COMPLETE 5/5 monitoring wells sampled - COMPLETE 5/5 monitoring wells developed - COMPLETE 5/6* monitoring wells installed - COMPLETE 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE *6th well abandoned on 5/7/2022 as previously noted.	Kiara Takacs (NMARNG), Mark VanZuider and David Reines (High Mesa)
5/20/2022	Joseph Glover and Gina Mullen	Windy, gusts to 25 mph, high of 77 degrees F	Met onsite at 0730 hrs. Completed health and safety tailgate meeting. Collected groundwater samples at AOI01-01, AOI01-02, and AOI01-02. Completed groundwater sampling. Finished collecting GPS locations of soil borings and soil cutting land application areas. Offsite at 1630.		Groundwater sampling and GPS location collection were completed. Samples Collected: AOI01-01-GW, AOI01-02-GW, AOI01-02-GW-DUP, and AOI01- 04 Blanks Collected: SFAASF-EB-21 and SFAASF-FB-19 Total progress is summarized below: 5/5 monitoring wells sampled - COMPLETE 5/5 monitoring wells developed - COMPLETE 5/6* monitoring wells installed - COMPLETE 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE *6th well abandoned on 5/7/2022 as previously noted.	Kiara Takacs (NMARNG)

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date
5/19/2022	Joseph Glover, Stella Finch, and			N/A	Samples Collected: SFAASF-03-GW, SFAASF-04-GW Blanks Collected: SFAASF-EB-20 and SFAASF-FB-18 Total progress is summarized below: 2/5 monitoring wells sampled 5/5 monitoring wells developed - COMPLET 5/6* monitoring wells installed - COMPLET 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE *6th well abandoned on 5/7/2022 as previou
	Gary Desselle;	3,0		N/A	Well installation and development complete
Wednesday	Sindy Lauricella was on site for ~ 45 minutes	to 25 mph, high of 80 degrees F	safety tailgate meeting. Completed well development at SFAASF-04 and -03. Offsite at 1400.		pads is complete. Groundwater sampling will be conducted neris being scheduled. Samples Collected: None. Total progress is summarized below: 5/5 monitoring wells developed - COMPLET 5/6* monitoring wells installed - COMPLET 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE *6th well abandoned on 5/7/2022 as previou
	Gary Desselle	to 30 mph, high of 80	Met onsite at 0645 hrs. Completed health and safety tailgate meeting. Completed well development at AOI01-01, -02, and -04. Completed all well pads. Offsite at 1645.	N/A	Well installations are complete. Constructio complete. Samples Collected: None. Total progress is summarized below: 3/5 monitoring wells developed 5/6 monitoring wells installed - COMPLETE 5/5 well pads completed - COMPLETE 4/4 DPT soil borings installed - COMPLETE

e	Subcontractor(s)/ Visitors
	Kiara Takacs (NMARNG)
LETE	
ETE	
ETE	
viously noted.	
lete. Construction of well	Kiere Tekees (NMADNO) Alex
lete. Construction of well	Kiara Takacs (NMARNG), Alex
	Chapin (Environmental Works).
d next week. Well survey	
LETE	
ETE	
ETE	
viously noted.	
viously noted.	
ction of well pads is	Crystal Montoya (NMARNG), Justen
	Maples (Environmental Works), Victor
	Taylor (Environmental Works), Robert
	Romines (Environmental Works), Alex
	Chapin (Environmental Works).
TE	
TE	
ETE	

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/9/2022 Monday	Sindy Lauricella and Gary Desselle		Met onsite at 0645 hrs. Completed health and safety tailgate meeting. Completed well construction at SFAASF-03 and completed the P&A of the first SFAASF-03 well. Completed the well pads at AOI-01-02 and AOI-01-04. Offsite at 1718.	The soil sample from 0-2 ft bgs at AOI01-09 was collected to replace the compromised sample.	 Well installations are complete. Construction of well pads has begun. Samples Collected: SFAASF-FB-17 (Field Blank). SFAASF-EB-19 (Equipment Blank) AOI-01-09-SB-0-2 (Soil Sample) Total progress is summarized below: 5/6 monitoring wells installed - COMPLETE 2/5 well pads completed 4/4 DPT soil borings installed - COMPLETE 	Crystal Montoya (NMARNG), Justen Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works), Alex Chapin (Environmental Works well development - arrived at 1605).
5/8/2022 Sunday	-	Windy, gusts to 45 mph, high of 81 degrees F	Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Continued drilling and began well construction at replacement well SFAASF-03; grout tagged at 90 ft bgs. Began plugging original well SFAASF-03; placed bentonite chips to a depth of 136.8 ft bgs. Offsite at 1805.	High winds and blowing dust. The soil sample from 0-2 ft bgs at AOI01-09 was compromised. The interval will be re-sampled.	SFAASF-03 replacement drilled to a total depth of 197 ft bgs and screened at 175-195 ft bgs. Grouting was completed to a depth of 90 ft bgs at the replacement for well SFAASF-03. Samples Collected: SFAASF-FB-16 (Field Blank). Total progress is summarized below: 5/6 monitoring wells installed* 4/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	Chris Fritzsche (NMARNG), Justen Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works)
5/7/2022		clear, high of 80 degrees	Met onsite at 0700 hrs. Plugged and abandoned AOI01-09. Drilled to 107 ft bgs at SFAASF-03 replacement. Offsite at 1810.	Boring AOI01-09 did not accumulate water overnight. Due to the lack of a viable water-bearing zone, the boring was plugged and abandoned.	Boring AOI01-09 was plugged and abandoned. SFAASF-03 replacement drilling commenced. Drilled to 107 ft bgs. Soil Samples Collected: SFAASF-03-SB-0-2 Blanks Collected: SFAASF-EB-18 and SFAASF-FB-15 Total progress is summarized below: 4/6 monitoring wells installed* 4/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	Chris Fritzsche (NMARNG), Justen Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works).

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/6/2022	Sindy Lauricella		Met onsite at 0700 hrs. Completed health and	Water has not accumulated in the potential perched	Boring AOI01-09 was drilled to a depth of 115 ft bgs. A	Chris Fritzsche (NMARNG), Crystal
		77 degrees	safety tailgate meeting. Well construction materials	zone in boring/monitoring well AOI01-09. The lack of	monitoring well is being installed with screen from 105 to 115 ft	Montoya (NMARNG), Kiara Takacs
	Marley		picked by driller's helper while drilling continued.	water in the borehole and presence of sand has caused	bgs. Well construction is stalled due to sand locking. The	(NMARNG), Justen Maples
			Drilled to 115 ft bgs at AOI01-09. Began well	the PVC and casing to become sand locked. The hole	situation is described under 'Issues' and will be reevaluated in the	
			installation. Offsite at 1630.	will sit open to see if water accumulates overnight.	morning after we see if water has accumulated.	(Environmental Works), Robert
				Construction motorials for remaining wells are new	Sail Samulas Collected	Romines (Environmental Works).
				Construction materials for remaining wells are now onsite. Driller is equipped to complete well installations,	Soil Samples Collected: AOI01-09-SB-111-112	
				abandonment, and monuments.	AOI01-09-3B-111-112	
					Blanks Collected:	
				On 5/5/22 EA field staff left the site without notifying	SFAASF-EB-17 and SFAASF-FB-14	
				NMARNG and without ensuring that the bulk fuels area		
				was secured. Steps taken to improve communication	Total progress is summarized below:	
				include designation of SSHO as the person responsible	4/6 monitoring wells installed*	
				(1) for notifying the NMARNG POC that EA staff and	4/4 DPT soil borings installed	
				subcontractors are offsite, (2) ensuring that the bulk		
				fuels area is locked, and (3) notifying the EA task	* Well monument and pad construction will be constructed at a	
				manager at the end of the day that those actions have	later date.	
				been taken.		
5/5/2022	Sindy Lauricella	clear, high of	Met onsite at 0700 hrs. Completed health and	Well construction materials for monitoring well AOI01-09	Monitoring well AOI01-04 was installed with the screen at 105 to	Chris Fritzsche (NMARNG), Kiara
	and Robert	67 degrees	safety tailgate meeting. Installed well at AOI01-04.	were supposed to be delivered today, but did not arrive.	115 ft bgs. Boring AOI01-09 was installed to a depth of 36 ft bgs.	Takacks (NMARNG), Justen Maples
	Marley		Began drillng at AOI01-09. Offsite at 1700.	They are expected to arrive tomorrow.	Drilling will continue tomorrow.	(Environmental Works), Victor Taylor
						(Environmental Works), Robert
					Soil Samples Collected:	Romines (Environmental Works).
					AOI01-09-SB-0-2, AOI01-09-SB-13-15	
					Disults Callestad	
					Blanks Collected: SFAASF-EB-16 and SFAASF-FB-13	
					SFAASF-ED-10 and SFAASF-FD-13	
					Total progress is summarized below:	
					4/6 monitoring wells installed*	
					4/4 DPT soil borings installed	
					Ĭ	
					* Well monument and pad construction will be constructed at a	
					later date.	

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/4/2022	Sindy Lauricella and David Werth	clear, high of 57 degrees	Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Installed 4 direct push soil borings to 15 ft bgs. Drilled AOI01-04 to a depth of 115 ft bgs. Offsite at 1600.	Well SFAASF-03 will be replaced due to the presence of grout in the well. During direct push drilling all boreholes were hand augered to 5 ft bgs, except for borehole AOI01-05, which could only be advanced to 4 ft bgs by hand.	Boring AOI01-04 was drilled to a depth of 115 ft bgs. Well will be built when supplies are delivered or can be procured locally, which will likely be tomorrow. A direct push rig was used to install all four 15-ft soil borings. Soil Samples Collected: AOI01-03-SB-6-8, AOI01-03-SB-13-15, AOI01-04-SB-109, AOI01-04-SB-109-Dup, AOI01-05-SB-6-8, AOI01-05-SB-13-15, AOI01-05-SB-13-15-Dup, AOI01-06-SB-0-2, AOI01-06-SB-13-15, AOI01-06-SB-13-15, SFAASF-05-SB-6-8, SFAASF-05-SB-13-15 Blanks Collected: SFAASF-EB-14, SFAASF-EB-15. amd SFAASF-FB-12 Total progress is summarized below: 3/6 monitoring wells installed* 4/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	
5/3/2022	Sindy Lauricella and Joseph Glover	73	Met onsite at 0600 hrs. Completed health and safety tailgate meeting. Completed well construction at SFAASF-03 but observed grout in the well. Started drilling AOI01-04 and stopped at 86 ft bgs for the day. Offsite at 1810.	will be made tomorrow morning to determine how to proceed. Installation of an additional well to characterize the perched aquifer upgradient of AOI01-02 has been proposed. A field change request has been submitted.	Grouting was completed at well SFAASF-03. Boring AOI01-04 was drilled to a depth of 86 ft bgs. Samples Collected: AOI01-04-SB-13-15 (Soil Sample), SFAASF-EB-13 (Equipment Blank) and SFAASF-FB-11 (Field Blank). Total progress is summarized below: 4/6 monitoring wells installed* 0/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	Byron Kesner (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works)

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/2/2022	Sindy Lauricella and Joseph Glover	69	Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Continued drilling SFAASF- 03 and started well construction. Put sand pack around well screen and then put in bentonite plug and hydrated. Offsite at 1800.	N/A	Boring SFAASF-03 was drilled to depth 197 ft bgs and the screen was installed at 175 - 195 ft bgs. Started well construction putting in sand and bentonite plug. Will grout well in the morning. Samples Collected: SFAASF-03-SB-183 (Soil Sample), SFAASF-EB-12 (Equipment Blank) and SFAASF-FB-10 (Field Blank). Total progress is summarized below: 4/5 monitoring wells installed* 0/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	
5/1/2022	Teri McMillian and Joseph Glover		Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Started drilling SFAASF-03 and stopped at 166' bgs for the day. Offsite at 1800.	N/A	Boring SFAASF-03 was drilled to depth 166'. Samples Collected**: SFAASF-03-SB-13-15 (Soil Sample), SFAASF-EB-11 (Equipment Blank), and SFAASF-FB-09 (Field Blank). Total progress is summarized below: 3/5 monitoring wells* 0/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date. ** 5/1/22 update contained an incorrect list of samples collected. This list represents the correct samples (5/2/22).	Chris Fritzche (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works)
4/30/2022		70	Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Continued and finished drilling SFAASF-04 and completed well construction. Hand augered SFAASF-03 and set up to start drilling. Offsite at 1800.	N/A	constructed with screen at 171-191 ft bgs.	Chris Fritzche (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works)

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
4/29/2022	Sindy Lauricella and Joseph Glover		Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Continued drilling SFAASF- 04. Drilled down to 178 ft bgs. Offsite at 1800.	N/A	Boring SFAASF-04 was drilled from 39 ft bgs to 178 ft bgs. Samples Collected: SFAASF-FB-007 (Field Blank) Total progress is summarized below: 2/5 monitoring wells* 0/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	Byron Kesner (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), Robert Romines (Environmental Works)
4/28/2022	Sindy Lauricella, and Joseph Glover	clear, high of 71	Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Finished completion of AOI01-02 well. Spread AOI01-02 dry drill cutting around the well. Decontaminated drill tooling in designated area. Shipped samples from AOI01-02 to lab. Hand augered down to 5 ft bgs at SFAASF- 04 and began drilling operations. Drilled down to 39' bgs. Offsite at 1800.	N/A	Boring AOI01-02 was constructed in a perched water table with the screen set at 107-117 ft bgs. Well monument and pad will be constructed at a later date.oring SFAASF-04 was advanced to 39 ft bgs. Samples Collected: AOI01-02-119-120 (grain size), AOI01-02-113-115 (soil sample), SFAASF-04-13-15 (soil sample), SFAASF-EB-07 (equipment blank), SFAASF-EB-08 (equipment blank), and SFAASF-FB-006 (field blank). Total progress is summarized below: 2/5 monitoring wells 0/4 DPT soil borings installed	
4/27/2022	Regina Mullen, Sindy Lauricella, and Joseph Glover		Met onsite at 0700 hrs. Completed health and safety tailgate meeting. Finished completion of AOI01-01 well by toping off the well with grout to a few feet below ground surface. Spread AOI01-01 dry drill cutting around the well. completed for AOI01-02 and AOI01-06. AOI01-05 was also re- cleared since the stake was no longer in place. Decontaminated drill tooling in designated area. After utility clearance confirmed hand augered down to 5' bgs at AOI01-02 and began drilling operations. Drilled down to 126' bgs. Offsite at 1640.	Two separate spills occurred onsite today. One spill occurred when a leak/failure occurred in the hydraulic system of the United Rental Skid Steer. Approximately one gallon of hydraulic oil is estimated to have spilled onto uncracked asphalt. Oil pads were deployed to absorb oil. Used oil pads were collected into a black trash bag to await proper disposal. A spill incident was filled out by EA and provided to the AASF facility. A second spill occurredwhen the power washer fuel system failed/leaked during decontamination activities. Leak was found after decon was performed leaking under the truck onto gravel and soil. It is estimated a maximum of 1 gallon of diesel fuel leaked onto the ground. Impacted soil was hand dug and containerized into a steel drum. All impacted soil was captured and EA completed another spill report incident form and provided that to the AASF Facility.	Boring AOI01-01 was completed with grout to just below ground surface. Boring AOI01-02 was advanced to 126 ft bgs. All utility locates completed. Samples Collected: AOI01-02-13-15 (soil sample), SFAASF-EB-06 (equipment blank), and SFAASF-FB-005 (field blank). Total progress is summarized below: 1/5 monitoring wells* 0/4 DPT soil borings installed * Well monument and pad construction will be constructed at a later date.	Chris Fritzsche (NMARNG), Byron Kesner (NMARNG), Crystal Montoya (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), and Robert Romines (Environmental Works), Abraham Ortiz (MT), Max Chavez (MT).

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
4/26/2022	Sindy Lauricella, and Joseph	Partly cloudy, windy, high of 65 degrees	Met onsite at 0700 hrs. SSHO conducted health and safety meeting. Completed borehole at AOI01- 01. Monitoring well installed and grouted to 18' below ground surface. Samples for AOI01-01 shipped to lab. Offsite at 1820.	Equipment blank was collected from hose used to fill water tank, as discussed on 4/25/2022.	Boring AOI01-01 was completed and monitoring well installed with the screen set at 170 to 190 ft bgs. Well was grouted to 18 ft bgs. Grouting will be completed tomorrow. Capillary fringe sample was collected based on observations in core samples. Samples Collected: AOI01-01-181-182 (soil sample), SFAASF-EB-04 (equipment blank), SFAASF-EB-05 (equipment blank), and SFAASF-FB-04 (field blank). Total progress is summarized below: 1/5 monitoring wells installed 0/4 DPT soil borings installed	Byron Kesner (NMARNG), Justin
4/25/2022	-	high of 60 degrees	Met onsite at 0700 hrs. Visited all sonic drilling locations, laydown/IDW area, and approved water source. SSHO conducted health and safety meeting. Drilling began at location AOI01-01. Borehole was advanced to 155 feet below ground surface. Offsite at 1815 hrs.	The driller was not equiped with a hose known to be PFAS-free. They were instructed to remove the rubber gasket and flush the hose before filling the tank. An equipment blank will be collected from the hose.	Boring AOI01-01 was advanced to 155 feet below ground surface. Drilling will continue tomorrow. Samples Collected: AOI01-01-13-15 (soil sample with MS/MSD), AOI01-01-135-136 (grain size sample), SFAASF-EB-03 (Equipment Blank), and SFAASF-FB-03 (Field Blank). Total progress is summarized below: 0/5 monitoring wells installed 0/4 DPT soil borings installed	Byron Kesner (NMARNG), Justin Maples (Environmental Works), Victor Taylor (Environmental Works), and Robert Romines (Environmental Works).
Mobilization 2/8/2022	Regina Mullen, and David Werth	breezy, high of 45 degrees	Met onsite at 0950 hrs. Regina Mullen presented safety brief to all on-site presonnel, including NMARNG representative. Following the brief, the EA team installed 6 soil borings to 2 ft bgs using a hand auger, collected associated samples, and used bentonite to fill all soil borings. A labeled stake marks all locations where deeper (greater than 2 ft bgs) soil borings will be installed during the Phase 2 Mobilization. IDW is labeled and stored on-site.		A private utility locator will survey location AOI01-02 for the presence of utilities before drilling with a drill rig occurs at that location. EA will mobilize to the site a second time in April 2022 and install remaining soil borings (those with a depth greater than	

Date	EA Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
2/7/2022	Regina Mullen,	Sunny,	Met onsite at 0830 hrs. David Werth (SSHO)	Eight (8) soil borings were installed to 2' at the	The purpose of this mobilization (Phase 1 Mobilization) is to mark	Chris Fritzsche (NMARNG), Manuel
	and David Werth		presented a safety brief to all on-site personnel,	discussed locations. Snow cover was present, but did	locations, conduct utility locates, and collect surface soil samples	Oritz, (MT) and Max Chavez (MT).
		40 degrees	including MT Private Utility Locating (MT) team.	not prevent installation of soil borings.	(0-2 ft bgs) at 13 locations.	
			Following the brief, the EA team marked locations			
			and MT Locating marked utilities for all 13 soil		Eight (8) 2 ft soil borings were installed at the locations indicated	
			boring and/or monitoring well locations. EA team		in the UFP-QAPP: AOI01-02, AOI01-03, AOI01-04, AOI01-05,	
			installed eight (8) soil borings to 2 ft bgs using a		AOI01-06, SFAASF-03, SFAASF-04, and SFAASF-05.	
			hand auger and collected associated samples.		Associated samples were collected. Installation of the remaining	
					soil borings is planned for tomorrow. Tomorrow's field work is	
					scheduled to begin at 1000 hrs.	
					Total progress is summarized below:	
					Soil borings (0-2 ft) 8 of 13 completed.	

This page intentionally left blank

Appendix B2

Field Forms

This page intentionally left blank

ATE 5	120	127	TIME	1028	?	А	IR TEMP	_6	2°	
VATER D VATER C QUIVAL UMP RA UMP TIN VELL WE	DEPTH FOL. HEIC ENT VOI TE ME ENT DRY 10VED _	<u>192</u> <u>176.05</u> GHT <u>19</u> LUME OF S <u>00</u> <u>20 min</u> ? ()Ye	TANDING es (XN	_ ft _ ft 3 WATER 	WEL SAN QY PUM) RECO	L DIAME DPACK D 7, 75 P TIME _ OVERY T	TER DIAM (0 C 	Z 6	(g m m m	al) (L) pm) (LPM in in
Date	Time	Volume Removed Unit:	рН	Cond.	Temp.	ORP	NTV Turb. 507	DO No	Depth to Water from TOC	Pump Rate ML/min
5/2:/22	0925	3	7.26		17.2	- 28	507		176-08	1
270.700	0930	1.5	7.28			-40.8	493	62.5		
	0935	1.75	7.30	262.1	17.7	-81.7	313	60.8	110	1. IS 1. IS 1
	6940	1.5	7.31	261.5	18.2	-97.9	187		176.00	
	6945	1.5	7.32	261.5	18.5	-112	175		176.08	300
	6950	1.5	7.33	261.9	19.5	-122.9	172		176.08	
	0955	2.0	7.38	264.1	19.3	-166.4	Sol	56.7	176.09	
	1000	2.0	7.38	264.Z			355		176.09	
	1005	2.0	7.37	264.0		-180.7			176.01	
	1010	2.0	7.37	263.5		-183.8			176.09	
	1015	Z.0	7.36	262.9		- 189.5			176.09	
	1020	2.0		262.7		-194.4			176.09	11
	1025	2.0		262.3		-195.1	-		176.00	
	TS_PI	D= 2.9								

SAMPLENO. AOIOI-02-GU WELLID AOIOL-02 WELL/SITE DESCRIPTION _ SFAAS AIR TEMP. __76 ° TIME 1520 DATE 5 / 20 / 22 (107-117) ft WELL DEPTH 0 CASING HEIGHT ft WATER DEPTH 110.72 WELL DIAMETER in ft WATER COL. HEIGHT G.22SANDPACK DIAM. in ft EQUIVALENT VOLUME OF STANDING WATER 32.25 (gal)(L) PUMPRATE ~ SOO mL/m.n. (gpm) (LPM) PUMPTIME 65 mm min ()Yes (XNo WELL WENT DRY? PUMP TIME min ____ (gal) (L) RECOVERY TIME _____ min VOL. REMOVED ()Yes TOTAL VOL. REMOVED ____ (gal)(L) PURGE AGAIN? () No 300 10 M 10 mV 1000 102 Pump Volume Depth to ORP DO Removed Cond. Turb. Rate pH Temp. Water 38/m °C mu NTU 20 from TOC mL/min Unit: Date Time 229 18.7 68.8 .62 7.27 32 1170 500 2.5 20/22 415 11-66 9L 240.4 252 470 3.0 7.22 1324 74.9 600 20.3 1334 24361069 38 2.0 21 76.1 400 Z48.3 SZ.2 192 16.3 .38 500 2.5 1333 7.20 2475 39.Z 111.19 1334 20.2 77.5 435 2.5 7.19 500 111.50 21.1 29.1 7.21 217.7 400 440 2.0 1333 110.6 78,1 198.6 7.22 1330 20.6 164.1 111.50 350 1.75 445 330 233.9-200 4.0 7.21 21.0 450 67.8 111.68 5 79.0 21.0 11.70 400 1326 225.8 91.4 2.0 7.23 455 7.23 1329 78.4 1.75 233.6 91.4 350 1500 21.2 111.54 247.3 97.6 2.5 1505 19.4 7.21 1341 76.8 11.45 500 249 1336 19.3 191 78 4.0 1.17 112.46 800 510 350 1.18 221 1515 25 12.1 .75 720 1520 COMMENTS PID 1.1 ppm haller test-ND toan Samples collecter 1520 Final WL 111.07 You SIGNATURE TD: 118.95 D-09 Page 1 of 1

WELL ID WELL/SIT	<u>AOIO</u> E DESCR	<u>1-04</u> 	SFAA.S	F		SAMPLE	: NO. <u>A</u>	0I 01-	04-G	ω
DATE <u>5</u>	120	1_22	TIME	1310		A	IR TEMP	70	0	
WATER D WATER C EQUIVAL PUMP RA PUMP TIM WELL WE	EPTH OL. HEIC ENT VOL TE IE NT DRY	115 (<u>++0-</u> 10 5++10-10	PANDING) ft _ ft _ ft B WATER	WEL SAN 2 PUM	DPACK D 7. 75 P TIME _	DIAM	26	in (ga (gp mir mir	ı.
PURGE AG	GAIN?	()Ye	s ()N						(ga	
Date	Time	Volume Removed Unit: L	рН	Cond. uS/cm	Temp.	ORP	Turb.	DO •70	Depth to Water from TOC	Pump Rate m_/m
5/20/22	1215	2.5	7.30	1125	17.5		1601	31.2	110.12	500
	1220	2.25	7.27	1137	18.0	-143.8			110.0	450
	1225	1.0	7.25	1167	19.6	-1573	453	44.9	110.0	Zod
	1236	2.0	7.24	1176	18.8	-159.9	61	46.8	110.04	400
	1235	2.0	7.25	1173	19.7	-163.9	59.2	48.2	110.05	-400
	1240	2.0	7.25	1174	19.5	-164.5	39.2	49.7	110.03	
	1245	2.0	7.24	1171	19.4	-160.3	27.5	51.2	110.03	400
	1250	2.0	7.24	1172	19.5	-150.2	16.86	52.7	110.03	400
	1253	2.0	7.24	1169	19.3	-145.8	15.2	53.3	110.03	400)
	1256	2.0	7.24	1168	19.6	-138.1	12.5	54.6	110 03	400
	1259	2.0	7.24	1169	19.4	-134.4	11.0	54.6	110.03	400
	1302	2.0	7.24	168	19.8	-129.1	9.8	55.4	110.03	400
	1305	2,0	7.24	1167	19.8	-127.5	10.0	SS.C	110.03	400
COMMEN	TS	See	pg à	2						
								1		
					5	SIGNATU	RE	the	20	

ELL ID	<u>AOD</u> TE DESCR	51-04 RIPTION	SFAA.	SF		SAMPLE	E NO	AOIC	01-6	1-6
ate <u></u>	, 120	122	TIME	1310		А	IR TEMP	. 70	5°	
VATER C QUIVAL UMP RA UMP TIN VELL WI OL. REM	COL. HEIC LENT VOI TE ME ENT DRY MOVED	5 <u>109.88</u> GHT <u>5</u> LUME OF S <u>53 mm</u> <u>53 mm</u> <u>7</u> ()Ye	randino <u>/mn</u> es (XX	_ ft G WATER 	SAN z >. PUM) REC	DPACK E	DIAM	6	in (ga (gr min min min min	om) (LPM n n n
Date	Time	Volume Removed Unit: (_	pН	Cond. US/cm	Temp.	ORP	Turb.	DO DO	Depth to Water from TOC	Pump Rate ml/mm
	1308	2.0	7.24	164	19.6	-125,1	9.2	S6.1	110.02	460

SIGNATURE _____

1310

D-09 Page Lof L

le

cohested at

Samp

SAMPLE NO. SFAASF-03-6W WELL ID SFAASF-03 WELL/SITE DESCRIPTION SFANSE AIR TEMP. 83°F DATE \$ / 19 / 2022 TIME 1500 WELL DEPTH 197-SF 195 CASING HEIGHT 0 ft ft WATER DEPTH 184.54 1 ___ft WELL DIAMETER in WATER COL. HEIGHT 12.42 5 10.42 ft SANDPACK DIAM. 6 in EQUIVALENT VOLUME OF STANDING WATER 31.25 (gal)(L PUMPRATE 400 ml/mm (gpm) (LPM) PUMPTIME GOmin min WELL WENT DRY? () Yes No PUMP TIME min (gal) (L) RECOVERY TIME _____ min VOL. REMOVED ()Yes ()No TOTAL VOL. REMOVED _____ (gal) (L) PURGE AGAIN? Volume Pump Depth to Cond. ORP pH Temp. Removed Turb. DO Rate Water mV °C SPC Unit: 970 Date Time NTV from TOC 5985 3.0 7.86 19.1 6.2 46 1615 24 34.58 600 -454.3 1180 620 2.5 7.85 598.6 19.1 14.5 184.9 500) -423. 625 20 7.81 518.5 19.0 17.3 503 185.01 410 1630 250.5 23.0 -377.2 266 23.0 185.01 7.79 2.0 400 2.5 20.5 338.7 200.8 29.6 7.78 242.1 1635 184.98 500 -3764 198.5 33.9 1.78 237.7 20.5 2.5 1640 184.97 500 7.78 234.7 20.5 1645 -320.2 220.2 35.3 184.95400 7.0 7.78 231.319.9 -315.1286.4 1650 4.0 41.4 185.07 800) 1655 7.78 230.5 20.5 -3166 284 2-0 41.2 185.02400 7.78 228.3 20.5 -3082 304 42.2 84.90 350 1700 1-75 7.78 229.5 20.3 -313.2 319.05 41.6 184.88 400 1705 2.0 1710 2.0 7,78 229.7 20.7 -315.7 334.3 42.1 184.97 400 7.78 229.1 20.8 -315.8358 1715 3.0 42.7 184.88 600 COMMENTS INHEL PID: 1.9 PPM

Shaken test - No foar

SIGNATURE Mull

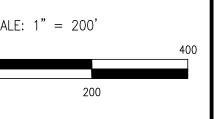
								80°			
ELL D	EPTH <u></u>	93		ft	CAS	ING HEIC	ант 🚽	93-5	FO ft		
ATER	DEPTH	160.38		ft	WEL	L DIAME	TER	2	in		
			U				DIAM	6			
JUIVA JMP RA	ATE 4	LUME OF S	Imin	JWATER	<u></u> ,))(L) m)(LPM))
	ME 17								mir		
		? ()Ye									
		()Ye									
KUL /	UAIN;	()10	5 ()1	10	101.	AL VOL.	KLIMO VL	.D	(ga	(L)	
		Volume Removed	pH	Cond.	Temp.	ORP	Turb.	DO	Depth to	Pump Rate	
Date	Time	Unit:		sustim	UC.	mV	NTU	0/0	Water from TOC	m4/min	
	1233	2.0	8.07		19.9	-463.0	205.70	un	180.38	400	
	1238	1.0	8.05	231.7	22.9	-450.6	146	13.0	180.36		
	1243	1.0	8.05	227,8	22.6	- 429.2	119	14.6	180.36	to	20
	1248	4.0	8.04	ZZ3.6	18.9	-415.4	71.6	193	180.1	80	
	1253	2.5	8.01	224.1	20.9	-410.0	60.98	21.3	180.38	500	
	1258	2.0	7.99	222.4	20.8	403.	62.5	8.55	180.37	400	
	1303	1.5	7.97	221.6	20.8	-398.2	67.8	24.6	180.37	300	
	1308	1.5	7.97	220.9		3967	79.4	25.2	180.35	300	
	1313	1-25	7.95	218.8	22.6	-393.3	85.6	26.0	181.35	25050	Z
	1318	1.0	7.95	221.4	22.9	-392.2	86.10		180.32		
	1323			NO PAR	ANTIBOS	COLLECT	5D- PURI	E STOPPE	D/WAD TO F	LESTART PU	mp
	1328	75	7.95			-316.4			180.43		
	1333	2.5				-399.0		28.1	180.42		
	1	100 C 100 C 10	l		PPM						9

2

Appendix B3

Survey Data


This page intentionally left blank



COORDINATE TABLE

-				
POINT NO.	NORTHING GRID	EASTING GRID	ELEVATION	
1	1682309.82	1687757.09	6318.00	
10101	1682747.81	1688653.59	6328.84	
10102	1682748.27	1688653.55	6329.36	
10103	1682749.74	1688653.37	6329.35	
10104	1682750.26	1688653.27	6328.95	
10201	1682499.59	1688365.64	6324.96	
10202	1682500.05	1688365.59	6325.43	
10203	1682501.59	1688365.40	6325.41	
10204	1682501.93	1688365.31	6325.13	
10401	1682156.56	1688364.77	6323.20	
10402	1682157.00	1688364.95	6323.77	
10403	1682158.52	1688365.41	6323.71	
10404	1682158.88	1688365.63	6323.35	
10301	1683006.23	1689575.33	6337.69	
10302	1683006.71	1689575.27	6338.29	
10303	1683008.66	1689575.32	6338.21	
10304	1683009.10	1689575.29	6337.86	
110401	1682458.52	1689221.12	6332.85	
110402	1682458.95	1689221.16	6333.36	
110403	1682460.81	1689221.05	6333.33	
110404	1682461.48	1689221.10	6333.06	

DESCRIPTION	LATITUDE NORTH	LONGITUDE WEST	UTM 13N NORTH (m)	UTM 13N EAST (m)
BRASS CAP "SANTA FE WEST BASE"	35°37'25.08866"	106°05'26.52728"	3942753.08	401230.73
AOI01-01 WELL CASING	35°37'29.40619"	106°05'15.65862"	3942883.07	401505.60
AOI01-01 WELL LID	35°37'29.41077"	106°05'15.65909"	3942883.21	401505.59
AOI01-01 CONCRETE	35°37'29.42526"	106°05'15.66116"	3942883.66	401505.54
AOI01-01 GROUND	35°37'29.43041"	106°05'15.66243"	3942883.82	401505.51
AOI01-02 WELL CASING	35°37'26.95581"	106°05'19.15169"	3942808.55	401416.90
AOI01-02 WELL LID	35°37'26.96031"	106°05'19.15237"	3942808.69	401416.88
AOI01-02 CONCRETE	35°37'26.97558"	106°05'19.15464"	3942809.16	401416.83
AOI01-02 GROUND	35°37'26.97899"	106°05'19.15572"	3942809.26	401416.80
AOI01-04 WELL CASING	35°37'23.56303"	106°05'19.16907"	3942704.02	401415.30
AOI01-04 WELL LID	35°37'23.56739"	106°05'19.16693"	3942704.16	401415.36
AOI01-04 CONCRETE	35°37'23.58238"	106°05'19.16135"	3942704.62	401415.51
AOI01-04 GROUND	35°37'23.58594"	106°05'19.15856"	3942704.72	401415.58
SFAASF-03 WELL CASING	35°37'31.94694"	106°05'04.48741"	3942958.24	401787.48
SFAASF-03 WELL LID	35°37'31.95166"	106°05'04.48810"	3942958.39	401787.46
SFAASF-03 CONCRETE	35°37'31.97093"	106°05'04.48750"	3942958.98	401787.48
SFAASF-03 GROUND	35°37'31.97534"	106°05'04.48787"	3942959.12	401787.47
SFAASF-04 WELL CASING	35°37'26.53557"	106°05'08.78940"	3942792.72	401677.42
SFAASF-04 WELL LID	35°37'26.53985"	106°05'08.78894"	3942792.85	401677.43
SFAASF-04 CONCRETE	35°37'26.55823"	106°05'08.79020"	3942793.42	401677.41
SFAASF-04 GROUND	35°37'26.56490"	106°05'08.78965"	3942793.62	401677.42

UNCLASSIFIED SURVEY - MONITOR WELL LOCATION SURVEY SANTA FE AIRPORT SANTA FE, NEW MEXICO

GENERAL NOTES

1. AN UNCLASSIFIED SURVEY FOR WELL LOCATIONS WAS PERFORMED ON JUNE 3, 2022. THIS IS NOT A BOUNDARY SURVEY OR RIGHT-OF-WAY SURVEY.

- 2. WELL LOCATIONS ARE NAD 83 GRID COORDINATES (NEW MEXICO CENTRAL ZONE).
- 3. SITE LOCATED WITHIN THE SANTA FE MUNICIPAL AIRPORT, SANTA FE COUNTY, NEW MEXICO.
- 4. THE PHOTOBASED IMAGE, DEPICTED ON THIS SURVEY, WAS IMPORTED FROM GOOGLE EARTH WEB SITE. THIS PHOTOBASE IMAGE IS SHOWN TO PROVIDE A GENERAL SITE ORIENTATION AND MAY NOT REFLECT THE CURRENT SITE CONDITIONS.
- 5. THE PURPOSE OF THIS SURVEY IS TO ESTABLISH NEW MEXICO STATE PLANE GRID COORDINATES AND ELEVATIONS FOR THE LOCATIONS OF THE NEWLY INSTALLED AND EXISTING GROUNDWATER MONITORING WELLS.

CONTROL SURVEY NOTE

A CONTROL SURVEY WAS CONDUCTED AT THE SITE ON JUNE 3, 2022. BEARINGS ARE STATE PLANE GRID (NM CENTRAL ZONE). CONTROL WAS PROJECTED ONTO THE SUBJECT SITE UTILIZING RTK OBSERVATIONS TO ESTABLISH HORIZONTAL AND VERTICAL POSITIONS BASED UPON NAD 83/NAVD 88.

THIS SURVEY HAS BEEN PREPARED BASED UPON NAVD 88 DATUM USING GEOID 18. PREVIOUSLY PUBLISHED ORTHOMETRIC ELEVATIONS MAY HAVE USED OLDER GEOIDS. SPECIAL CARE SHOULD BE EXERCISED WHEN COMPARING ELEVATIONS FROM THIS SURVEY TO CURRENT AND PREVIOUS SURVEYS, PLANS AND AS-BUILT DOCUMENTS.

THE POINTS OBSERVED HAVE BEEN QUALITY CONTROLLED FOR RELATIVE ACCURACY. AN NGS MONUMENT "SANTA FE WEST BASE" IN THE VICINITY OF THE PROJECT WAS OBSERVED IN ORDER TO PROVIDE REFERENCE TIES TO THE SITE.

PROJECT BENCHMARK: A STANDARD SURVEY DISK STAMPED "SANTA FE WEST BASE 1945", SET INTO THE TOP OF A CONCRETE MONUMENT THAT IS FLUSH WITH THE GROUND. IT IS LOCATED 377 FT SOUTHEAST OF THE CENTERLINE END OF RUNWAY 15, 180 FT NORTH OF A WINDSOCK. AS SHOWN ON THIS SHEET. SEE TABLE FOR COORDINATES

PROJECT BENCHMARK #1

JOSEPH M. SOLOMON, JR., NMPS 15075

A STANDARD SURVEY DISK STAMPED "SANTA FE WEST BASE 1945", SET INTO THE TOP OF A CONCRETE MONUMENT THAT IS FLUSH WITH THE GROUND. IT IS LOCATED 377 FT SOUTHEAST OF THE CENTERLINE END OF RUNWAY 15, 180 FT NORTH OF A WINDSOCK. AS SHOWN ON THIS SHEET. ELEVATION = 6318.00 FEET (NAVD 1988/GEOID18)

LEGEND

⊕ WELL LOCATION

I, JOSEPH M. SOLOMON, JR., NEW MEXICO PROFESSIONAL SURVEYOR NO. 15075, DO HEREBY CERTIFY; THAT THIS UNCLASSIFIED SURVEY AND THE ACTUAL SURVEY ON THE GROUND UPON WHICH IT IS BASED WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION; THAT THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO, AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND
BELIEF.
SSERN MEXICO 1000
June 13, 2022
CIOSEPH M SOLOMON IR NIMPS 15075

SURVEYORS CERTIFICATION

DATE

	NO.	DATE	BY	REVISIONS	JOB NO	
IRVEYED BY <u>M.V.Z.</u>						2022.033.1
RAWN BY					DATE	06-2022
PROVED BY J.M.S.					SHEET	OF 1
						• •

	NM SP Central							
	NORTH	NM SP Central EAST					UTM13N - NORTH	UTM13N - EAST
POINT NO.	(US Survey Feet)	(US Survey Feet)	ELEVATION (Feet)	DESCRIPTION	LATITUDE - NORTH	LATITUDE - WEST	(Meters)	(Meters)
1	1682309.82	1687757.09	6318.00	BRASS CAP "SANTA FE WEST BASE"	35°37'25.08866"	106°05'26.52728"	3942753.08	401230.73
10101	1682747.81	1688653.59	6328.84	AOI01-01 WELL CASING	35°37'29.40619"	106°05'15.65862"	3942883.07	401505.60
10102	1682748.27	1688653.55	6329.36	AOI01-01 WELL LID	35°37'29.41077"	106°05'15.65909"	3942883.21	401505.59
10103	1682749.74	1688653.37	6329.35	AOI01-01 CONCRETE	35°37'29.42526"	106°05'15.66116"	3942883.66	401505.54
10104	1682750.26	1688653.27	6328.95	AOI01-01 GROUND	35°37'29.43041"	106°05'15.66243"	3942883.82	401505.51
10201	1682499.59	1688365.64	6324.96	AOI01-02 WELL CASING	35°37'26.95581"	106°05'19.15169"	3942808.55	401416.90
10202	1682500.05	1688365.59	6325.43	AOI01-02 WELL LID	35°37'26.96031"	106°05'19.15237"	3942808.69	401416.88
10203	1682501.59	1688365.40	6325.41	AOI01-02 CONCRETE	35°37'26.97558"	106°05'19.15464"	3942809.16	401416.83
10204	1682501.93	1688365.31	6325.13	AOI01-02 GROUND	35°37'26.97899"	106°05'19.15572"	3942809.26	401416.80
10401	1682156.56	1688364.77	6323.20	AOI01-04 WELL CASING	35°37'23.56303"	106°05'19.16907"	3942704.02	401415.30
10402	1682157.00	1688364.95	6323.77	AOI01-04 WELL LID	35°37'23.56739"	106°05'19.16693"	3942704.16	401415.36
10403	1682158.52	1688365.41	6323.71	AOI01-04 CONCRETE	35°37'23.58238"	106°05'19.16135"	3942704.62	401415.51
10404	1682158.88	1688365.63	6323.35	AOI01-04 GROUND	35°37'23.58594"	106°05'19.15856"	3942704.72	401415.58
10301	1683006.23	1689575.33	6337.69	SFAASF-03 WELL CASING	35°37'31.94694"	106°05'04.48741"	3942958.24	401787.48
10302	1683006.71	1689575.27	6338.29	SFAASF-03 WELL LID	35°37'31.95166"	106°05'04.48810"	3942958.39	401787.46
10303	1683008.66	1689575.32	6338.21	SFAASF-03 CONCRETE	35°37'31.97093"	106°05'04.48750"	3942958.98	401787.48
10304	1683009.10	1689575.29	6337.86	SFAASF-03 GROUND	35°37'31.97534"	106°05'04.48787"	3942959.12	401787.47
110401	1682458.52	1689221.12	6332.85	SFAASF-04 WELL CASING	35°37'26.53557"	106°05'08.78940"	3942792.72	401677.42
110402	1682458.95	1689221.16	6333.36	SFAASF-04 WELL LID	35°37'26.53985"	106°05'08.78894"	3942792.85	401677.43
110403	1682460.81	1689221.05	6333.33	SFAASF-04 CONCRETE	35°37'26.55823"	106°05'08.79020"	3942793.42	401677.41
110404	1682461.48	1689221.10	6333.06	SFAASF-04 GROUND	35°37'26.56490"	106°05'08.78965"	3942793.62	401677.42

Note: Horizontal datum is NAD83. Vertical datum is NAVD 1988 using Geoid 18.

Coordinates for Soil Borings at Santa Fe Army Air Support Facility GPS Coordinates 19-20 May 2022

Sample Location	Northing_UTM _Zone13_meters*	Easting_UTM_Zone13_meters*	Latitutde_degrees*	Longitude_degrees*
AOI01-03	3,942,749.1	401,374.2	35.623614	-106.089117
AOI01-05	3,942,699.3	401,483.8	35.623177	-106.087902
AOI01-06**	3,942,712.0	401,573.1	35.623300	-106.086917
AOI01-06b	3,942,730.7	401,560.0	35.623467	-106.087064
AOI01-07	3,942,828.7	401,432.0	35.624337	-106.088489
AOI01-08	3,942,824.3	401,427.4	35.624297	-106.088539
AOI01-09	3,942,885.2	401,507.5	35.624855	-106.087662
SFAASF-01	3,942,997.8	401,575.3	35.625877	-106.086928
SFAASF-02	3,943,031.4	401,689.5	35.626191	-106.085671
SFAASF-03-PA	3,942,954.9	401,783.7	35.625510	-106.084621
SFAASF-05	3,942,705.4	401,615.4	35.623245	-106.086449

* Horizontal Datum: World Geodetic System 1984 (WGS84)

** Location collected 08 February 2022. Coordinate accuracy is greater than 1 meter.

4

l

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area for AOI01-01 and AOI01-09

		and the second second		
IDW Point ID	Northing*	Easting*	Latitude	Longitude
19	3942889.462	401500.324	35.624892159	-106.087742002
20	3942890.601	401505.038	35.624902902	-106.087690090
21	3942886.767	401510.597	35.624868892	-106.087628242
22	3942879.229	401509.941	35.624800874	-106.087634571
23	3942877.143	401506.728	35.624781747	-106.087669787

4

I

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area for AOI01-02 and AOI01-07

		100		
IDW Point ID	Northing*	Easting*	Latitude	Longitude
24	3942807.702	401418.546	35.624146952	-106.088634949
25	3942805.348	401412.947	35.624125173	-106.088696483
26	3942811.318	401412.62	35.624178961	-106.088700816
28	3942810.461	401417.286	35.624171693	-106.088649199
42	3942828.674	401431.989	35.624337354	-106.088489084

l

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area for AOI01-04

IDW Point ID	Northing*	Easting*	Latitude	Longitude
29	3942700.332	401421.615	35.623179329	-106.088587939
30	3942702.777	401421.191	35.623201325	-106.088592927
31	3942699.866	401416.803	35.623174648	-106.088641012
32	3942705.308	401416.408	35.623223663	-106.088646036
33	3942704.891	401418.098	35.623220075	-106.088627334
34	3942705.754	401415.46	35.623227597	-106.088656556
35	3942704.103	401415.277	35.623212692	-106.088658381
36	3942702.844	401414.162	35.623201234	-106.088670540
37	3942702.211	401415.199	35.623195624	-106.088659015
38	3942699.98	401415.641	35.623175560	-106.088653854
39	3942703.131	401425.152	35.623204914	-106.088549231
40	3942702.133	401425.129	35.623195917	-106.088549360
41	3942701.657	401422.376	35.623191347	-106.088579705

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area SFAASF-01 through SFAASF-05, AOI01-01 through AOI01-06, and AOI01-08

Date:....July 2022 Prepared By:....EA Prepared For:....USACE Projection:....WGS 84 UTM 13N

Ň

I

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area for SFAASF-03 and SFAASF-03-PA

IDW Point ID	Northing*	Easting*	Latitude	Longitude
9	3942947.851	401775.474	35.625445924	-106.084711088
10	3942947.207	401776.437	35.625440212	-106.084700380
11	3942951.966	401778.974	35.625483373	-106.084672951
12	3942952.566	401777.929	35.625488674	-106.084684561
13	3942957.794	401786.935	35.625536702	-106.084585758
14	3942958.675	401785.63	35.625544517	-106.084600271
15	3942957.406	401775.495	35.625532064	-106.084712022
16	3942954.013	401780.534	35.625501981	-106.084655972
17	3942951.898	401780.33	35.625482897	-106.084657968
18	3942950.581	401782.157	35.625471206	-106.084637632

Army National Guard Site Inspections Site Inspection Report Santa Fe AASF, New Mexico

Soil Cutting Land Application Area for AOI01-01 and AOI01-09

IDW Point ID	Northing*	Easting*	Latitude	Longitude
1	3942786.898	401671.705	35.623984629	-106.085837222
2	3942786.019	401673.064	35.623976847	-106.085822111
3	3942791.853	401676.983	35.625483373	-106.084672951
4	3942793.122	401675.499	35.624041114	-106.085796094
5	3942777.228	401666.049	35.623896893	-106.085898496
6	3942774.23	401663.81	35.623869643	-106.085922855
7	3942773.336	401664.779	35.623861679	-106.085912045
8	3942776.752	401666.935	35.623892692	-106.085888659

Appendix B4

Field Change Request Forms

FIELD CHANGE REQUEST FORM ARNG PFAS SITE INSPECTION PROGRAM

Contract: W912DR-19-D-005

Installation: Santa Fe Army Aviation Support Facility (AASF)

Project No. <u>634250383.0004.0023A</u>

Requested By: Gina Mullen, Task Manager

Field Change Request Number: 01

Description of Modification: Modification is related to a change in the mobilization plan and the plan to handle solid (soil) investigation derived waste (IDW). The Final Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) for Santa Fe AASF (EA 2021) indicates that non-hazardous waste generated during Site Inspection activities will be containerized in 55gallon drums. Based on recent discussions with ARNG and with the New Mexico Environment Department (NMED), a modification to the UFP-QAPP is being proposed. The change includes two mobilization phases to complete field work in an attempt to minimize IDW generation. Surface soil samples collected during the first mobilization will be analyzed for PFAS and TOC, pH and grain size if appropriate. Samples will be validated, and validated soil analytical results from sampling during this initial mobilization will determine how solid IDW from drilling during a second mobilization will be managed. The new sampling plan will be as follows:

<u>Phase 1 Mobilization</u>: EA will mobilize to the site on 7 February 2022 and perform utility clearance and collect surface soils samples (0-2 ft below ground surface [bgs]) in 13 locations using a hand auger. EA will collect 13 samples from 0-2 ft bgs along with the appropriate QC sampling. Any additional soils generated during this process will be containerized in individual storage bags (trash bags or zip lock baggies) which will be placed in a 5-gallon bucket with a lid and stored at the facility. Samples will be analyzed via QSM 5.3 per the UFP-QAPP, and validated results will be compared to New Mexico (NM) industrial standards (See Table 1). If the sample results are below the screening levels (SLs) in Table 1, then all the soil/boring cuttings from surface to the top of the capillary fringe would be land applied at the point of generation. If above NM SLs, then

the entirety of the soil/boring cuttings would be containerized and disposed of offsite. EA will conduct a conference call with ARNG, USACE and NMED to present Phase 1 Mobilization results prior to Phase 2 Mobilization, and to confirm IDW handling decisions. Decisions will be memorialized in meeting minutes generated by EA.

Table 1. Preliminary screening Levels for Select PFAS. Source: New Mexico Environment Department. 2021. Risk Assessment Guidance for Investigations and Remediation, Volume 1. November.

Constituent	Residential (mg/kg) Noncancer	Industrial (mg/kg) Noncancer	Construction Worker (mg/kg) Noncancer	Tap Water (µg/L)
PFBS	1.56E+04	2.60E+05	7.08E+.4	7.00E-02
PFHxS	1.56E+00	2.60E+01	7.08E+00	7.00E-02 ^a
PFNA	2.35E-01	3.89E+00	1.06E+00	7.00E-02
PFOA	1.56E+00	2.60E+01	7.08E+00	7.00E-02ª
PFOS	1.56E+00	2.60E+01	7.08E+00	7.00E-02*
is detected, PFHs 0.07 μg/L. Whe the sum of the co μg/L. For examp	cS should be evalu n PFHxS and other ncentrations of all ole, if PFOS, PFO/ er sample, their co ' µg/L.	ated against the h r longer-chain PF longer-chain PFA A, and PFHxS are	drinking water, and ealth advisory conce As are detected in d As should be compar- all detected in the d ild be summed, and t	entration of rinking water red to 0.07 rinking

<u>Phase 2 Mobilization</u>: EA will mobilize to the site a second time in early April 2022 and install remaining soil borings (those with a depth greater than 2 ft bgs) using a drill rig. IDW will be handled as documented in the meeting minutes from the Phase 1 Mobilization. Deep soil borings (to 200 ft bgs) will be installed using a sonic rig, as specified in the UFP-QAPP. Soil borings installed to 15 ft bgs, however, may be installed using sonic or direct push technology either during a separate sampling event or simultaneously. Both methods of drilling are approved, and the determination will be based on driller availability and cost.

Reason for Modification: Ms. Pamela Hess (Army National Guard [ARNG]) had ongoing communications with NMED regarding IDW disposal. As a result, Mr. John Rhoderick (NMED) agreed to the above modification, which may result in a cost savings for ARNG while remaining protective of the environment and human health.

Approval

Representing: <u>EA</u> By: <u>Mina Mullen</u>

Title: Task Manager

Date: 1/26/2022

Representing: EA

By: Michael O your

Title: Project Manager

Date: 1/26/2022

Representing: ARNG

By:

Title: _____ARNG PFAS Project Manager

Date: ______

Representing: USACE

Intuber By:

Title: USACE PM

Date: 2/04/22

FIELD CHANGE REQUEST FORM ARNG PFAS SITE INSPECTION PROGRAM

Contract:W912DR-19-D-005Installation:Santa Fe Army Aviation Support Facility (AASF)Project No.634250383.0004.0023ARequested By:Gina Mullen, Task ManagerField Change Request Number:02

Description of Modification: Soil boring AOI01-03 was identified as a monitoring well location in the UFP-QAPP but this location will be changed to a 15-foot soil boring. Soil boring

AOI01-01 was identified as a 15-foot soil boring in the UFP-QAPP but this location will continue past 15 feet to the water table and the location will become a monitoring well.

Additionally, soil boring AOI01-06 will be reinstalled. In February, the 0-2 ft surface soil sample was collected from the lowest point in the area rather than at the edge of the pavement, as depicted in the UFP-QAPP Figure 17-1. The boring will be installed in the planned location and the 0-2 ft surface soil will be re-sampled. IDW will be containerized until surface soil results can be used to determine the method of disposal.

Reason for Modification: Surface soil analytical results from the northern boundary of the facility indicates the possibility of groundwater contamination from off-site land application of biosolids. Conversion of location AOI1-01 from a 15-foot soil boring to a monitoring well can identify off-site groundwater contamination, thereby aiding in the delineation and characterization of groundwater contamination from the former fire truck bay.

Conversion of sample location AOI01-03 from a monitoring well to a 15-foot soil boring can preserve the budget of the project while achieving project objectives due to the close proximity of monitoring wells at AOI01-02 and AOI01-04. Ms. Pamela Hess (Army National Guard [ARNG]), Mr. Chris Fritzsche (New Mexico ARNG), and Mr. John Rhoderick (New Mexico Environment Department) concurred with the above modification. Soil boring AOI01-06 will be reinstalled in the original planned location so that it is in closer proximity to the former parking apron, which is a possible PFAS source.

Approval

Representing: EA By: Lina Mullen

Title: Task Manager

Date: 03/09/2022

Representing: EA

By: Michael O' Mill

Title: Project Manager

Date: 03/09/2022

Representing: <u>ARNG</u> HESS.PAMELA.SUE.11 Digitally signed by HESS.PAMELA.SUE.1146563313 Date: 2022.03.10 05:56:56 -07'00'

Title: Project Manager

Date: <u>3/10/2022</u>

Representing: USACE

By: LUKASKOJAMESJOHN.1247033 Digitally signed by LUKASKOJAMESJOHN.1247033161 Date: 2022.03.13 19.3249-0700'

Title: _____

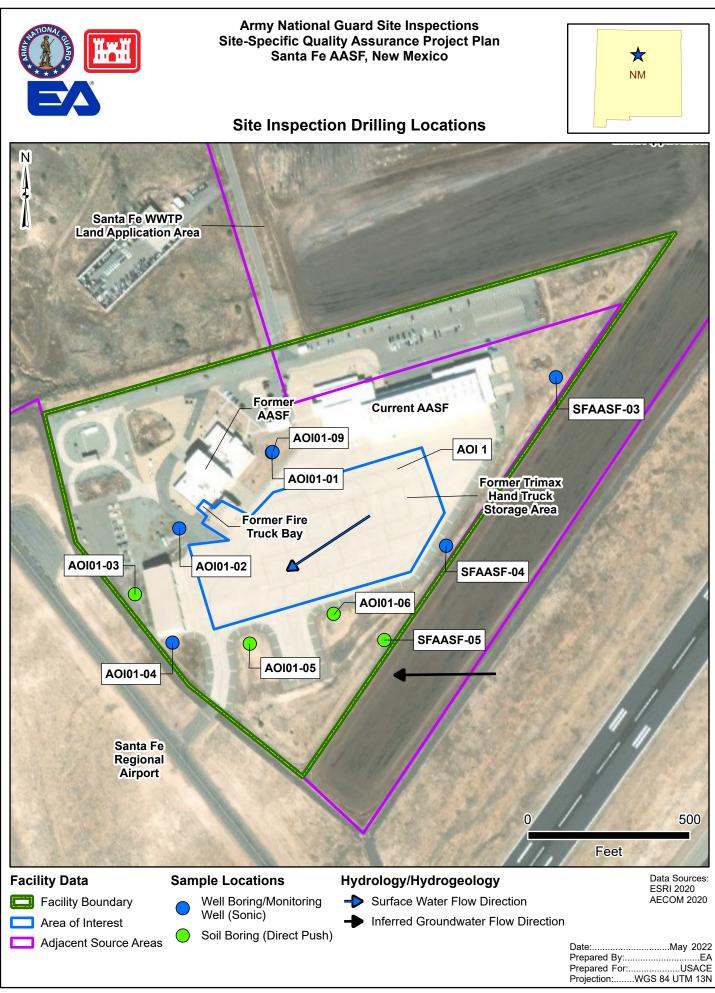
Date: _____

FIELD CHANGE REQUEST FORM ARNG PFAS SITE INSPECTION PROGRAM

Contract: W912DR-19-D-005

Installation: Santa Fe Army Aviation Support Facility (AASF)

Project No. <u>634250383.0004.0023A</u>


Requested By: Gina Mullen, Task Manager

Field Change Request Number: 03

Description of Modification: An additional soil boring/monitoring well (AOI01-09) will be installed 7 feet northeast of monitoring well AOI01-01, which is screened in the regional aquifer. The proposed monitoring well will be installed in the perched aquifer. Soil samples will be collected at 0-2 ft bgs, 13-15 ft bgs, and in the foot above the perched aquifer.

Reason for Modification: AOI01-09 is proposed to characterize groundwater upgradient of monitoring well AOI01-02, which is in close proximity to the former fire truck bay. An upgradient sample is required to determine if potential PFAS contamination at AOI01-02 is sourced from ARNG or offsite activities.

AOI01-01 is in a directionally appropriate location but is screened in the regional aquifer rather than the perched aquifer. The well was not completed in the perched aquifer due to low confidence that it is a viable water bearing unit. However, an attempt will be made to complete a well in the perched aquifer due to the importance of characterizing groundwater upgradient of AOI01-02.

Path: \\lovetongis\GISdata\Federa\\Nationwide\PFAS\MAES_634250383\PR0JECTS\SSQAPP\SanteFe\SanteFe.aprx

Approval

Representing: EA

By:

Mina

Mullen

Title:

Task Manager

Date:

5/2/2022

Representing: EA

By:

Title:

Project Manager

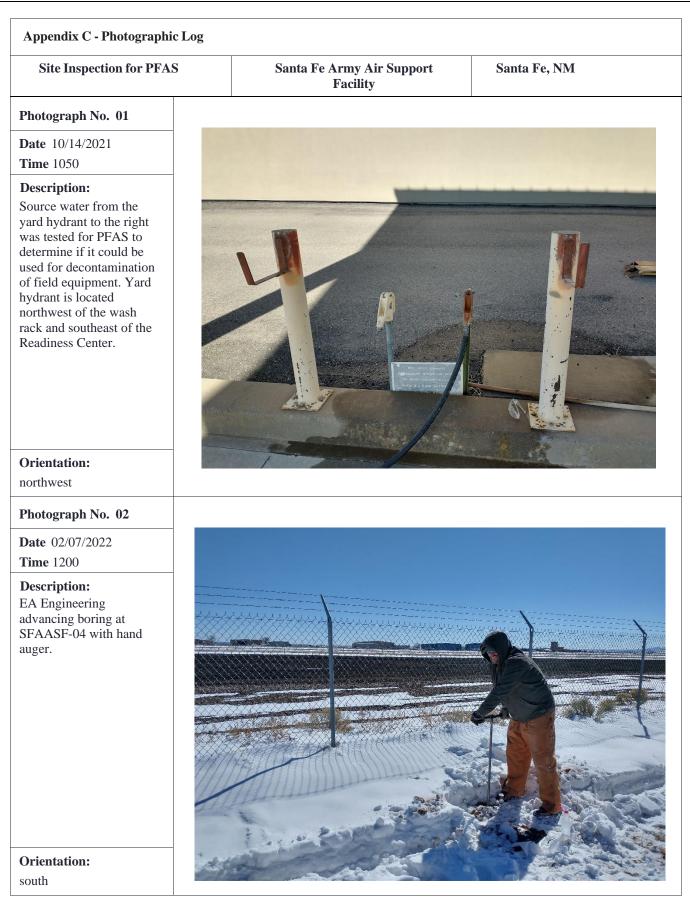
Date: 5/2/2022

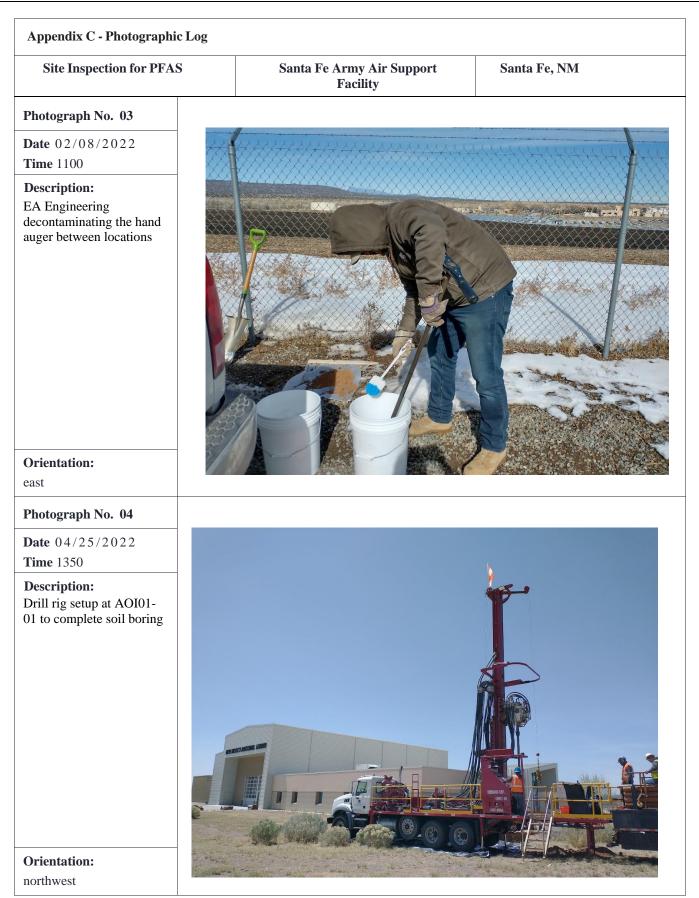
Representing: <u>ARNG</u> HESS.PAMELA.SUE. Digitally signed by HESS.PAMELA.SUE.1146563313 Date: 2022.05.04 04:41:19-06'00'

Title: Project Manager

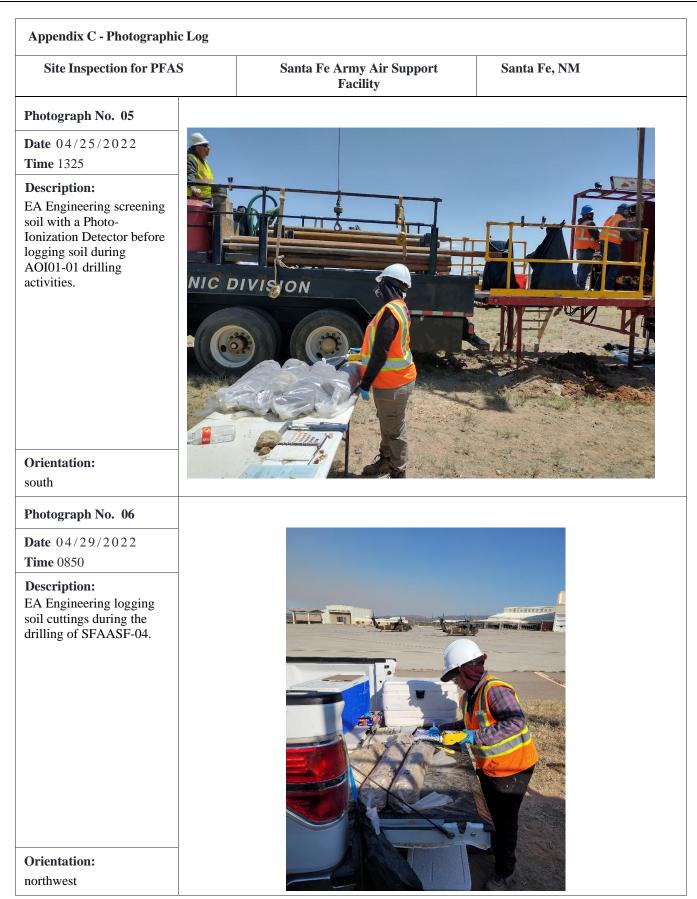
Date: <u>5/4/2022</u>

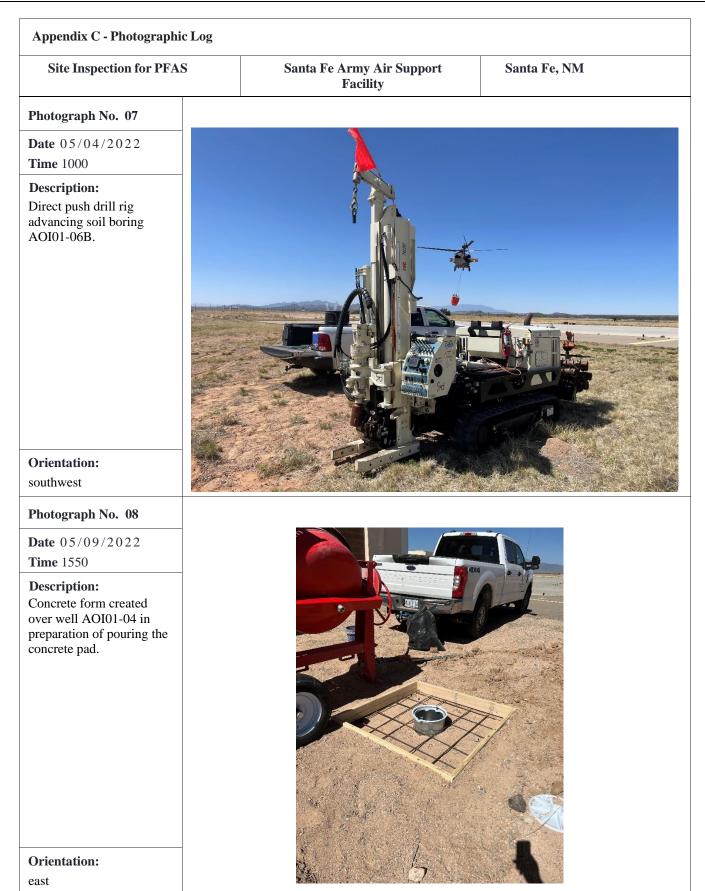
Representing: USACE

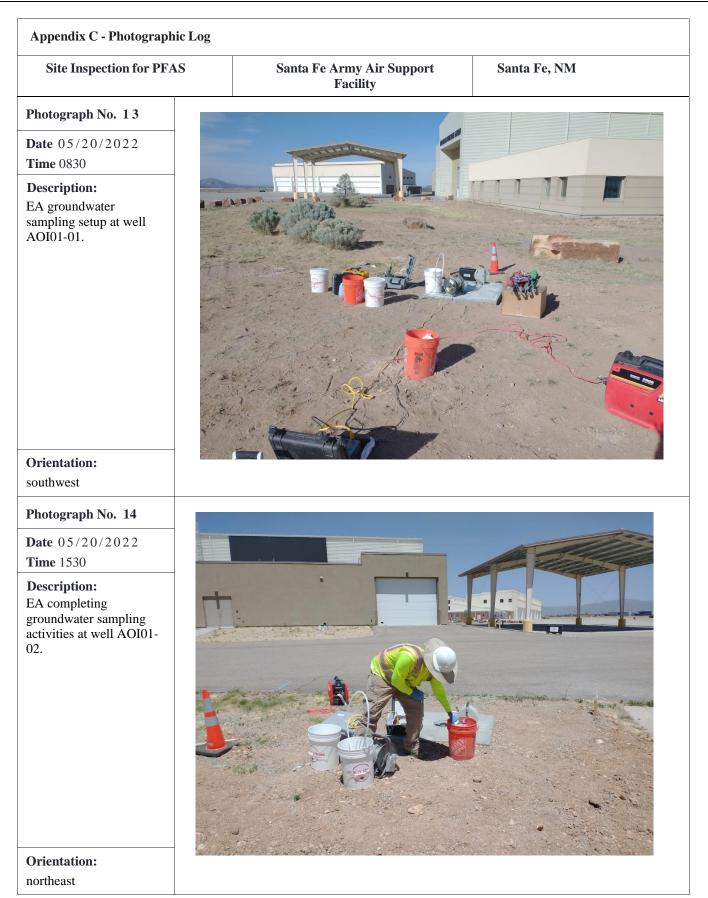

PECK.TIMOTHY.JOSEPH.12 Digitally signed by PECK.TIMOTHY.JOSEPH.1252325553 Date: 2022.05.04 15:12:23 -04'00'


Title: _____

Date:


Appendix C


Photographic Log


EA Engineering, Science, and Technology, Inc., PBC

Site Inspection for PFAS	Santa Fe Army Air Support Facility	Santa Fe, NM
Photograph No. 09		
Date 05/09/2022		The Alteria
Fime 1650		
Description:	A start and the second	
Completed pad for well AOI01-04		
Orientation: north Photograph No. 10		No President
Date 05/10/2022		
Fime 0830		
Description: Bailing well AOI01-01 during well development.		
Orientation:	C. P. J.	
north		

Appendix C - Photographic Log		
Site Inspection for PFAS	Santa Fe Army Air Support Facility	Santa Fe, NM
Photograph No. 11		
Date 05/10/2022 Time 1440		
Description: Developing well AOI01-02. Initially groundwater was turbid with sediment.		
Orientation: north		
Photograph No. 12		
Date 05/10/2022 Time 1530		711
Description: Developing well AOI01-02. As developing continues sediment is removed from the well resulting in clear groundwater.		
Orientation: north		

Appendix D

Technical Project Planning Meeting Minutes

Meeting Minutes Santa Fe Army Aviation Support Facility (AASF) – Site Inspection (SI) Technical Project Planning (TPP) – Meeting 1/Meeting 2 SI for Per- and Polyfluoroalkyl Substances Impacted Sites, Army National Guard (ARNG) Installations, Nationwide Contract Number (No.) W912DR-19-D-0005, Task Order No. W912DR20F0383 Friday, 1 October 2021 1230 to 1330 hrs

Participants					
Name	Affiliation*	Phone	E-Mail		
John Rhoderick	NMED	505-819-8284	John.rhoderick@state.nm.us		
Justin Ball	NMED	505-670-1428	Justin.ball@state.nm.us		
Paul Chamberlain	NMED		Paul.chamberlain@state.nm.us		
Byron Kesner	NMARNG	505-365-4406	Byron.t.kesner.nfg@army.mil		
Christopher Fritzsche	NMARNG	505-365-4404	Christopher.e.fritzsche.nfg@army.mil		
Aaron Roybal	NMARNG		Aaron.d.roybal.nfg@army.mil		
Pam Hess	ARNG G9	208-880-9734	Pamela.s.hess.mil@army.mil		
Jim Lukasko	USACE - Sacramento	916-557-5392	James.j.lukasko@usace.army.mil		
Mike O'Neill	EA	410-329-5142	moneill@eaest.com		
Regina Mullen	EA	505-715-4279	rmullen@eaest.com		
Caitlin Helms	EA	410-329-5174	chelms@eaest.com		
*ARNG G9 – Army National Guard; NMARNG – New Mexico Army National Guard; NMED – New Mexico					
Environment Department; USACE – United States Army Corps of Engineers; and EA – EA Engineering,					
Sciences, and Technology, Inc., PBC					

Ms. Regina Mullen (EA SI Task Manager/Site Lead) welcomed participants and began the meeting with an overview of the agenda and a roll call with introductions. She noted the purpose of the meeting is to discuss the SI sampling for per- and polyfluoroalkyl substance (PFAS) to determine presence/absence of releases at the Santa Fe AASF. The meeting was held virtually so there is no sign in sheet for attendees. The TPP briefing slides are included as **Attachment A** to these meeting minutes.

Ms. Mullen began the presentation with a safety reminder, noting that the SI will conform to requirements in United States Army Corps of Engineers (USACE) Engineering Manual (EM) 385-1-1. Site-specific safety procedures will be planned for and followed during SI field work, including establishing controlled work zones during field activities. Key points discussed during the presentation are provided below.

Programmatic Discussion:

- The TPP process is a USACE-established process with the main goal of engaging stakeholders in project planning and reporting. The ARNG has embraced a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) model for the SIs being completed nationwide that will incorporate state-specific guidance, as necessary. The TPP #1 meeting (which serves as an introduction to the ARNG program/SI process and Preliminary Assessment [PA] findings) and the TPP #2

Final

meeting (which focuses on a discussion of Data Quality Objectives (DQOs), sampling locations, etc.) have been combined in an effort to streamline the process.

- This TPP #1/TPP #2 meeting provides an overview of the results of the PA, and an opportunity for stakeholders to discuss the SI Work Plan (Unified Federal Policy-Quality Assurance Project plan [UFP-QAPP]), sampling locations, and rationale for the SI project. Regulatory stakeholders are also afforded the opportunity to formally review and comment on the SI Work Plan.
- Another TPP meeting will occur (TPP #3) to present the SI Report findings to all stakeholders; identified stakeholders will be afforded the opportunity to review and comment on the SI Report.
- The ARNG PFAS program is centrally contracted through USACE and managed by ARNG. Every ARNG facility nationwide responded to a questionnaire on potential PFAS releases. Facilities were prioritized by the likelihood of release and proximity to drinking water sources. The facility-wide PA for Santa Fe AASF was completed in August 2020.
- There are nearly 200 facilities on the ARNG's nationwide PA list.

Santa Fe AASF PA Findings:

- Ms. Mullen provided a brief overview of the PA findings. During the PA, two potential source areas were identified and combined into one Area of Interest (AOI 1) for the Santa Fe AASF. This location is described in the briefing slides, and more detail was provided during the SI overview. The potential PFAS releases were attributed to potential aqueous film forming foam (AFFF) release and storage.
- Potential adjacent sources of PFAS that are not attributable to ARNG activities, were also discussed during the overview.

Santa Fe AASF SI Overview:

- During the SI planning phase, DQOs were established to collect the appropriate data to feed into the conceptual site model (CSM).
- The primary goal of the SI is to determine the presence/absence of a release of PFOS/PFOA/PFBS above DoD screening levels from potential source areas.
- Ms. Mullen reviewed the one AOI:
 - AOI 1: Former Firetruck Bay and Tri-MaxTM Hand Truck Storage Area
- Geologic and hydrogeological data will inform the CSM, specifically with respect to the direction and rate of groundwater flow.
- The ARNG PFAS program includes consideration of enhanced DQOs that assess PFAS at the point of exposure and at the Santa Fe AASF boundary.

Santa Fe AASF SI Proposed Activities:

- Proposed sampling methods, locations and rationale were discussed. Sampling is planned as follows:
 - Hand auger samples will be collected from 0-2 ft below ground surface (bgs) at select locations

- Continuous soil cores to target depths (several at 15 bgs and some up to 200 ft bgs) will be collected during the field work in and around the potential source areas. Continuous logging of borings will support understanding lithologic controls of preferential pathways.
- Three soil samples will be collected from each boring. Soil samples will include one surface soil sample (0-2 ft) and two subsurface soil samples. Depths of the subsurface soil samples will be dependent on the total depth of the boring:
 - 15 ft borings: Subsurface samples will be collected at 6-8 ft and bottom of the boring (15 ft).
 - Up to 200 ft borings: Subsurface samples will be collected at 6-8 ft and in the capillary fringe above the water table.
- Permanent monitoring wells will be installed in the boreholes up to a depth of 200 ft bgs (depending on groundwater elevation) and groundwater will be purged/sampled using low flow techniques.
- The group discussed Investigation Derived Waste (IDW) and it was determined that NMED would require additional time to determine a preferred IDW disposal procedure.
- Document Review and Distribution was discussed as follows:
 - EA asked about the current distribution process which include delivering documents electronically.
 - o NMED concurred that SI documents can be sent electronically.

Questions and Open Discussion:

- Ms. Pam Hess (ARNG G9, Project Manager) informed the group that she performed a site walk with NMARNG and NMED personnel immediately before the TPP # 1 and 2 meeting, but they had not yet visited the Former Firetruck Bay. Ms. Hess indicated, based on photographs, there was no evidence that a drain existed within the Former Firetruck Bay, but that she would visit and verify later in the day.
- Based on input from NMED, Ms. Hess suggested an additional two hand auger sample locations in the grassy area adjacent to the paved ramp associated with the Former Firetruck Bay. In addition, Ms. Hess suggested monitoring well location AOI01-02 be relocated into the grass to the southwest of the Former Firetruck Bay, towards a low-lying area presumably downgradient relative to groundwater and surface water flow leaving the truck bay. NMED, USACE, and EA concurred on these suggestions.
- Ms. Hess discussed the potential to sample an existing facility well but indicated that due to the unknown depth of the well, it was unclear if sampling the well would be beneficial to address the SI DQOs. Ms. Hess indicated that Mr. Byron Kesner (NMARNG, Project Lead) or Mr. Christopher Fritzsche (NMARNG, Environmental Department Supervisor) should try to gather information on the well screening/aquifer to see if corresponds to what is being sampled in the proposed sampling plan. Ms. Mullen inquired about the status of the facility well. Mr. Fritzsche explained that the well in question was a former production well that provided drinking water to the former AASF prior to the

renovations. Mr. Fritzsche indicated the well has been capped and NMARNG are in the process of acquiring funding to permanently abandon the well. Ms. Hess indicated she would provide a photograph of the well to Ms. Mullen. Mr. Paul Chamberlain (NMED, Geoscientist for the Ground Water Quality Bureau) informed the group that the existing facility well is screened from 376-469 ft bgs. Ms. Hess confirmed that the well is screened too deep to be sampled as part of the SI. NMED concurred.

- Ms. Mullen indicated that Santa Fe municipal water had previously been sampled for PFAS and asked the group if EA should collect a sample from the facility tap to determine if it could be used for decontamination water. Ms. Hess indicated that the previously collected sample was analyzed by EPA 537 rather than Quality Systems Manual Version 5.3, and as a result a new sample would need to be collected.
- Ms. Mullen indicated that a private utility locator would be contracted to support utility clearance at the facility. Mr. Mike O'Neill (EA, Project Manager) requested facility utility maps from the NMARNG to support the utility clearance.
- Ms. Hess asked Mr. Justin Ball (NMED, Acting Bureau Chief of the Groundwater Quality Bureau) if NMED allows for land application if the PFAS concentrations detected fall below applicable screening levels. Mr. Ball indicated that would be a possibility. Ms. Hess explained the PFAS liquid IDW disposal treatment utilizing granulated activated carbon filters to remove contamination prior to the release of the IDW back into the environment. Mr. Ball requested the available Standard Operating Procedure for the treatment of PFAS liquid IDW.
- Ms. Mullen asked NMED if they would be able to provide comments on the SI Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) Addendum by 6 November 2021. Mr. John Rhoderick (NMED, Acting Director for the Water Protection Division) indicated NMED comments would be provided by that date.
- Mr. O'Neill asked the group if any additional permits would be required prior to conducting the field work at the Santa Fe AASF. Ms. Hess indicated she would complete the Federal Aviation Administration notification for the airport and that the NMARNG would verify that no additional permits are required for working onsite. NMARNG will contact the Construction Facilities Management to confirm any permit requirements.
- Ms. Mullen asked NMED when EA could expect to receive comments on the Rio Rancho SI UFP-QAPP Addendum. Mr. Rhoderick indicated that NMED had provided comments on the Rio Rancho PA and SI UFP-QAPP Addendum; he and Ms. Hess had discussed modifications to the QAPP regarding the discovery of a Tri-MaxTM extinguisher found to be stored on site. NMED is currently waiting to receive and review edits to the QAPP text. Ms. Hess indicated she would follow-up with the remaining action items owed to NMED. No date was provided for UFP-QAPP comments.
- Mr. Ball requested clarification on the nature of the interviews conducted as part of the PA, and the informational gaps existing between the facility opening in 1979 and the use of the Tri-MaxTM fire extinguishers in the 2000s. Ms. Hess explained the interview process, and that it is typical for ARNG installations to not have a full documented history of AFFF use. As such, the ARNG PFAS Program is operated using a conservative approach. Ms. Hess indicated that the PAs have been finalized and will not be revised;

however, text may be added to the UFP-QAPP Addendum if deemed necessary. Mr. Ball indicated it would be beneficial to add text regarding the typical historical operations conducted by the ARNG with regards to AFFF and Tri-MaxTM fire extinguishers. Ms. Hess explained that site specific history would be beneficial to add to the UFP-QAPP Addendum, but generalized training and use conducted by the ARNG across all states and territories may not be as helpful. Ms. Hess indicated she would work with NMARNG to ensure that available information on the history of the Tri-Max and AFFF use at Santa Fe AASF is included.

- Mr. Rhoderick asked about the SI being conducted in Roswell and Ms. Hess indicated that NMED should receive a Draft Final SI UFP-QAPP Addendum for Roswell within the next couple of months.

Visual Reconnaissance:

- Proposed sample locations were visually inspected during a site walk conducted by Ms. Hess, NMED, and the NMARNG on 1 October 2021.

Action Items:

- EA will issue the Final Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) Addendum upon issuance of NMED comments on the Draft Final UFP-QAPP Addendum and concurrence with responses to NMED comments.
- Obtain facility utility maps from NMARNG.
- Provide the Standard Operating Procedure for PFAS liquid IDW disposal to NMED.

This page intentionally left blank

Attachment A

This page intentionally left blank

Santa Fe Army Aviation Support Facility (AASF), **New Mexico Site Inspection New Mexico Army National Guard (NMARNG)**

Technical Project Planning (TPP) Meeting 1 & 2

Preliminary Assessments and Site Inspections (PA/SI) for Perfluorooctanesulfonic Acid (PFOS) and **Perfluorooctanoic Acid (PFOA) Impacted Sites**

September 2021

Prepared for:

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC

September 2021

AGENDA

- Introductions
- Safety Moment
- TPP Meeting Goals
- Army National Guard (ARNG) PA/SI Overview
- Santa Fe AASF PA Results
- Santa Fe AASF SI Overview
- Stakeholder Involvement
- Questions and Open Discussion

INTRODUCTIONS

- **ARNG G9**
 - Pamela Hess, SI Project Manager
 - David Connolly, Nationwide Program Manager
- United States Army Corps of **Engineers (USACE)**
 - Tim Peck, Nationwide Program Manager/SI Project Manager
 - Jim Lukasko, SI Project Manager
- **New Mexico Army National** Guard (NMARNG)
 - Byron Kesner, Environmental **Specialist**
 - Christopher Fritzsche, **Environmental Specialist**
 - Cecelia Abeyta, Environmental **Specialist**

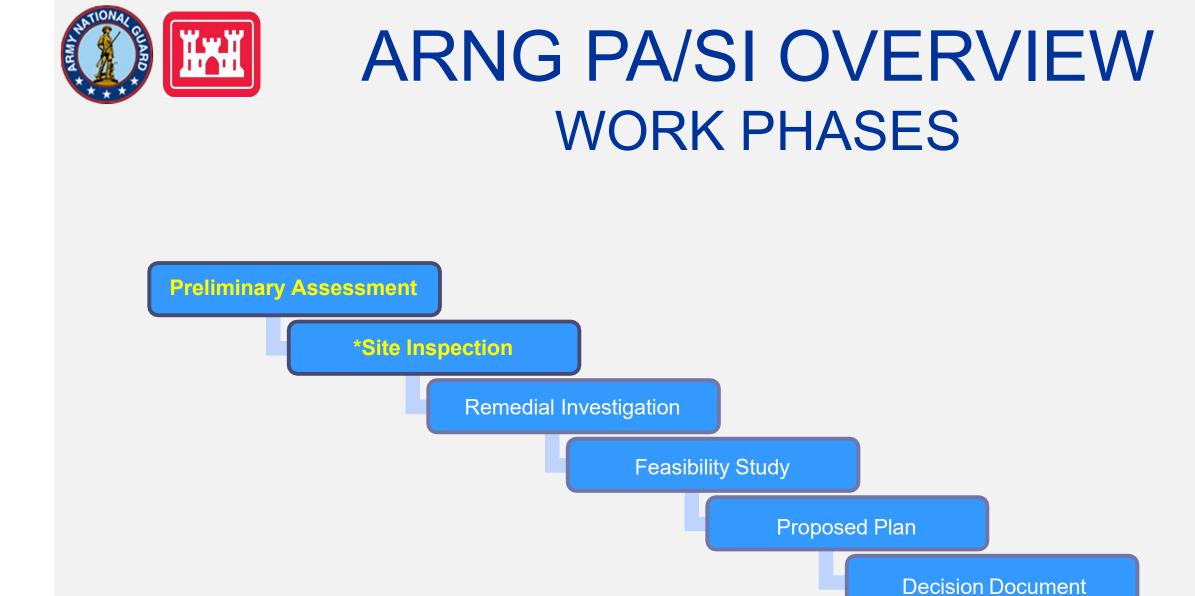
- **New Mexico Environment** Department (NMED)
 - John Rhoderick, Acting Director for the Water Protection Division
- EA Engineering
 - Regina Mullen, SI Task Manager
 - Mike O'Neill, SI Project Manager

SAFETY MOMENT

Site Safety Procedures

- SI will follow USACE Engineering Manual (EM) 385-1-1 requirements:
 - Accident Prevention Plan addresses all component plans for EM 385-1-1, including Construction Support during drilling operations
 - Site Specific Safety and Health Plan addresses project participants, training, and hazard identification and mitigation
- Health and safety documents prepared during SI planning phase
- Pre-field kickoff meeting and daily safety briefings

TPP MEETING GOALS


TPP1:

Provide an overview of the ARNG PA/SI Program

- Regulatory framework
- Discuss PA Findings
- TPP2: Discuss proposed SI approach
 - Define objectives for SI data collection
 - Encourage stakeholder involvement
 - Review project schedule
 - Capture action items
- TPP3: Discuss SI findings
- **Participants**:
 - TPP1 and 2: ARNG, USACE, NMED
 - TPP3: ARNG, USACE, NMED, other local stakeholders

Notes: *Current stage of activity

- Follows the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Process
- An interim removal action can be conducted or a No Further Action determination can be made at any phase

Remedial Design

Remedial Action

ARNG PA/SI OVERVIEW

- Activities centrally contracted through USACE and managed by ARNG G9
 - USACE Baltimore manages the contract, with technical project support from other Districts (Louisville, Omaha, Alaska, Sacramento, Jacksonville, and Seattle Districts)
 - Project support: chemistry, geology, risk screening
- PA ranking (~200 facilities) state ARNG input
 - Likelihood of release
 - Complete pathway to drinking water receptor
 - Priority assigned to facilities with highest likelihood of release near drinking water intake
- PA facility-wide; SI areas of interest (AOIs)

ARNG PA/SI OVERVIEW

- ARNG / NMARNG
 - Identify potential per- and polyfluoroalkyl substances (PFAS) release locations
 - Provide facility access and points of contact
 - Gather and provide appropriate documents
 - Identify/schedule personnel to interview
 - Supply final PA to the regulatory agencies
- SI Regulatory Involvement
 - CERCLA SI conducted in conjunction with the appropriate regulatory agencies

SANTA FE AASF ARNG PA RESULTS

- Potential PFAS release areas: 2 areas identified during the PA grouped into 1 AOI
- AOI 1: Former Firetruck Bay and Tri-MaxTM Hand Truck **Storage Area**
 - The former AASF building, now the current NMARNG Readiness Center, formerly housed a single firetruck. Additionally, Tri-Max[™] 70/30 hand trucks were stored in various places around the flight line and parking apron prior to the renovations that took place in 2012.

SANTA FE AASF ARNG **SUMMARY OF FINDINGS AND AOIs**

SANTA FE AASF ARNG **PA RESULTS**

AOI 1: FORMER FIRETRUCK BAY AND TRI-MAXTM HAND TRUCK STORAGE AREA

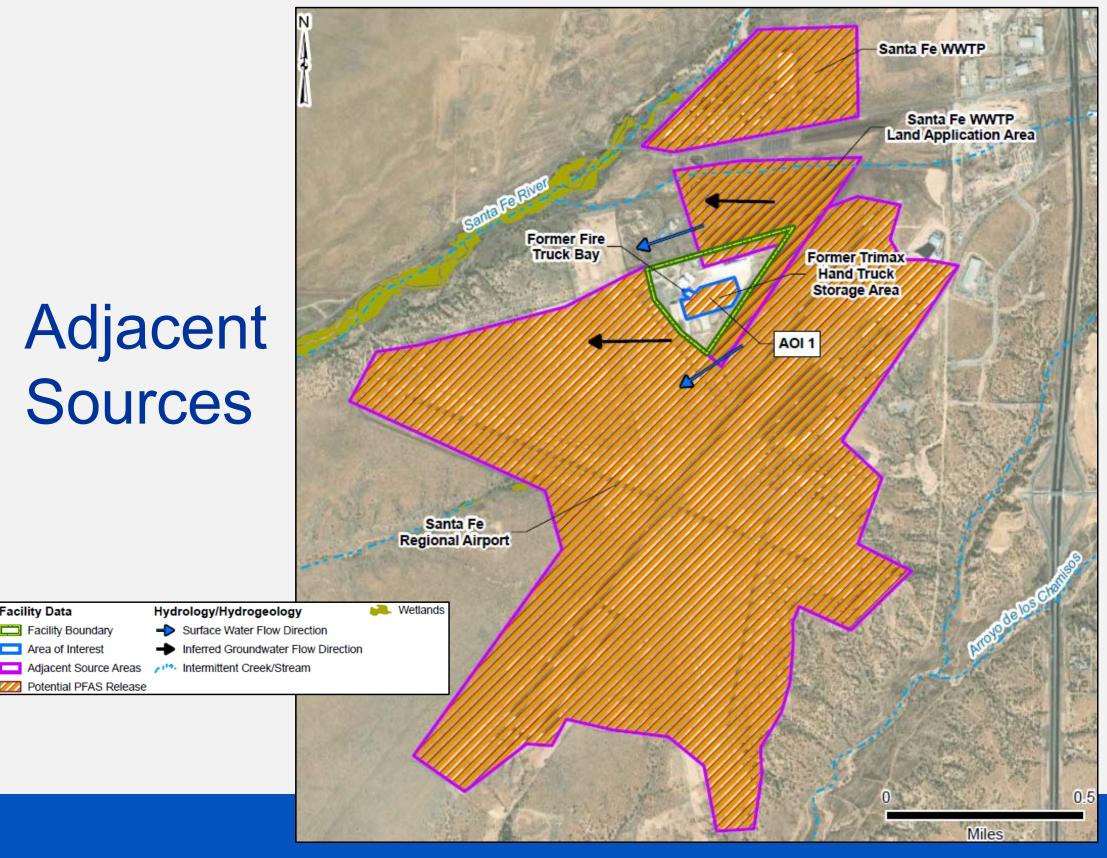
• Former AASF Building (current Readiness Center):

- Formerly housed a single firetruck.
- -The building was renovated in 2012.
- -The firetruck was sold in 2005 to the Santa Fe Fire Department and it is unknown how long the truck was stored in the bay.
- -Personnel interviews confirmed the truck stored AFFF foam, but there are no records or recollection of use or spills.
- -It is possible that the truck leaked AFFF or had its AFFF tank flushed out during maintenance.
- -It is unknown if the former firetruck bay contained floor drains.

SANTA FE AASF ARNG **PA RESULTS** AOI 1: FORMER FIRETRUCK BAY AND TRI-MAX[™] HAND TRUCK STORAGE AREA

- Former Tri-Max[™] Hand Truck Storage Area:
- The flight line and paved parking apron at the facility currently stretch across the majority of the facility. The area was expanded and repaved in 2012 during renovations.
- Prior to the renovation, hand trucks were stored in various places and were regularly serviced.
- Hand trucks were used for 4 to 5 years in the mid-2000s and eventually were turned in and replaced with non-PFAS extinguishers.
- There are no records of training or nozzle testing.

The installation prior to renovations in 2009 (top) and the current footprint (bottom)


SANTA FE AASF PA FINDINGS - ADJACENT SOURCES

- Santa Fe Regional Airport (SAF)
 - Interviews with NMARNG facility staff and a historical records search provided little information regarding use of AFFF at SAF; however, the records search detailed two emergency incidents that happened on or near the runway. It is unknown if AFFF was used as part of the emergency response to either incident. The crash sites are potentially located upgradient of the AOI as well as upstream of surface water flow, and they may impact PFAS concentrations in the groundwater underlying the facility.
- Santa Fe wastewater treatment plant (WWTP) and Associated Land Application Areas
 - The Santa Fe WWTP is located north of the Santa Fe AASF. Areas to the north and east of the Santa Fe AASF are currently used for land application of biosolids. Based on historical aerial photographs, application of biosolids may have extended to the north end of the current AASF building prior to the 2012 renovations of the facility. The biosolids are located upgradient of the AOI as well as upstream of surface water flow, and they may impact PFAS concentrations in the groundwater underlying the facility.

SANTA FE AASF **PA FINDINGS**

Facility Data

Facility Boundary

Area of Interest

SANTA FE AASF **SI OVERVIEW DATA QUALITY OBJECTIVES (DQOs)**

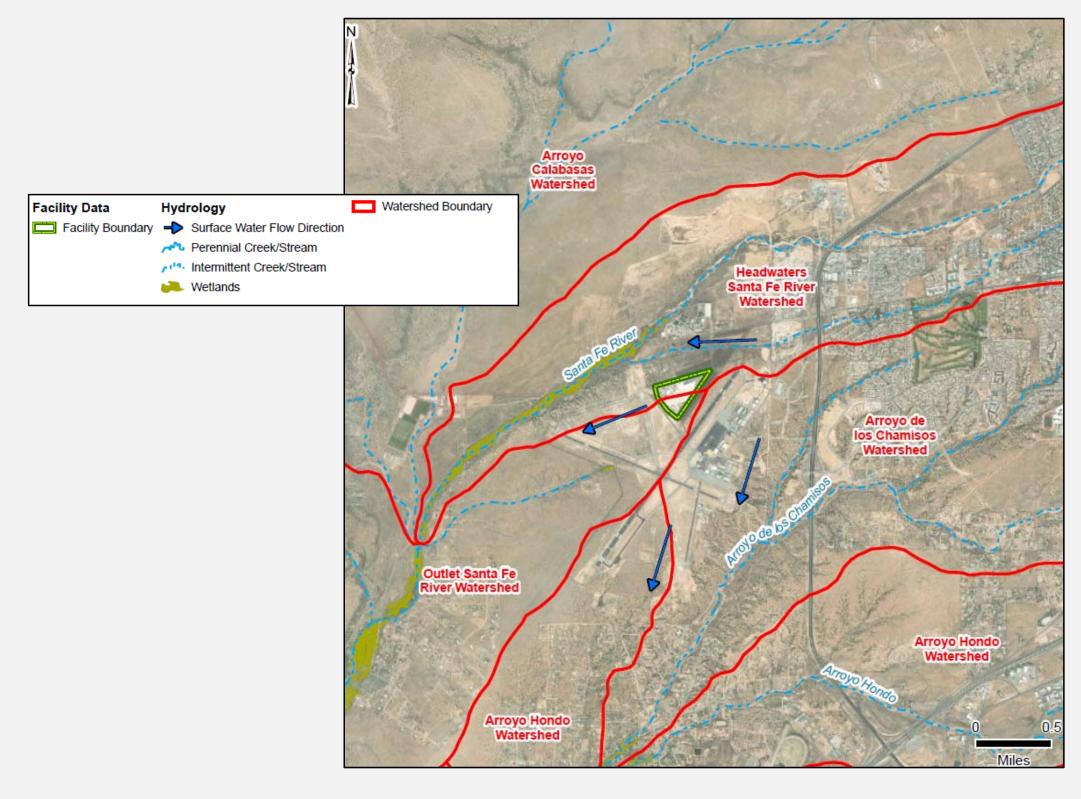
- Primary SI DQOs
 - Confirm the presence/absence of a release
 - Gather data for conceptual site model (CSM): Understanding of Source-Pathway-Receptor relationships required for establishing sampling strategy
- Extended SI DQOs
 - Determine the presence/absence at facility boundary
 - Check for alternate sources, up- or downgradient
 - Measure PFAS at/near receptor, if warranted

SANTA FE AASF SI OVERVIEW SCREENING LEVELS

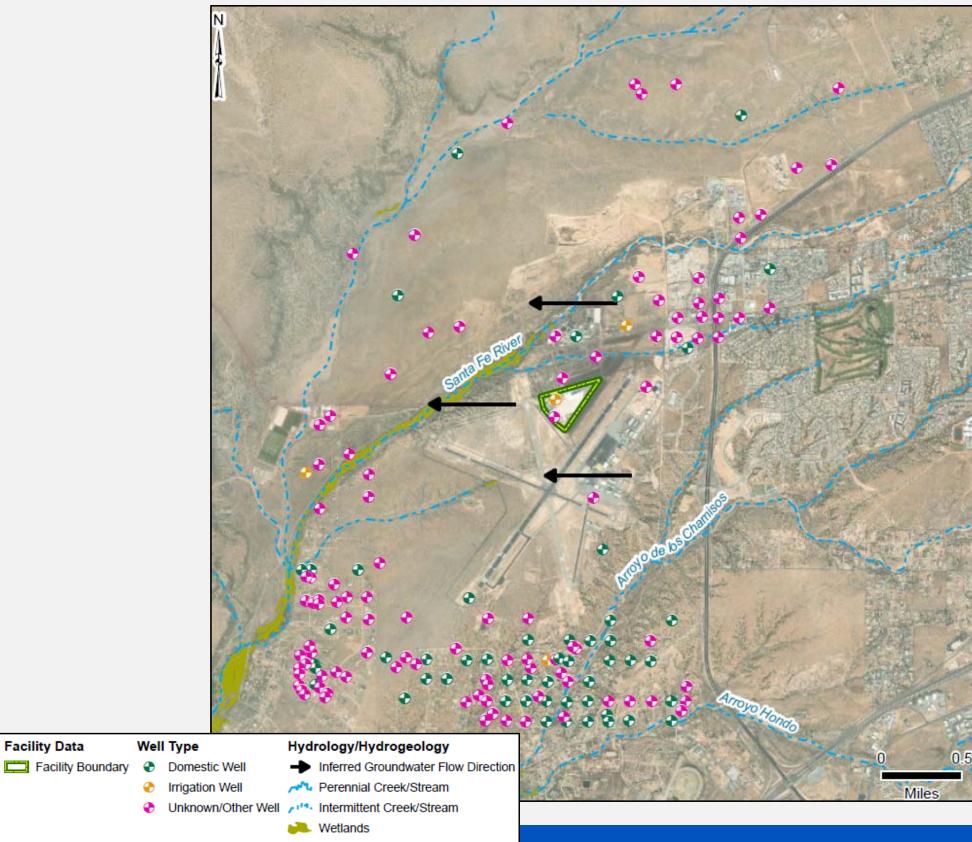
- Results compared to Office of the Secretary of Defense (OSD) Screening Levels (SLs) for soil and groundwater for PFOA, PFOS, and PFBS.
- Memorandum from the OSD dated 15 September 2021
- SLs for groundwater based on direct ingestion
- SLs for soil based on incidental ingestion; 0-2 ft compared to Residential SL, 2-15 ft compared to Industrial SL, > 15 ft is not compared to either SL
- AOIs exceeding OSD SLs will proceed to the next phase under CERCLA (i.e., Remedial Investigation)

Analyte	Residential (Soil) (µg/kg) ¹	Industrial / Commercial Composite Worker (Soil) (µg/kg) ¹	Tap Water (Groundwater) (ng/L) ¹		
PFOA	130	1,600	40		
PFOS	130	1,600	40		
PFBS	1,900	25,000	600		

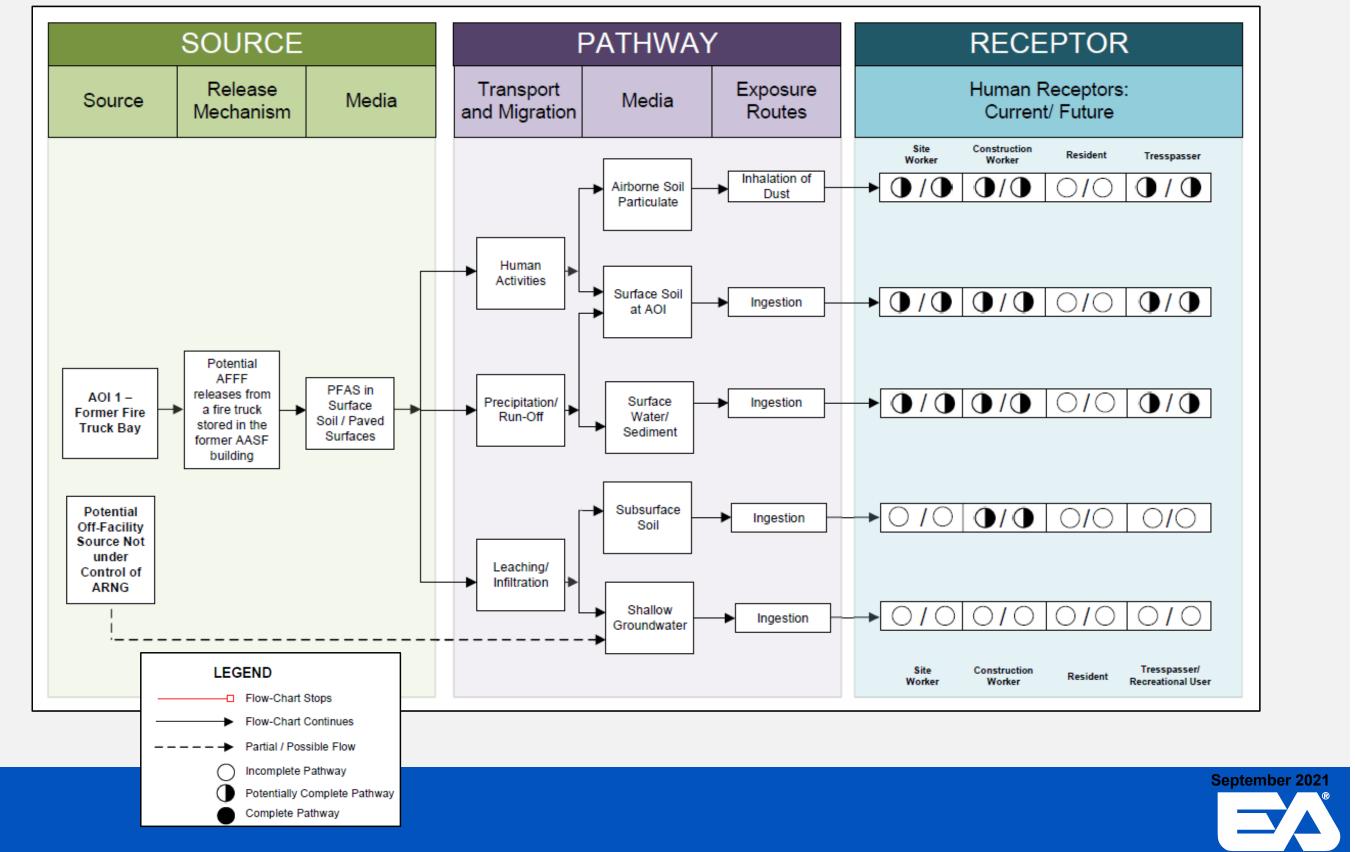
Notes:


- Deputy Assistant Secretary of Defense. 2021. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. Hazard Quotient (HQ)=0.1. 15 September 2021.
- $\mu g/kg = Microgram(s)$ per kilogram.
- ng/L = Microgram(s) per liter.

SANTA FE AASF SI OVERVIEW **CSM – SURFACE WATER FEATURES**

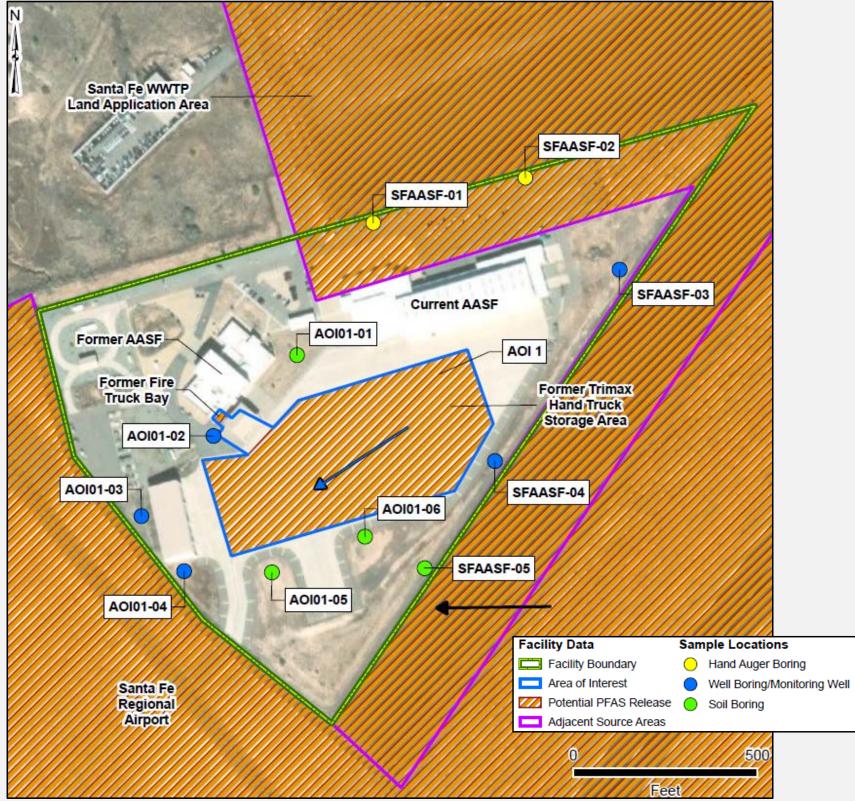


SANTA FE AASF SI OVERVIEW **CSM – GROUNDWATER FEATURES**



SANTA FE AASF SI OVERVIEW CSM

SANTA FE AASF SI OVERVIEW PLANNING AND SAMPLING


- Finalize Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) Addendum
 - Draft Final submitted on 7 September 2021
 - Final to be submitted following the TPP 1&2 meeting after addressing NMED comments
- Continuous soil cores to target depth
 - Well Locations: Target depth up to 200 ft bgs. Soil samples collected at surface (0-2 ft bgs with hand auger), mid point (not to exceed 15 ft bgs), and 1 ft above water table.
 - Soil Borings: Target depth of 15 ft bgs. Soil samples collected at surface (0-2 ft bgs with hand auger), mid point (6-8 ft bgs), and at 15 ft bgs for soil borings drilled to 15 ft bgs.
- Collect hand auger samples (0-2 ft bgs) at select locations along the northern facility boundary
- Collect a groundwater sample from each well (up to 200-ft borings)
- Wells will be surveyed and depth to the water table will be recorded

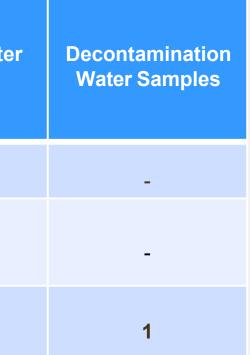
SANTA FE AASF SI OVERVIEW **PROPOSED SAMPLING LOCATIONS**

Hydrology/Hydrogeology

→ Surface Water Flow Direction

Inferred Groundwater Flow Direction

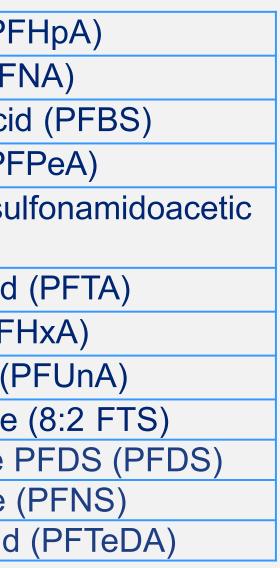
Date: Prepa Prer



SANTA FE AASF **SI OVERVIEW**

Location	# of Soil Borings (to 15 ft bgs)	# of Hand Auger Borings (to 2 ft bgs)	# of Monitoring Wells (to 200 ft bgs)	Soil Samples	Target Interval for GW samples	Groundwate Samples
AOI 1	3	0	3	18	Mid-screen	3
Facility Boundary	1	2	2	11	Mid-screen	2
Total	4	2	5	29		5

- Sample locations will be refined in the field •
 - Confirm placement is accessible and will meet DQOs prior to the utility mark-out and locate



SANTA FE AASF SI OVERVIEW ANALYTICAL PARAMETERS

Perfluorooctanesulfonic acid (PFOS)	Perfluoroheptanoic acid (Pl
Perfluorohexanesulfonic acid (PFHxS)	Perfluorononanoic acid (PF
Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic aci
Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (Pl
N-ethyl perfluorooctanesulfonamidoacetic	N-methyl perfluorooctanesu
acid (NEtFOSAA)	acid (NMeFOSAA)
Perfluorodecanoic acid (PFDA)	Perfluorotetradecanoic acid
Perfluorododecanoic acid (PFDoA)	Perfluorohexanoic acid (PF
Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (
6:2 Fluorotelomer sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonate
4:2 Fluorotelomer sulfonate (4:2 FTS)	Perfluorodecane sulfonate
Perfluoroheptane sulfonate (PFHpS)	Perfluorononane sulfonate
Perfluoropentane sulfonate (PFPS)	Perfluorotetradecanoic acid

- Analysis completed by an Environmental Laboratory Accreditation Program/National • **Environmental Laboratory Accreditation Program-certified laboratory**
- Requirement for state-certified laboratory?
- Data will undergo stage 2B (soil and non-drinking water) and stage 4 (drinking water) validation as defined in Department of Defense (DoD) Federal Data Validation Guidelines

STAKEHOLDER INVOLVEMENT

- Use TPPs and open communication to encourage stakeholder involvement
- Key involvement topics
 - Proposed approaches
 - Document review time for NMED and other stakeholders
- Schedule:
 - Address remaining comments and issue Final UFP-QAPP Addendum: November 2021
 - Field Investigation: December 2021
 - Reporting including regulator review: March (Draft) / May (Draft Final) / June 2022 (Final)

QUESTIONS AND OPEN DISCUSSION

- Coordination
 - Data transfer
 - Access
 - Decontamination Water
 - Utility mark-out and utility clearance procedures
 - Report distribution (paper, electronic, portable document format)
 - IDW Handling
 - Site Walk
 - Stakeholder relations
- Schedule

ACRONYMS

- AASF Army Aviation Support Facility
- AFFF Aqueous Film Forming Foam
- AOI Area of Interest
- ARNG Army National Guard
- **CERCLA Comprehensive Environmental Response**, Compensation, and Liability Act
- COVID-19 Coronavirus Disease 2019
- CSM Conceptual Site Model
- DQO Data Quality Objective
- ELAP Environmental Laboratory • **Accreditation Program**
- **EM** Engineering Manual
- NELAP National Environmental Laboratory Accreditation Program
- NMARNG New Mexico Army **National Guard**

- NMED New Mexico Environment Department
- PA Preliminary Assessment
- PFAS Per- and Polyfluorinated Alkyl Substances
- **PFOS** Perfluorooctanesulfonic Acid
- PFOA Perfluorooctanoic Acid
- SAF Santa Fe Regional Airport
- SI Site Inspection
- SSHP Site Safety and Health Plan
- **TPP** Technical Project Planning
- **UFP-QAPP** Uniform Federal **Policy- Quality Assurance Project** Plan
- USACE United States Army Corps of Engineers
- WWTP Wastewater Treatment Plant

Appendix E

Boring Logs and Well Construction Diagrams

This page intentionally left blank

Coordinates: Surface Elevation Casing Elevation: GW level at time	ogy, Inc., 60IL/ROC 35.625876 NA NA	NA			Job. No. 634250383 Drilling Metho Hand Auger Sampling Met Hand Auger (Gral Water Level	hod: ^{b)}	Location: Santa Fe, NM Army Aviation Support Facility Boring No. SFAASF-01 Sheet 1 of 1 Drilling Start Finish		
GW level at time of GW level at time of	•	NA NA						2/8/2022	2/8/2022
Sample Type/ID	Feet Driven /Feet Recovered	PID ppm	Depth in Feet	USCS Log	Surface Cor	nditions:	Snow, gravel		
Composite / SFAASF- 01-SB-0-2	2/2		1 2 3 4 5 6 7 8 9 10 11 11 12 13	GP ML	little sand	d fine to coarse wn (10 YR 5/3), loc	corative), gray (10 Yi		
			14 15 16 17 18 19						
			20 21		TD' = 2'				
Logged by: Drilling Contractor:	:	D. Werth EA	1			•	Date: Driller:	02/08/2022 D. Werth	

EA ®	e,	Job. No. 634250383	34250383 ARNG Army Aviation Support Facilit						
and Technology, Inc., PBC						Drilling Method:		Boring No.	
	LOG OF S	OIL/ROC	K BORI	NG		Hand Auger Sampling Met	hod:	SFAASF-02	
Coordinates:	_00010	35.626190				Hand Auger (Gra		Sheet 1 of	1
Surface Elevation	:	NA						Drilling	
Casing Elevation:		NA				Water Level		Start	Finish
GW level at time		NA NA				Time	-	0 10 10 00 0	0 10 10 0 0 0
GW level at time	of sampling:					Date	-	2/8/2022	2/8/2022
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Snow, gravel		
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
			1	GP			10 YR 5/1), loose, d	ry to moist, little s	and fine
Composite / SAAASF- 02-SB-0-2	2/2		1	ML	to coarse 0.5'-2': silt_bro	e wn (10 YR 5/3), lo	ose drv		
			2		010 21 011, 010				
			3						
			4						
			4						
			5						
			6						
			7						
			/						
			8						
			9						
			10						
			10						
			11						
			12						
			13						
			14						
			15						
	L		15						
			16						
			17						
			10						
			18						
			19						
			20						
			21		TD' = 2'				
			21		10 = 2				
Logged by:		D. Wertl	า				Date:	02/08/2022	
Drilling Contractor:		EA				_	Driller:	D. Werth	

						Job. No.	Client:	Location:	
	EA Engineerin	ig, Science) ,			634250383	ARNG	SF AASF	
	and Technol	logy, Inc., I	PBC			Drilling Meth	od:	Boring No.	
						Sonic		SFAASF-03-PA	i.
	LOG OF S	SOIL/ROCH	K BORIN	G		Sampling Me	ethod:		
Coordinates:		35.6255104	14	-106.0	845898	Soil Sample (G	rab)	Sheet 1 of	f 10
Surface Elevation	1:	NA						Drilli	ing
Casing Elevation:		NA				Water Level		Start	Finish
GW level at time		NA				Time	-	5/1/2022	5/9/2022
GW level at time	-	NA				Date		0727	1130
Sample	Feet Driven	PID	Depth	USC	S Surface C	onditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
	N/A				Slough				
Composite / SFAASF	IN/A		1						
03-SB-0-2									
			2	SM	2'-5': Silty sa	and, very pale brov	vn (10 YR 7/3), ve	ry fine gravel, coars	e, dry
			L						
		1.6	3						
			4	_					
		4.8	5	SM			n (10 YR 7/3), trac	ce clay, medium der	nse, minor
			_	_		, round, dry	/		
			6				n (7.5 YR 6/6), loo	ose, dry to slightly m	ioist, very
			7	_	fine gra	ained, minor clay			
		10.6		_					
		10.0	8	_					
			Ŭ	ML	8 5'-13': Silt	minor clay, very fi	ne arained mediu	m dense drv	
			9		0.0 10 . 0.1.,	minor oldy, vory m	io granica, modia	in denoe, ary	
		6.6	10						
			11						
			12						
		6.4		_					
			13	SW		-		y fine grained to coa	-
					10% g	ravel (subangular t	o subround), 0.5-3	3.0 inch diameter, lo	ose, dry
Composite / SFAASF 03-SB-13-15			14	_					
03-36-13-15				_					
		4.1	15						
			16	_	101 10 EL MA			antina arainad ta a	*
			10	_		-		ery fine grained to condition of the diates	
			17	_	loose,		angular to subrou	nu), 0.5-5.0 men dia	meter,
		1.3			10030,	ury			
			18	_					
				SM	18.5'-21': Sil	tv sand with minor	gravel, verv pale l	brown (10 YR 7/2), o	drv. loose.
			19			3/4-1 inch, minor o	- · · ·	, 	<i>,,</i> ,
		1.0	F				<u>v</u>		
		1.2	20						
			ſ						
			21						
Logged by:		T. McMill	an				Date:	05/01/2022	
Drilling Contractor	:	Environm	ental Wo	orks			Driller:	Justin Maple	S

								-		
							Job. No.	Client:	Location:	
	EA Engineerin	-					634250383	ARNG	SF AASF	
	and Technol	ogy, Inc.,	PBC				Drilling Metho	od:	Boring No.	
							Sonic		SFAASF-03-PA	
	LOG OF S	OIL/ROC	K BORIN	NG			Sampling Me	ethod:		
Coordinates:		35.	62551044	-10	06.084	5898	Soil Sample (Gr		Sheet 2 of	10
Surface Elevation	ı.	NA						,	Drilli	
							Water Laval			
Casing Elevation:		NA					Water Level		Start	Finish
GW level at time	•	NA					Time	-	5/1/2022	5/9/2022
GW level at time	of sampling:	NA					Date		0727	1130
		1								
Sample	Feet Driven	PID	Depth			Surface Co	nditions:			
Type/ID	/Feet	ppm	in	L	og					
	Recovered		Feet							
	N/A									
	IN/A		21	5	SM	21'-23.5': Silty	sand with minor	clay, very pale bro	wn (10 YR 7/4), me	dium
						dense, d	dry, very fine grain	ned		
			22							
		2.0								
			23	(GM	23'-26.5': Silty	gravel, very pale	brown (10 YR 7/2), loose, dry,	
							subround 1/2 inch		,, , ,,	
			24			giaroite				
		2.2	25							
			25							
			26							
			20		SM					
				Ì	0101				n (10 YR 7/2), loose	e, very fine
			27			grained	with gravel 5% 1/2	2 inch-1 inch, dry		
		2.3								
			28							
							-	e clay, very pale br	own (10 YR 7/4), lo	ose, dry,
			29			very fine	grained			
Φ										
Ō		5.3	30							
Sonic Core										
nic			31							
80										
.,			32							
		4.0								
			33							
			[33.5'-36': Silty	sand, very pale b	orown (10 YR 7/4),	loose, dry, very fine	e grained,
			34			trace gra	avel - 1/2 inch dia	meter, subround		
		1.2	35							
			36		ML	36'-38.5': Silt v	with gravel, verv n	ale brown (10 YR	7/3), loose, dry, ver	ry fine
							5% gravel - 0.5 ir		,, u.j, voi	
			37			g	- , - g			
		4.7	0.							
			38							
			50		GM	29 5' 46' Silty	aravel yery pale	brown (10 VP 7/2) looso 15 20% ar	$2 \times 1/2$
			39	┥`				SIGMILIUTE //3), loose, 15-20% gra	UVCI- 1/2
			39			inch to 3	3 inch subround			
		1.1	40							
			40							
			41							
Logged by:		T. McMi	llan				_	Date:	05/01/2022	
								_		
Drilling Contractor		Environr	mental W	orks			_	Driller:	Justin Maple	S

E A®	EA Engineerin	-				Job. No. 634250383	Client: ARNG	Location: SF AASF	
	and Technol	ogy, Inc.	, PBC			Drilling Met	hod:	Boring No. SFAASF-03-PA	
	LOG OF S			G		Sampling M	lethod:		`
Coordinates:	200010		.62551044	-106.08	45898	Soil Sample (C		Sheet 3 of	f 10
Surface Elevation	n:	NA				· · ·	,	Drill	
Casing Elevation		NA				Water Leve	1	Start	Finish
GW level at time		NA				Time	-	5/1/2022	5/9/2022
GW level at time	-	NA				Date		0727	1130
Sample	Feet Driven	PID	Depth	11606	Surface Co	nditione			
Type/ID	/Feet	ppm	in	Log	Sunace CO	nullions.			
Typente	Recovered	ppin	Feet	LOG					
	Recovered		1661						
			41	GM					
		0.6	42						
		0.0							
			43	_					
				_					
		1.8	44						
			45						
	Little-to-no	NM	40						
	recovery		46	ML	46'-48 5' [,] Clav	vev silt reddish l	orown (7 5 YR 6/6	6), dense, dry, very fir	e grained
						ne grained sand		,, aonoo, ary, tory m	io grainoù,
			47			J			
		6.2							
			48						
				GM	48.5'-52.5': Si	lty gravel, very p	ale brown (10 YR	2 7/3), 15% gravel (up	to 2.5 inch
			49		diamete	r), very fine grai	ned, loose, dry		
ē		4.0							
Cor		1.8	50						
ic 0			51						
Sonic Core									
S			52						
		0.8		ML	52.5'-54': Clay	vey silt, reddish	/ellow (7.5 YR 6/8	3), very fine grained, o	dry, medium
			53		dense				
		0.1	54	SW	54'-55': Well g	raded sand, rec	ldish yellow (7.5 \	(R 6/8) very fine to co	oarse
				CM		loose, dry			
			55	GM			brown (10 YR 7/3	3), loose, dry,	
			56		gravel s	ubround, up to 2	2.5 inch diameter		
		1.4							
			57						
			1 -	-1					
		3.8	58	SW	58'-61': Well g	raded sand, rec	ldish brown (7.5 Y	(R 6/6), fine to coarse	e grained,
		3.8			5% grav	el subround, up	to 3 inch diamete	er	
			59						
			▎▕Ĺ	_					
	L	1.9	60	_					
		——	61						
			10						
Logged by:		T. McM	illan			_	Date:	05/01/2022	
Drilling Contracto	r:	Environ	mental Wo	rks			Driller:	Justin Maple	s
	••			1.0		-	Dimer.		

							-	-		
							Job. No.	Client:	Location:	
	EA Engineerin	g, Scienc	е,				634250383	ARNG	SF AASF	
	and Technol	ogy, Inc.,	PBC				Drilling Metho	od:	Boring No.	
							Sonic		SFAASF-03-PA	
	LOG OF S			NG			Sampling Met	hod:		
Coordinates:	200 0. 0		62551044		06.084	15898	Soil Sample (Gra		Sheet 4 of	10
Surface Elevation			02001011		00.00				Drilli	
		NA								
Casing Elevation:		NA					Water Level		Start	Finish
GW level at time	-	NA					Time	-	5/1/2022	5/9/2022
GW level at time	of sampling:	NA					Date		0727	1130
Sample	Feet Driven	PID	Depth	U	ISCS	Surface Co	nditions:			
Type/ID	/Feet	ppm	in		Log					
	Recovered		Feet							
	N/A									
	IN/A		61		GW	61'-66': Well g	raded gravel, redd	lish brown (7.5 YR 7	7/6), fine to coars	e grained
						sand, loo	ose, dry, subround	l gravel up to 2 inch	diameter	
			62							
		2.2								
			63							
			64							
		1.3	65							
			66		SW	66'-67': Well a	raded sand. strong	g brown (7.5 YR 5/6). loose. moist. fi	ne to
							rained, trace grave		,, , ,	
			67		GW			rong brown (7.5 YR	5/6), loose, fine t	o coarse
		3.4				grained,		- J - (-	,	
			68			j,	2			
					SW	68 5'-76' [.] Well	graded sand stro	ng brown (7.5 YR 5	/6) fine to coarse	arained
			69				-	, minor gravel (3-59		-
							d), loose, moist	,		,
ere		1.2	70			Subroun	a), 10000, 11010t			
Sonic Core			10							
<u>.</u>			71							
uo										
S			72							
		0.2	12							
		0.2	73							
		-	15							
			74							
		-	/ 4							
		0.3	75							
		0.0	73							
			76		SW	70' 00': Wall a				40.000000
			70		011			ravel, strong brown	· · · ·	
			77			-	· · · · ·	subround gravel 3-5		ameter,
		3.3				loose, m	oist			
			70							
			78							
			70	\neg						
		2.9	79	\neg						
			80							
			81							
Logged by:		T. McMi	llan				_	Date:	05/01/2022	
Drilling Contractor	:	Environr	mental W	orks			_	Driller:	Justin Maple	S

						Job. No.	Client:	Location:	
	EA Engineerin	-				634250383	ARNG	SF AASF	
	and Technol	logy, Inc.,	PBC			Drilling Meth	od:	Boring No.	
						Sonic		SFAASF-03-PA	
	LOG OF S	SOIL/ROC	CK BORING	3		Sampling Me	ethod:		
Coordinates:		35.	62551044	-106.08	345898	Soil Sample (G	rab)	Sheet 5 of	
Surface Elevation	ו:	NA						Drilli	ng
Casing Elevation:	:	NA				Water Level		Start	Finish
GW level at time	of drilling:	NA				Time	-	5/1/2022	5/9/2022
GW level at time	of sampling:	NA				Date		0727	1130
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:			
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
	N/A								
	IN/A	3.9	81						
		3.9							
			82						
Discrete / SFAASF-									
03-SB-183		3.8	83	GW	83'-84': Well g	raded gravel, ve	ry pale brown (1	0 YR 7/3), minor silt, f	ine grained
		0.0			to coars	e grained sand, l	oose, dry, subro	und gravel up to 2.5"	diameter
			84	SW	84'-85': Well g	raded sand with	gravel, strong bi	rown (7.5 YR 5/6), fine	e to coarse
					grained,	gravel up to 1.5'	' diameter, loose	, moist	
			85	GM	85'-89': Silty g	ravel, very pale b	orown (10 YR 7/3	3), very fine grained, g	ravel 3/4" to
		2.2			4", loose	e, dry			
			86						
			87						
		0.2	88						
			89	GW	89'-94': Sandy	gravel, well-grad	ded, strong brow	n (7.5 YR 5/6), fine to	medium
					grained	sand, subround (gravel 0.5"-2" inc	creasing with depth, lo	ose,
			90		moist				
		0.5							
			91						
		_	92						
		0.5							
		3.5	93	_					
			0.4						
			94	GW	0414001-0-1				ta an ailtean
			95				-	own (7.5 YR 5/6), fine	
	No recovery		95	_		sand, subround (gravel 0.5"-2" inc	creasing with depth, lo	ose,
	No recovery		96		moist				
			90	_					
			97						
		-	57						
		0.9	98	_					
				_					
			99	-					
		1		-					
			100	-					
		3.1		-					
		Í	101	1					
		-							
Logged by:		T. McMi	illan			_	Date:	05/01/2022	
Drilling Contractor	:	Environ	mental Wo	·ks			Driller:	Justin Maple	S

							Job. No.	Client:	Location:	
	EA Engineerin	-					634250383	ARNG	SF AASF	
	and Technol	ogy, Inc.,	PBC				Drilling Methe	od:	Boring No.	
							Sonic		SFAASF-03-PA	
	LOG OF S		-	-			Sampling Me		· · ·	
Coordinates:		35.	62551044	-106	6.084	5898	Soil Sample (Gr	ab)	Sheet 6 of	
Surface Elevation	:	NA							Drilli	ng
Casing Elevation:		NA					Water Level		Start	Finish
GW level at time	of drilling:	NA					Time	-	5/1/2022	5/9/2022
GW level at time	of sampling:	NA					Date		0727	1130
Sample	Feet Driven	PID	Depth	US	SCS	Surface Co	nditions:			
Type/ID	/Feet	ppm	in	L	og					
	Recovered		Feet							
	N1/A									
	N/A		101							
			102	G	w	102'-104': San	dy gravel, very pa	ale brown (10 YR 3	7/3), fine to coarse s	sand, at
									erwise subround, rev	
		1.3	103			weather	ed gravel up to 2"	diameter, friable		
			104							
		4.5								
		1.5	105	s	SC	105'-108.5': Cl	ayey sand, browr	n (7.5 YR 4/2), fine	grained, clay is slig	htly plastic,
		4.0				moist		· · ·		
		4.0	106							
			107							
		25.7								
			108							
				N	ΛL	108.5'-116': Cl	ayey silt, light bro	own (7.5 YR 6/4), v	very fine grained, cla	ay present,
			109					n, slightly plastic, m		
		8.8	110							
			111							
			112							
		4.5								
			113							
			114							
		0.7	115							
			116	CL	/SC	116'-118': San	dy clay to clayey	sand, brown (7.5 `	YR 4/4), fine grained	d sand,
						slightly p	lastic, minor grav	vel (2%), wet to ve	ry moist	
		23.2	117							
		20.2								
			118	N	ЛL	118'-120': Clay	ey silt, light yello	wish brown (10 YF	R 6/4), dry,	
						medium	dense, moist			
		5.9	119							
					.					
			120	N	ΛL	120'-122': Clay	ey silt, yellow (2,	5 YR 7/6), dry, me	dium dense,	
						moist				
			121							
		T	-					Deter	05/04/0000	
Logged by:		T. McMi	lidli				-	Date:	05/01/2022	
Drilling Contractor	:	Environr	nental W	orks				Driller:	Justin Maple	6

							Job. No.	Client:	Location:	
	EA Engineerin	-					634250383	ARNG	SF AASF	
	and Technol	logy, Inc.,	PBC				Drilling Meth	od:	Boring No.	
							Sonic		SFAASF-03-PA	
	LOG OF S						Sampling Me		01	
Coordinates:			62551044	-106	6.084	5898	Soil Sample (G	ab)	Sheet 7 of	
Surface Elevation		NA						-	Drilli	
Casing Elevation:		NA					Water Level	_	Start	Finish
GW level at time	-	NA					Time	-	5/1/2022	5/9/2022
GW level at time	of sampling:	NA					Date		0727	1130
Sample	Feet Driven	PID	Depth	119	202	Surface Co	nditions:			
Type/ID	/Feet	ppm	in		og		nutions.			
1,90,12	Recovered	ppm	Feet		og					
			1000							
	N/A		121							
		6.1								
			122							
				N	/L	122'-124': Cla	yey silt, reddish y	ellow (7.5 YR 6/	6), medium dense, dr	у
		5.8	123							
		5.0								
			124							
				G	ΒM	124'-128': Silty	y gravel, very pale	e yellow (10 YR 3	7/4), gravel up to 2", s	subround,
		_	125			loose, d	ry			
		1.2	L							
		_	126							
			407							
		-	127							
		1.6	128		۸L	100/ 10/// Cla	uou oilt roddiob u			
		1.0	120				yey silt, reddish y es with depth, me			
			129			Increase	s with depth, me	dium dense, dry	to slightly moist	
			120							
			130							
		5.2								
			131							
			132							
		7.5	133							
			134	C	CL	134'-137': Silty	y clay, brown (7.5	YR 4/3), plastic	to slightly plastic, mo	ist
			135							
		4.1	100							
			136							
			137	N	۸L	137'-130'- 010	vev silt light brow	In (75 VP 6/4)	nedium dense, slight	ly moiet
	l	1	137	—		to dry	yoy ant, nynt brow	/// (7.3 TK 0/4), I	neurum dense, siight	iy molat
		3.0	138			to dry				
			100							
			139	s	w	139'-145.5': W	/ell graded sand	with gravel, redd	ish yellow (7.5 YR 6/6	6), fine to
							-	-	ravel subround up to	-
		10	140						·	
		1.3	1 F							
			141							
Logged by:		T. McMi	llan					Date:	05/01/2022	
Drilling Contractor	:	Environ	mental Wo	orks			_	Driller:	Justin Maple	s

Coordinates: Surface Elevation: GW level at time GW level at time	of drilling:	ogy, Inc.,	PBC		0845898		Job. No. 634250383 Drilling Meth Sonic Sampling Met Soil Sample (Gr Water Level Time Date	thod:	Location: SF AASF Boring No. SFAASF-03-PA Sheet 8 of Drilli Start 5/1/2022 0727	10
Sample Type/ID	Feet Driven /Feet	PID ppm	Depth in	USC Log		ace Co	nditions:			
	Recovered		Feet							
	N/A		141							
			142							
		19.4	143							
			144							
		1.0	145	SF	145 5	146 5'	Poorly graded sa	nd with minor old	w pipkish grow (7.5.)	/P 7/2)
			146		140.0				ay, pinkish gray (7.5	R 7/2)
		0.4	147		1 10.0		layey silt, reddish edium dense	yellow (7.5 YR 6	/6), siightiy	
			148	ML			yey silt, reddish y	ellow (7.5 YR 6/6	i), slightly	
		75.2	149			moist, m	edium dense			
		75.2	150	SN	100 1			-	3), loose, dry, some r	nedium
			151			sand an	d gravel (1" diam	eter), grades to s	SVV	
		2.1	152	SW			.		YR 6/6), fine to coar	se grained,
			153		153'-1	58': Wel		ddish yellow (7.5	YR 6/6), fine to coar	se grained,
			154			oose, di	ry, 5% gravel up t	o 1", subangular	to subround	
		3.0	155							
			156							
		3.4	157	_						
			158		158'-1	61': We	ll graded sand, re	ddish yellow (7.5	YR 6/6), fine to coa	se grained,
		1.5	159			oose, di	ry, 5% gravel up t	o 1", subangular	to subround	
		1.5	160							
			161							
Logged by:		T. McMi	llan					Date:	05/01/2022	
Drilling Contractor	:	Environr	mental We	orks				Driller:	Justin Maple	s

						Job. No.	Client:	Location:	
	EA Engineering	-				634250383	ARNG	SF AASF	
	and Technolo	ogy, Inc.,	PBC			Drilling Metho	od:	Boring No.	
						Sonic		SFAASF-03-PA	
	LOG OF S	OIL/ROC	K BORIN	١G		Sampling Me	thod:		
Coordinates:		35.0	62551044	-106.084	45898	Soil Sample (Gra		Sheet 9 of	10
Surface Elevatior	1:	NA						Drilli	
Casing Elevation		NA				Water Level	Т	Start	Finish
GW level at time		NA				Time	+ -	5/1/2022	5/9/2022
GW level at time	•	NA				Date	+	0727	1130
	or ouriping.					5410	+	0,2,	1100
Sample	Feet Driven	PID	Depth	USCS	Surface Cor	aditions:	<u> </u>		
Type/ID			Depth		Surrace CO				
i ype/iD	/Feet	ppm	in Foot	Log					
	Recovered	 i	Feet						
	N/A								
	ļi	0.8	161	GW			e brown (10 YR7/4), g	grades to GW, ve	ery fine to
						d, loose, dry, grav			
	i	ļi	162	ML			ellow (7.5 YR 6/6), ve	ery fine grained, r	minor clay,
			1 . L		moist, m	edium dense			
		0.8	163						
			1 <u> </u>						
			164	GW	164'-166': Wel	l graded gravel, v	very pale brown (10)	YR 7/4), fine to m	edium
	I I	l I	ı L		grained s	sand, one 4" cobb	ole, mostly 2" gravel,	, loose, dry to slig	htly moist
		1.1	165]
			1 [
	I		166	SW	166'-168.5': W	ell graded sand, s	strong brown (7.5 YF	R 5/6), loose, dry	to slightly
			I [moist, fir	ne to medium grai	ined sand, trace coa	rse grain sand, m	ninor clay
			167		with dept	th, 1% gravel up t	to 1/2"		
		5.7	1 ľ						
		5.7	168						
			1 ľ	CL	168.5'-170': Sa	andy clay, dense,	slightly moist, fine to	o medium grained	l sand,
			169			avel up to 3" diam			
	l I		t p	_1					
	Į i	F ^	170	SW	170'-172': Wel	I graded sand, str	rong brown (7.5 YR s	5/6), loose, slightl	y moist,
	l i	5.9	1 1	1		-	and, trace gravel up t		,
	I I	l I	171	1		0 200	v · · · · · · · · · · · · · · · · · · ·		
			l i	-1					
	I I		172	CL	172'-173,5' [.] Sa	andy clay, dense	slightly moist, fine to	o medium oraineo	I sand,
		52.2	ן ∵⁼ŀ			avel up to 3" diam			- 1
			173						
			1	GM	173.5'-178' [.] Si	Ity gravel, very pa	ale brown (10 YR 7/3), very fine to fine	grained
			174				ameter cobbles, 2-3		0
	∦ i	3.5	1 ¹¹				um to coarse graine	ş	
			175	\neg	moist	Janar, HUGE MEU	to course grante	- cana, bottom Z	Sugar
	₿ ─────┤	t i	113		mulst				
			176						
	∦ ────┤	l I	1/0						
	I I	9.7	177						
	╉────┤	l i	177	—					
			170	CL	170 400 0	dy close 1	nodium dess	st fina ta "	aroise -
	╉────┤	┣────┤	178				medium dense, mois		-
	I I	l I	470	—	sand, no	siii, non plastic, l	becomes stiff and m	mor clay at bottor	"C II
	 	1.5	179						
	I I	l I	۱		1001				
	₿ ─────-	┞───┥	180	CL			medium dense, mois		-
		1.6	I		sand, no	silt, low to non pl	lastic, becomes stiff	and minor clay a	t bottom 5"
			181						
			-						

Logged by:	T. McMillan/S. Lauricella	Date:	05/02/2022
Drilling Contractor:	Environmental Works	Driller:	Justin Maples

EA®	EA Engineerin and Technol	-					Job. No. 634250383 Drilling Metho	Client: ARNG od:	Location: SF AASF Boring No.	
							Sonic	41I.	SFAASF-03-PA	
Coordinates:	LOG OF S		62551044	NG	-106.084	15909	Sampling Met Soil Sample (Gra		Sheet 10	of 10
Surface Elevation		NA 35.	02551044		-100.08-	+3090	Soli Sample (Gra	aD)	Drilli	
Casing Elevation:		NA					Water Level	184.5'	Start	Finish
GW level at time		NA					Time	-	5/1/2022	5/9/2022
GW level at time	•	NA					Date	5/2/2022	0727	1130
	1 3									
Sample	Feet Driven	PID	Depth		USCS	Surface Co	nditions:			
Type/ID	/Feet	ppm	in		Log					
	Recovered		Feet							
	N/A									
		-	181							
			100							
		85	182		CL					
Discrete / SFAASF- 03-SB-183		05	183		CL.					
			103							
			184							
			104							
			185							
		71.4			ML	185-188': Clay	vey silt, dark yellov	vish brown (10 YR 4	4/6), stiff, moist, lo	ow plasticity,
			186					nedium to coarse g		
						subroun	ded to rounded			
			187							
		-	188							
			400		CL			brown (10 YR 5/6),		
		-	189					rse grained sand, lo		trace
			190			gravel u	p to 1/2" diameter	, subangular to sub	rounded	
		3.4	190			100-105 ¹ San	dy clay, yellowish	brown (10 YR 5/6),	medium dense tr	dense with
			191					ed sand, trace fine s		
		-					r, subrounded to r		sana, nace grave	up to 2.0
			192				,			
		2.6								
			193							
		_	194							
		0.6	195		SW	105 100 0				
		0.0	196		300			(10 YR 6/8), loose		
		3.8	190				-	e very fine to fine g		
			197					p to 3" diameter, su v (10 YR 6/8), loose		
			107					e very fine to fine g		
			198				.	subround, wet, no		
		1						-, -,	U	
			199			TD = 197'				
		1				2" PVC SCH 8	80: rise <u>r 0-1</u> 75', 0.0	010" screen 175-19	5', sump 195-197	1
			200			10/20 Silica sa	and: 173-197'			
						3/8" Hole plug	bentonite chips: 1	167-173'		
			201			Grout: 0-167'				
Logged by:		S. Laurio	cella				-	Date:	05/02/2022	

Environmental Works

Driller:

EA®							Client: ARNG od:	Location: Santa Fe, NM Army Aviation Support Facility Boring No. SFAASF-03		
Coordinates: Surface Elevatior	LOG OF S	OIL/ROC 35.625548 6,337.86 f	8, -106.084			Sonic Sampling Me Sonic/Continuous		Sheet 1 of Drill		
Casing Elevation		6,337.69 f				Water Level	-	Start	Finish	
GW level at time		184.95 ft				Time	-	5/7/2022	5/11/2022	
GW level at time		184.54 ft				Date	5/7/2022	1400	1130	
Sample	Feet Driven	PID	Depth		Surface Co	onditions:	Top Soil			
Type/ID	/Feet	ppm	in	Log						
	Recovered		Feet							
Composite / SFAASF-			1		* Refer to SF	FAASF-03-PA bori	ng log for lithology*			
03-SB-0-2										
			2							
			3							
			4							
			5							
			6							
			7							
			0							
			8							
			9							
			-							
			10							
			11							
			12							
			12							
			13							
			14							
			15							
			15							
			16							
			17							
			18							
			19							
			19							
			20							
		1								
			21							
Logged by:		NA					Date:	05/08/2022		

Environmental Works

Driller:

						_		-		
		. .				Job. No.	Client:	Location: Sar		
EA Engineering, Science,						634250383 ARNG Army Aviation Suppo		upport Facility		
	and Techno	logy, Inc.	, PBC			Drilling Methe	od:	Boring No.		
						Sonic		SFAASF-04		
	LOG OF S	OIL/RO	CK BOR	ING		Sampling Me	ethod:			
Coordinates:		35.624047	1, -106.085	784		Sonic/Continuou	is Core	Sheet 1 of	10	
Surface Elevation	า:	6,333.06 ft						Drill	ling	
Casing Elevation	:	6,332.85 f	ft			Water Level	-	Start	Finish	
GW level at time		181.00 ft				Time	-	4/28/2022	5/9/2022	
GW level at time	0	180.38 ft				Date	4/28/2022	1645	1000	
	1 0							-		
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground			
Type/ID	/Feet	ppm	in	Log			9			
.) [-/	Recovered	PP	Feet	9						
	riccororou		1 001		0-1' silty sand.	strong brown (10)	YR 5/6), loose, sligh	tly moist, trace gra	avel up	
Composite / SFAASF-	Full recovery		1	SM	-	iameter, fine to me	· · ·	ing motor, nace gre	210. up	
04-SB-0-2	unless noted		· ·		1'-5', silty sand	l, very pale brown	(10YR 7/4), loose, o	dry, very fine sand	s, poorly	
		5.7	2		-		1/2" diameter, calid			
					_					
			3							
			- Ū							
		16.9	4							
			5							
			<u> </u>							
		6			5'-6', silty sand, very pale brown (10YR 7/4), loose, dry, very fine sands, poorly graded, trace gravel up to 2" diameter, subangular, sand, coarsens downward					
			- U		6'-10', sandy silt, yellowish brown (10YR 5/4), loose, dry, very fine to fine sand,					
		2.5	7				eter, coarsens down		ne sand,	
		8	'		trace gra			waru		
			8							
			0							
		2.4	9							
			3							
			10							
			10	SM	10' 11' oiltr oo	and your pala bray	up (10VP 7/4) loop	a dry yory fina aa	nda naarlu	
			11	0			wn (10YR 7/4), loose 1/2" diameter, calic		nus, poony	
				ML	-		brown (10YR 6/4),		coarso	
		0.7	12							
			12		grain sa	nu, coarsens dow	nward, trace gravel	downward up to 1	ulameter	
			13							
			13							
		3.3	14							
Composite / SFAASF 04-SB-13-15			14		111151	oilt light brown?		odium donce!	low	
			15			Sin, light prownish	n gray (10YR 4/6), m	ieulum dense, dry,	, IUW	
			15		plastic	oilt light vollevel		looo dry for t	000700	
			16				brown (10YR 6/4),			
			16		<u> </u>		nward, trace gravel	uownward up to 1	ulameter	
			17		16'-18.5', no re	covery				
			17							
	No Recovery		10							
			18							
		1.7	10	SM			1. (10)/0 - (-	.	· · ·	
			19	SIVI			nish gray (10YR 6/2), loose, dry, very l	rine to	
				SW		grain sand	// / - · ·			
		l	20	300		· ·	(10YR 6/8), loose, o			
		1.2	04			nd, trace fine sand	d, fines downward in	to fine to medium	sand, trace	
			21		coarse					
Logged by:		S. Lauri	cella			_	Date:	04/28/2022		

S. Lauricella

Date:

Driller:

04/28/2022 Justin Maples

Drilling Contractor:

Environmental Works Inc.,

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784
Surface Elevation:	6,333.06 ft
Casing Elevation:	6,332.85 ft
GW level at time of drilling:	181.00 ft
GW level at time of sampling:	180.38 ft

Job. No.	Client:	Location: Sar	ita Fe, NM	
634250383	ARNG	Army Aviation Support Facility		
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 2 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	

Sample	Feet Driven	PID	Depth		Surface Conditions: Bare ground
Type/ID	/Feet	ppm	in	Log	
	Recovered		Feet		
	Full recovery		21		
	unless noted		21		
		4.8	22		
				SM	22'-26', silty sand, very pale brown (10YR 7/3), loose, dry, very fine to coarse
			23		grain sand, trace gravel up to 1/2" - 2" diameter going downward, caliche
					like, subrounded, subangular
			24		
			25		
			26		
		0.5	c -	GM	26'-29', silty gravel, light yellowish brown (10YR 6/4), loose, dry, gravel up to
	4		27		4" diameter, subrounded, poorly graded, trace fine to coarse grain sand
			28		
	-		28		
		1.7	29		
			23		29'-33',silty gravel, light yellowish brown (10YR 6/4), loose, dry, gravel cobbles u
			30		to 5" diameter, subrounded, poorly graded, trace fine to coarse grain sand,
					becomes more silt than gravel downwards
			31		
		10.4			
		16.4	32		
			33		
	23"	18.7		GW	33'-36', well graded gravel, light yellowish brown (10YR 6/4), loose, dry,
	-		34		medium to coarse sand, trace silt, gravel up to 5" diameter, subrounded
			0.5		
	-		35		
	24"	1.7	36	SW	26' 28 E' aand vollowich brown (40VD E/4) looga alightly maint fing to approa
	24		30	0	36'-38.5', sand, yellowish brown (10YR 5/4), loose, slightly moist, fine to coarse grain sand, trace gravel up ti 2" diameter, subrounded, subangular
			37		grain sand, trace graver up tr 2 diameter, subjounded, subangular
			0.		
			38		
		<u>.</u>			
		3.4	39	GM	38.5'-39', silty gravel, light yellowish brown (10YR 6/4), loose, dry, gravel up to
				SW	4" diameter, subrounded, poorly graded, trace fine to coarse grain sand
			40		39'-41', sand, yellowish brown (10YR 5/4), loose, slightly moist, fine to coarse
					grain sand, trace gravel up ti 2" diameter, subrounded, subangular
			41		becomes more stiff downwards

Drilling Contractor:

Environmental Works Inc.,

R

LOG	OF	SOIL	/ROCK	BORING

Coordinates:	35.624041, -106.085784
Surface Elevation:	6,333.06 ft
Casing Elevation:	6,332.85 ft
GW level at time of drilling:	181.00 ft
GW level at time of sampling:	180.38 ft

Job. No.	Client:	Location: Santa Fe, NM		
634250383	ARNG	Army Aviation Support Facility		
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 3 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	

Sample Type/ID	Feet Driven /Feet	PID ppm	Depth in	USCS Log	Surface Conditions: Bare ground
	Recovered		Feet	Ŭ	
				SW	
	Full recovery		41		
	unless noted	21.6	10	ML	41'-46', gravely silt, light brownish gray (10YR 6/2), loose, dry, trace medium to coarse grain sand
			42		
			43		
		0.4			
		9.1	44		
			45		
			46		
			40	GM	46'-54', silty gravel, light brownish gray (10YR 6/2), loose, dry, medium to
		35.7	47		coarse grain sand, gravel up to 3" diameter, trace 1" gravel, subrounded,
	1			1	subangular, well graded
			48		
		35.2			
	-		49		
			50		
			50		
		32.9	51		
			52		
			53		
		13.6	54		
			54	SW	54'-55.5', sand, dark yellowish brown (10YR 4/6), loose, dry, fine to medium
			55		grain sand, poorly graded, trace coarse, trace gravel up to 2" diameter
			Ī		
			56	GM	55.5'-56', silty gravel, light brownish gray (10YR 6/2), loose, dry, medium to coarse
		8.3		ML	coarse grain sand, , gravel up to 2" diameter subrounded, rounded,
			57		well graded
			58		56'-59', gravely silt, brownish yellow (10YR 6/6), loose, dry, trace medium to coarse grain, gravel up to 3" diameter, well graded
			50		ooaroo yrain, yraver up to o manneter, well yraueu
		15.6	59		
				GW	59'-66', sandy gravel, yellowish brown (10YR 5/6), loose, dry, fine to coarse
			60		grain sand, gravel up to 2" diameter, well graded
			61		l
ogged by:		S. Lauri	cella		Date: 4/28/2022-04/29/22

Drilling Contractor:

Environmental Works Inc.,

Coordinates:	35.624041, -106.085784
Surface Elevation:	6,333.06 ft
Casing Elevation:	6,332.85 ft
GW level at time of drilling:	181.00 ft
GW level at time of sampling:	180.38 ft

Job. No.	Client:	Location: Sar	ita Fe, NM	
634250383	ARNG	Army Aviation S	upport Facility	
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 4 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	

Sample Type/ID	Feet Driven /Feet	PID ppm	Depth in	Log	Surface Conditions: Bare ground
.) [,	Recovered	66	Feet	_•g	
				GW	59'-66', sandy gravel, yellowish brown (10YR 5/6), loose, dry, fine to coarse
	Full recovery		61	0.11	grain sand, gravel up to 2" diameter, well graded
	unless noted		01		g
		10.2	62		
			02		
			63		
			05		
		5.0	64		
			04		
			65		
			05		
			66		
			00	GW	66'-68.5', sandy gravel, yellowish brown (10YR 5/6), loose, dry, fine to coarse
		7.1	67		grain sand, trace silt, trave gravel up to 3" diameter, well graded
			07		gran sand, nace sin, nave graver up to 5 diameter, well graded
			68		
				1	
		27.4	69	SW	68.5'-71', gravely sand, well graded, yellowish brown (10YR 5/6), loose, dry,
			00		gravel up to 2" diameter, medium to coarse, trace fine sand
			70		graver up to 2° diameter, medium to coarse, trace nine sand
			10		
			71		
				SW	71'-76', sand, dark yellowish brown (10YR 4/6), 75% loose, 25% dense, very fine
		14.4	72		to coarse grain sand, poorly graded, trace gravel up to 1" diameter, trace si
					going downward
			73		
			_		
		12.7	74		
			75		
				1	
			76		
		10		1	76'-78.5', sand, dark yellowish brown (10YR 4/6), loose, trace gravel up to
		1.9	77		3" diameter, subangular
			78		
		2.9			
		2.9	79		78.5'-80', sand, dark yellowish brown (10YR 4/6), loose, trace gravel up to 1/2"
					diameter, rounded
			80		
				GW	80'-82', sandy gravel, pale brown (10YR 6/3), loose, dry, fine to coarse grain
			81		sand, gravel up to 1" diameter, subrounded, subangular

Drilling Contractor:

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784		
Surface Elevation:	6,333.06 ft		
Casing Elevation:	6,332.85 ft		
GW level at time of drilling:	181.00 ft		
GW level at time of sampling:	180.38 ft		

Job. No.	Client:	Location: Sar	ita Fe, NM	
634250383	ARNG	Army Aviation S	upport Facility	
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 5 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	
		-		

Sample	Feet Driven	PID			Surface Conditions: Bare ground
Type/ID	/Feet Recovered	ppm	in Feet	Log	
	100010100			GW	
	Full recovery		81		
	unless noted	0.1	82		
			02		82'-86', sandy gravel, pale brown (10YR 6/3), loose, dry, fine to to medium sand,
			83		gravel up to 1" diameter, subrounded, subangular, trace coarse
			04		
		<u>⊢</u>	84	l i	
		12.6	85	l i	
		ļ	86	SM	86'-91', silty sand, yellowish brown (10YR 5/6), loose, dry, fine to coarse grain
		10.6	87		sand, trace gravel up to 1" diameter, subrounded, subangular
		ļ	88	l i	
		19.5	89		
				¶	
			90	l i	
			91	I I	
		6.5	<u>,</u>	GM	91'-96', silty gravel, light gray (10YR 7/2), loose, dry, trace medium to coarse
		0.0	92		grain sand, gravel up to 2"-3" diameter, coarsens into more gravely silt
			93	l i	downward
			33		
		20.4	94	l i	
			<u></u>	I I	
			95	I I	
			96		
		9.7		GW	96'-100', sandy gravel, pale brown (10YR 6/3), loose, dry, very fine to coarse
			97	l i	grain sand, trace silt, trace gravel up to 2" diameter, subrounded, trace stiff sand pieces
			98		
		48.9		I I	
			99	l i	ļ
			100		
		23.2	101	GM	100'-102', silty gravel, light gray (10YR 7/2), loose, dry, trace medium to coarse, gravels up to 1" diameter, poorly graded
Logged by:		S. Laurio		<u> </u>	Date: 04/29/2022

Drilling Contractor:

Environmental Works Inc.,

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784		
Surface Elevation:	6,333.06 ft		
Casing Elevation:	6,332.85 ft		
GW level at time of drilling:	181.00 ft		
GW level at time of sampling:	180.38 ft		

Job. No.	Client:	Location: Sar	ta Fe, NM	
634250383	ARNG	Army Aviation S	upport Facility	
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 6 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	

Sample Type/ID	Feet Driven /Feet	PID ppm	Depth in	Log	Surface Conditions: Bare ground
	Recovered		Feet		
	Full recovery	23.2	101		
	unless noted		102		
		25.8		SM	102'-106', silty sand, poorly graded, yellowish brown (10YR 5/6), 60% loose,
			103		40% stiff, slightly moist, fine grain sand, trace medium grain sand
			104		
		20.5	105		
		4.2	106		
			107		106'-108.5', silty sand, dark yellowish brown (10YR 4/4), loose, slightly moist,
			107		fine to medium sand, poorly graded, trace stiff silty sands downward
			108		
		14.3	109	SP	108.5'-110', sand, yellowish brown (10YR 5/6), loose, slightly moist, fine to
			110		coarse sand, trace gravel up to 1" diameter
			111	ML	110'-116', silty sand, brownish yellow (10YR 6/6), 75% loose, 25% medium dense pieces, dry, fine grain sand, trace gravel up to 5" diameter
		19.9	112		has more stiff pieces downward
		28.3	113		
			114		
			115		
			116		
		20.9	117		116'-119', silty sand, brownish yellow (10YR 6/6), 75% loose, 25% medium, dense pieces, dry, fine grain sand, trace gravel up to 1" diameter, rounded
			118		has more stiff pieces downward
		3.5	119		
				SM	119'-120', silty sand, dark yellowish brown (10YR 4/6), loose, dry, medium and
			120		coarse grain, poorly graded 120'-121', silty sand, brownish yellow (10YR 6/6), 75% loose, 25% medium,
			121		dense pieces, dry, fine grain sand, trace gravel up to 1" diameter, rounded

Drilling Contractor:

Environmental Works Inc.,

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784		
Surface Elevation:	6,333.06 ft		
Casing Elevation:	6,332.85 ft		
GW level at time of drilling:	181.00 ft		
GW level at time of sampling:	180.38 ft		

Job. No.	Client:	Location: Sar	ita Fe, NM	
634250383	ARNG	Army Aviation S	upport Facility	
Drilling Metho	d:	Boring No.		
Sonic		SFAASF-04		
Sampling Met	hod:			
Sonic/Continuous	Core	Sheet 7 of 10		
		Drill	ing	
Water Level	-	Start	Finish	
Time	-	4/28/2022	5/9/2022	
Date	4/28/2022	1645	1000	

Sample Type/ID	Feet Driven /Feet	PID	Depth in	Log	Surface Conditions: Bare ground
1 300/10	Recovered	ppm	Feet	LUY	
				SM	
	Full recovery		121		
	unless noted	20.3			121'-122', silty sand, dark yellowish brown (10YR 4/6), loose, dry, medium and
			122		dense pieces, dry, fine grain sand, trace gravel up to 1" diameter, rounded
			100		122'-123.5', silty sand, brown (10YR 4/3), loose to dense pieces, trace medium gr
			123		sand, poorly graded
		13.7	124	ML	122 5' 126' alayay ait yallawiah brawn (10VP 5/6) law plastia traca gravel up to
			124		123.5'-126', clayey silt, yellowish brown (10YR 5/6), low plastic, trace gravel up to diameter, moist, dense, trace medium grain sand
			125		
				1	
			126		
		25.8			126'-128.5', clayey silt, yellowish brown (10YR 5/6), plastic, dense, moist, trace
	4		127		gravel up to 1" diameter, trace medium grain sand
			100		
			128		
		24.4	129	SW	128.5'-133.5', sand, pale brown (10YR 6/3), loose, dry, fine to coarse grain, trace
			120		gravel up to 2" diameter
			130		
				1	
	_		131		
	16"	15.6			
	4		132		
			100		
			133		
		19.9	134	GM	133.5'-134.5', silty gravel, very pale brown (10YR 7/3), loose, dry, coarsens
				1	downward to coarse grain sand, trace gravel up to 2" diameter
			135	SM	134.5'-136', silty sand, brown (10YR 4/3), loose to dense pieces, trace medium gr
					sand, poorly graded
			136	<u></u>	
		186.5	467	SM	136'-138', silty sand, yellowish brown (10YR 5/6), medium dense, fine to medium
			137		grain sand, poorly graded
			138		
			130	CL	138'-141', sandy clay, dark yellowish brown (10YR 4/4), dense moist, medium to
		124.2	139		coarse grain sand, low plastic
			140		
			141		

Drilling Contractor:

Environmental Works Inc.

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784		
Surface Elevation:	6,333.06 ft		
Casing Elevation:	6,332.85 ft		
GW level at time of drilling:	181.00 ft		
GW level at time of sampling:	180.38 ft		

Job. No.	Client:	Location: Santa Fe, NM				
634250383	ARNG	Army Aviation S	upport Facility			
Drilling Metho	d:	Boring No.				
Sonic		SFAASF-04				
Sampling Met	hod:					
Sonic/Continuous	Core	Sheet 8 of 10				
		Drilling				
Water Level	-	Start	Finish			
Time	-	4/28/2022	5/9/2022			
Date	4/28/2022	1645	1000			

Sample	Feet Driven	PID	Depth		Surface Conditions: Bare ground
Type/ID	/Feet	ppm	in	Log	
	Recovered		Feet		
				CL	
	Full recovery unless noted		141	014/	
	uniess noted	6.8	1.10	SW	141'-144', sand, pale brown (10YR 6/3), loose, dry, fine to coarse grain, trace gravel up to 2" diameter
			142		graver up to 2 diameter
			143		
			140		
		3.4	144		
				CL	144'-145', sandy clay, dark yellowish brown (10YR 4/4), dense moist, medium to
			145		coarse grain sand, low plastic
				GM	145'-145.5', silty gravel, very pale brown (10YR 7/3), loose, dry, coarsens downw
			146	CL	to coarse grain sand, trace gravel up to 2" diameter
				ML	145.5'-146', sandy clay, dark yellowish brown (10YR 4/4), dense moist, medium t
			147		coarse grain sand, low plastic
		14.8	4.10		146'-152', sandy silt, dark yellowish brown (10YR 4/6), loose to dense, pieces <3
			148		fine to medium sand, trace gravel up to 1", dry
			140		
			149		
		5.2	150		
			100		
			151		-
		4.0			
		1.6	152		
				SW	152'-155', sand, well graded, brownish yellow (10YR 4/4), loose, trace silt, dry,
			153		medium to coarse grain, trace gravel up to 1" diameter,
		3.5			
			154		
			155		
			156		155'-156', sand, yellowish brown (10YR 5/6), loose, moist at bottom 2", fine
			100		to coarse grain sand, well graded 156'-158.5', gravely sand, strong brown (7.5YR 5/6), loose, dry, fine to coarse gra
		2.6	157		gravel up to 1"-2" diameter, trace silt downward, subrounded, rounded
			,	1	
			158		
		4.4		1	
		4.4	159	ML	158,5'-161', silt, light gray (10YR 7/2), loose, dry, 60% silt, 40% gravely
					sands, medium to coarse, gravel up to 4" diameter, subrounded, subangular
			160		
			161		

Drilling Contractor:

Environmental Works Inc.

LOG OF SOIL/ROCK BORING

Coordinates:	35.624041, -106.085784
Surface Elevation:	6,333.06 ft
Casing Elevation:	6,332.85 ft
GW level at time of drilling:	181.00 ft
GW level at time of sampling:	180.38 ft

Joh No	Client:	Location: Car				
Job. No.	Client:	Location: Santa Fe, NM				
634250383	ARNG	Army Aviation S	upport Facility			
Drilling Metho	d:	Boring No.				
Sonic		SFAASF-04				
Sampling Met	hod:					
Sonic/Continuous	Core	Sheet 9 of 10				
		Drill	rilling			
Water Level	-	Start	Finish			
Time	-	4/28/2022	5/9/2022			
Date	4/28/2022	1645	1000			

Commis	Exat Datase		Denth	11000	
Sample	Feet Driven	PID			Surface Conditions: Bare ground
Type/ID	/Feet	ppm	in	Log	
	Recovered		Feet		
			101		
	Full recovery unless noted		161	SW	161'-164', gravely sand, light yellowish brown (10YR 6/4), loose, dry, fine to
	uniess noted	8.6	160	311	coarse grain sand, well graded, gravel up to 4" diameter, subrounded, trace
			162		
			160		downward
			163		
		6.5	164		
			104		101 107 and raddich valley (7 EVD C(C) lagge dry fing to approx grain and
			165		164'-167', sand, reddish yellow (7.5YR 6/6), loose, dry, fine to coarse grain sand,
			105		trace silt, well graded, trace gravel up to 1" diameter
			166		
			100		
		5.8	167		
			107	SM	167'-167.5', silty sand, gray (7.5YR 6/1), loose, dry, fine to coarse grain, well grad
			168	CL	167.5'-168.5', sandy clay, yellowish brown (10YR 5/6), stiff, moist, medium sand a
			100		fine sand grain, trace coarse grain sand, low plastic
		3.6	169	SW	168.5'-172', sand, yellowish brown (10YR 5/8), loose, dry, very fine to coarse sand
					trace gravel up to 1" diameter, subrounded, trace silt
			170		
		3.7	171		
			172		
		00 F		CL	172'-175', gravely clay, strong brown (7.5YR 5/6), stiff, dry, medium to coarse
		22.5	173		grain sand
			174		
			175		
				SM	175'-176', silty sand, pinkish gray (7.5YR 7/2), loose, dry, trace coarse grain, fine
			176		medium grain, well graded, trace gravel up to 2" diameter
				SW	176'-183.5', sand, well graded, yellowish red (5YR 4/6), loose, dry to moist, loose,
			177		fine to coarse grained, wet at 181'
		64.1			
		0 7. 1	178		
			179		
screte / SFAASF-04		102.6			
SB-180			180		
			181		

Logged by:

S.Lauricella/D.Werth

Date:

04/29/2022

Drilling Contractor:

Environmental Works Inc.

Driller:

E A®	EA Engineering, Science, and Technology, Inc., PBC					
	LOG OF	SOIL/ROCK BORING				
Coordinates:		35.624041, -106.085784				
Surface Elevation	on:	6,333.06 ft				
Casing Elevation	6,332.85 ft					
GW level at time	181.00 ft					

Surface Elevation:	6,333.06 ft
Casing Elevation:	6,332.85 ft
GW level at time of drilling:	181.00 ft
GW level at time of sampling:	180.38 ft

	Job. No.	Client:	Location: San	Location: Santa Fe, NM			
	634250383	ARNG	Army Aviation Su	upport Facility			
	Drilling Metho	od:	Boring No.				
	Sonic		SFAASF-04				
	Sampling Met	thod:					
	Sonic/Continuous	S Core	Sheet 10 c	of 10			
			Drill	Drilling			
	Water Level	-	Start	Finish			
	Time	-	4/25/2022	5/9/2022			
	Date	4/25/2022	850	1647			
ò	nditions:	Bare ground					
sai	nd, well graded, ye	ellowish red (5YR 4/	6), loose, dry to m	ioist,			
-							

Sample Type/ID	Feet Driven /Feet	PID ppm	Depth in	Log	Surface Conditions: Bare ground
, ypo/iD	Recovered	phin	Feet	LUY	
	1100010100		1000	SW	176'-183.5', sand, well graded, yellowish red (5YR 4/6), loose, dry to moist,
	Full recovery		181		fine to coarse grained, wet at 181'
	unless noted	306.9			
		300.9	182		
			183		
		14.6	184	ML	183.5'-184.5', silt, reddish brown (5YR 5/4), loose to medium dense, wet
			104		
			185	SW	184.5'-192', sand, well graded, yellowish red (5YR 4/6), loose, dry to moist, with
		20.6			trace small cobbles and wet
		20.0	186		
			407		
			187		
		29.3	188		
			189		
		66.7			
			190		
			101		
			191		
		90.3	192		
				SM	192'-193', silty sand, yellowish red (5YR 4/6), loose, wet, fine to coarse sand
			193		
			10.1		
			194		
			195		
			196		
			197		
			100		
			198		TD' = 193'
			199		2" PVC SCH 80 0.010" screen: 171' - 191' 2" PVC SCH 80 riser: 0 - 191'
			100		2" PVC SCH 80 sump: 191'- 193' 2" PVC SCH 80 sump: 191'- 193'
			200		10/20 silica sand: 169' - 193'
					3/8" bentonite chips hole plug: 163.5' - 169'
			201		grout: <1' - 163.5'

Logged by: D. Werth Date: 04/30/2022 Drilling Contractor: Environmental Works Inc. Driller: Justin Maples

And Technology, Inc., PBC Doiling Method: Born public Born	R R			<u> </u>			Job. No.	Client:	Location: Sant	
Log of SDL/ROCK BORING Barnular Paul Gegotte BrAASF-06 Coordinates: 35.621244106.056448 Sample Welfod: Fried Not Surface Elevation: NA Date Difference GW level at time of drilling: NA Date Difference Sample value Pet Dive Pin Pin Finish GW level at time of drilling: NA Log of Sample Start Finish Sample value Pet Dive Pin Feet Log of Sample Start Start GW level at time of drilling: NA Log of Sample Start Start Start Sample resource Pet Dive Pin Feet M Dive and start Start Goreposite / SFAGS-02 0.6 2 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="3"></td><td>pport Facility</td></t<>										pport Facility
LOG OF SOLUP.ROCK RORING Solution: Solution:<		and rechnol	ogy, inc.,	rbu			-			
Coordinates::: 36.02244.100.08044 Surface Elevation: Surface Elevation: NA NA Water Level Drilling: NA Drilli				יע פספי	NC				SFAASF-05	
Surface Elevation: NA Water Level Start Finish Casing Elevation: NA Water Level Start Finish GW level at time of sampling: NA NA Date Start Finish Type/ID Feet Driven Recovered Ppm Ppm Log Surface Conditions: 5/4/2022 5/4/2022 5/4/2022 5/4/2022 1420 Composite / SFAASF- 08-SB-6-3 0.5 4 1 ME 2-10; sandy alt, pink (SYR 7/3), loose, dry, fine sand, trace gravel	Coordinates:	LUG OF S						100.	Sheet 1 of	1
Casing Elevation: NA Water Level Start Finish GW level at time of drilling: NA Date 5/4/202 5/4/202 1/4/20 Sample Feet PID Depth USCS Sufface Conditions: 5/4/202 1/4/20 Type/ID // Feet PID Depth USCS Sufface Conditions:				+, -106.086	448		PVC SIEEVE			
GW level at time of sampling: NA Time - 5/4/2022 5/4/2022 1/2022										
GW level at time of sampling: N Date - 5/4/2022 5/4/2022 5/4/2022 5/4/2022 1315 5/4/2022 1420 Sample Feet Driven PID Depth USCS Surface Conditions: - - 5/4/2022 1420 Composite / SFAASF 0.6 2 - - 60° - <									Start	⊢inish
Sample Type/ID Feet Driven /Feet PID ppm Depth in Feet USCS Usface Conditions: 1315 1420 Composite / SFAASF- 06-SB-02 4 1 ML 0-10', sandy silt, pirk (SYR 7/3), loose, dry, fine sand, trace gravel									E/4/0000	E/4/0000
Sample Type/D Feet Driven Recovered PID pm Depth n USCS Surface Conditions: 05-58-0-2 0.5 1 1 0.4 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1 0.5 1 0.5 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 <t< td=""><td>Gvv level at time</td><td>or sampling:</td><td>NA</td><td></td><td></td><td></td><td>Dale</td><td>-</td><td></td><td></td></t<>	Gvv level at time	or sampling:	NA				Dale	-		
Type/ID Recovered ppm in Log Composite / SFAASF- 0/5 SB-0.2 4 1 1 1 1 1 1 1 1 1 1	Sample	Foot Driver	חום	Donth	11000	Surface Co	nditione:	L	1313	1 4 20
Recovered Peet ML Peet ML 0-10; sandy silt, pink (5YR 7/3), loose, dy, line sand, trace gravel Composite / SFAASF- 05-SB-0-2 60° 1 1 ML 0-10; sandy silt, pink (5YR 7/3), loose, dy, line sand, trace gravel 0-6 2 5 4							10110115.			
Composite / SFAASF- 05-SB-2 ML 0-10; sandy silt, pink (5YR 7/3), loose, dy; fine sand, trace gravel 0.6 2 0.6 2 0.6 2 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 6 0.2 8 0.2 8 0.3 10 11 10-12', sitly sand, pink (5YR 7/3), loose, dy, fine to coarse sand, trace gravel 0.4 12 0.5 5W 12-15', sand, well graded, pink (5YR 7/3), loose, dy, fine to coarse sand, trace fine gravel 0.4 14 0.4 14 0.5 15 15 15 16 16 18 19 19 10	טו/פקע י		РРШ		LUY					
Composite / SPAASF- 05-SB-02 60" 1 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 6 0.2 8 0.3 10 0.4 12 0.4 12 0.4 12 0.5 15 0.5 15 0.5 15 0.5 16 0.1 17 19 19 0.1 10 19 10 10 12 10 12 10 10 10		. COUVEIEU			MI	0-10'. sandy si	It, pink (5YR 7/3)	oose. drv fine san	d, trace gravel	
05-88-02 60" 0.6 2 0.5 4 5 0.5 4 5 0.5 4 5 0.5 4 5 0.5 4 5 0.5 7 0.2 0.2 8	Composite / SFAASE			1	1	_ , survey of		_ , _ , , , our	,	
00' 2 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 6 0.5 7 0.2 8 0.2 8 0.2 8 0.3 10 11 5 0.4 12 11 5 0.4 12 11 5 0.4 12 11 5 0.4 12 11 5 0.4 12 11 5 0.4 14 0.4 14 15 15 16 17 17 18 19 19 10 19 10 11 10 12 10 12 10 12 10 12 <td></td> <td></td> <td>0.5</td> <td><u> </u></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			0.5	<u> </u>	1					
60" 3 0.5 4 5 4 5 5 0.2 6 0.2 8 0.2 8 0.2 8 0.3 10 11 5 0.3 10 11 5 0.3 10 11 10 0.4 12 11 5 0.3 10 11 5 0.3 10 11 5 0.3 10 11 5 11 5 12 11 0.4 12 13 12:15; sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 11 13 12:15; sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 11 11 12 15 13 10 14 10 15 15 16 11 19 12 19 12 10 11 11 10 12 10 13 10 <td></td> <td></td> <td>0.6</td> <td>2</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			0.6	2	1					
0.5 4 0.5 4 0.5 4 0.5 6 0.5 6 0.5 7 0.2 8 0.2 8 0.3 10 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 12 0.4 14 0.4 15 15 15 16 16 17 19 18 19 19 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td> <td>60"</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		60 "			1					
Image: SFAASF-05-86-8 35° 0.2 6 0.2 8		bU"		3	1					
Image: SFAASF-05-86-8 35° 0.2 6 0.2 8			0.5		1					
Composite / SFAASF- 05-SB-6-8 35" 0.2 6 0.2 8 9			0.0	4	1					
Composite / SFAASF- 05-SB-6-8 35" 0.2 6 0.2 8 9				I 1	1					
Composite / SFAASF- 05-SB-6-8 35" 6 7 0.2 8 9		ļ	 	5	1	ļ				
Composite / SFAASF- 05-SB-6-8 35" 6 7 0.2 8 9			0.2		1	 				
Composite / SFAASF- 05-SB-6-8 0.2 8 40" 9 40" 0.3 10 11 5M 10-12', sitty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 11 0.4 12 0.4 12 5W 13 5W 12-15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 11 0.4 14 0.4 14 0.5-SB-13-15 15 30" 0.4 14 16 16 17 18 19 19 10 19 10 10 11 10 11 10 11 10 12 11 13 12 14 12 15 15 16 16 19 10 10 11 11 11 11 10 12 10 13 10 14				6	1					
05-SB-6-8 0.2 8 40" 9 0.3 10 11 5M 0.4 12 0.4 12 0.4 12 0.4 12 0.5 5B-13-15 0.4 14 15 15 16 16 17 18 18 19 19 20 10 11 10 11	Com	35"		-	1	┣───				
0.2 8 0.3 0 0.3 10 0.3 10 11 0.4 0.4 12 0.4 12 0.4 12 0.4 12 0.5-SB-13-15 0.4 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 16 10 17 11 18 11 20 11 20 11 10 11 10 12 11 13 10				1	1	┣───				
40° 9 0.3 10 11 11 0.4 12 13 10°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 11 0.4 12 13 13 12°-15°, sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 11°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 13 13 11°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 11°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 11°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 11°-12°, silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 10°-13 15 15 15 16 16 17 18 19 19 19 20 10°-15° 15°	03-36-0-8		0.2	8						
40' 0.3 10 11 5M 10·12', silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 0.4 12 0.4 12 13 5W 13 12·15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 0.4 14 13 05·SB-13·15 0.4 14 15 15 15 16 17 18 19 19 19 20 10' = 15'			1	0		 				
40' 0.3 10 11 5M 10·12', silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 0.4 12 0.4 12 13 5W 13 12·15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace 13 0.4 14 13 05·SB-13·15 0.4 14 15 15 15 16 17 18 19 19 19 20 10' = 15'				9		 				
40° 10 SM 10·12', silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 0.4 12			0.0							
40* 11 5M 10-12', silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace gravel 0.4 12 13 12 13 13 0.4 14 05-SB-13-15 0.4 14 14 15 15 16 16 17 18 18 19 20 21 10'12' silty sand, pink (5YR 7/3), loose, dry, fine to coarse sand, trace		40"	0.3	10						
0.4 12 0.4 12 13 13 13 12'-15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace fine gravel 05-SB-13-15 0.4 14 14 15		4U [~]			SM	10'-12', silty sa	nd, pink (5YR 7/3),	, loose, dry, fine to	coarse sand, trace	gravel
12 12 13 SW 13 12-15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace fine gravel 13 0.4 14 14 15 15 16 16 17 18 19 19 20 19 21 TD' = 15' D. Werth Date: <u>05/04/2022</u>				11	1					
12 12 13 SW 13 12-15', sand, well graded, pink (5YR 7/3), loose, dry, fine to coarse sand, trace fine gravel 13 0.4 14 14 15 15 16 16 17 18 19 19 20 19 21 TD' = 15' D. Werth Date: <u>05/04/2022</u>			0.4		1					
30" 13 fine gravel 30" 0.4 14 15 15 16 16 17 11 18 19 19 19 20 10 21 TD' = 15'				12		ļ				
30° 0.4 14 05-SB-13-15 15 15 15 16 16 17 17 18 19 20 19 21 TD' = 15'				40	SW			5YR 7/3), loose, dry	y, fine to coarse sa	nd, trace
Composite / SFAASF- 05-SB-13-15 14 15 15 16 16 17 17 18 19 19 19 20 10'= 15'				13	1	fine grav	el			
05-SB-13-15 15 16 16 17 17 18 19 20 19 21 TD' = 15'	Com	30"	0.4	4.4	1	┣───				
15 16 16 17 17 17 18 18 19 19 20 10 21 TD'= 15'				14	1					
16 16 17 17 18 18 19 19 20 20 10 21				15	1	┣───				
17 18 18 19 20 19 20 10 21 TD' = 15'	<u> </u>			10	ļ	t				
17 18 18 19 20 19 20 10 21 TD' = 15'				16	1	 				
18 19 20 21 D. Werth Date: 05/04/2022					1					
18 19 20 21 D. Werth Date: 05/04/2022				17	1	Ľ				
19 20 21 D. Werth Date: 05/04/2022					1	Ĺ				
19 20 21 D. Werth Date: 05/04/2022				18	1					
20 21 TD' = 15' Logged by: D. Werth D. Werth D. Werth D. Werth Date:					1					
D. Werth D. Werth Date: 05/04/2022		l		19	1					
D. Werth D. Werth Date: 05/04/2022				I 1	1					
Logged by: D. Werth Date: 05/04/2022			 	20	1	<u> </u>				
Logged by: D. Werth Date: 05/04/2022				<u>.</u>	1					
				21	Į	TD' = 15'				
Drilling Contractor: IR Drilling Driller: Rob Helton	Logged by:		D. Werth	h			-	Date:	05/04/2022	
	Drilling Contractor			na				Driller	Rob Holton	

EA®	EA Engineerir and Techno	-				Job. No. 634250383 Drilling Meth	Client: ARNG od:	Location: Sar Army Aviation S Boring No.			
						Sonic	- (l)	AOI01-01			
Coordinates:	LOG OF S		5, -106.087	-		Sampling Me Sonic/Continuou		Sheet 1 of	10		
Surface Elevation		6,328.95 f		093		Some/Continuou		Drill			
						Water Level		Start	Finish		
Casing Elevation:		6,328.84 f	t				-	4/25/2022			
GW level at time GW level at time		176.31 ft				Time Date	- 4/25/2022	4/25/2022 850	5/9/2022 1647		
Gw level at time	or sampling.	176.05 ft				Dale	4/25/2022	850	1047		
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground				
Type/ID	/Feet	ppm	in	Log			Dale ground				
rypo/iD	Recovered	ppm	Feet	LUG							
	Recovered		1 661	ML	0.5' sandy silt	vollow brown (1)	0YR 5/6), loose, dry,	trace gravel up to	5" fino		
0			1	IVIL	grain sar		57K 5/6), 1005e, dry,	liace graver up to	5, IIIe		
Composite / AOI01-01 SB-0-2	Full recovery unless noted		1		grain sai						
00 0 2	unicos noteu	9.6	2								
			2								
			2								
			3								
			4								
		11.0	_								
			5								
					-		brown (10YR 6/4), l	oose, dry, trace gr	avel up to 5",		
			6		fine grair	n sand					
			_								
			7								
		30.5			7.5'-10', sandy silt, dark yellowish brown (10YR 4/4), loose, dry, trace gravel up to						
			8			-	sh brown (10YR 4/4),	loose, dry, trace g	gravel up to		
					5", fine g	rain sand					
			9								
		14.9									
			10								
							ish brown (10YR 4/4), dense, dry, trace	e gravel up to		
			11		5" dimete	er, fine grain sand	t de la constante de la consta				
			12								
		30.2									
			13	SM	12.5'- 15', silty	sand, dark yellow	vish brown (10YR 4/6	6), loose, slightly d	ense,		
					fine grair	n sand					
Composite / AIO01-01		 	14								
SB-13-15		1.8									
			15								
			10	SP		-	(10YR 6/6), loose, c	Iry, fine grain sand	l, trace		
			16		silt, poor	rly graded					
			17								
		71.4									
			18		17.5'-20', sand	, brownish yellow	(10YR 6/6), loose, c	try, fine sand, poo	rly graded		
			19								
		85.7									
			20								
				SP			(10YR 6/6), loose, c	Iry, fine sand, poo	rly graded,		
			21		trace me	dium to coarse sa	and				
Logged by:		S.Lauric	ella			-	Date:	04/25/2022			

Environmental Works Inc.

Driller:

R	EA Engineerin	ia, Sciena	ce,			Job. No. 634250383	Client: ARNG	Location: San Army Aviation So	,
	and Technol	-				Drilling Metho		Boring No.	
			. 20			Sonic	~.	AOI01-01	
	LOG OF S			NG		Sampling Met	hod:		
Coordinates:			5, -106.087			Sonic/Continuous		Sheet 2 of	10
Surface Elevation	. .	6,328.95 ft	,			Contro/Continuous		Drilling	10
						Water Level			Finich
Casing Elevation		6,328.84 ft	τ			Water Level	-	Start	Finish
GW level at time	•	176.31 ft				Time	-	4/25/2022	5/9/2022
GW level at time	or sampling:	176.05 ft				Date	4/25/2022	850	1647
Comple			Dent	11000	0		Dana marina d		
Sample	Feet Driven	PID	Depth		Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log					
	Recovered	<u> </u>	Feet		<u> </u>				
			.						
	Full recovery		21						
	unless noted								
			22						
				014/					
			23	SW			R 6/3), loose, dry, co		l, trace
			<u>.</u>		gravel up	o to 1" diameter, fir	e to coarse grain sa	and	
			24						
		27.8	05						
		25				1.1	7/4 \ 1 .		
							7/1), loose, dry, coar		trace
			26		gravel up	o to 1" diameter, fir	ie to coarse grain sa	and	
			07						
			27						
			20			links (10)/E	7/4 \ 1 '		
			28				7/1), loose, dry, coar		trace slit and
		21.3	20		gravel up	o to 2" diameter, fir	ie to coarse grain sa	and	
			29						
			20						
			30	SP	201 201 - 11	inht arc:: (40)(D = (1) lease de		no ollt !
		28.1	31	01			1), loose, dry, coarse		ace slit and
			31		gravei up	o io ∠ diameter, fir	es downward, fine g	yrain sano	
			32						
			52						
		27.4	33						
			- 55	ML	33'-36 5' silt v	ellowish brown (10	IYR 5/6), loose, moi	st	
			34		55 55.5, Siit, y				
			35						
			36						
		74.4	37		36.5'-37.5'. sar	ndv silt. vellowish h	rown (10YR 5/6), lo	ose, moist, trace	aravel up
						meter, fine grain s			۳
			38	GW			nish gray (10YR 6/2	2), loose, drv. trac	e of fine to
					-	up to 2.5" diameter		,,,,, ,, , ,	
		40.3	39		, 3, 4, 51 (
			40						
				GW	40'-42.5', grave	ely sand, light brow	nish gray (10YR 6/2	2), loose, slightlv r	noist, gravel
			41			diameter, coarse g		,,	
Logged by:		S.Lauric	ella				Date:	04/25/2022	
/						_			
Drilling Contractor	:	Environi	mental V	/orks In	IC.	_	Driller:	Justin Maple	S

EA®	EA Engineerin and Technol	•				Job. No. Client: Location: Santa Fe, NM 634250383 ARNG Army Aviation Support Facility Drilling Method: Boring No.			
	LOG OF S			NG		Sonic Sampling Me	thod:	AOI01-01	
Coordinates:	LUG OF S	35.624835				Sonic/Continuou		Sheet 3 of	10
Surface Elevation	ו:	6,328.95 ft						Drilling	-
Casing Elevation		6,328.84 ft				Water Level	-	Start	Finish
GW level at time		176.31 ft				Time	-	4/25/2022	5/9/2022
GW level at time	of sampling:	176.05 ft				Date	4/25/2022	850	1647
Sample	Foot Driver	חים	Donth		Surface Co	nditionat	Poro ground		
Type/ID	Feet Driven /Feet	PID	Depth in	Log	Surface Co	naitions:	Bare ground		
Турель	Recovered	ppm	Feet	LUg					
				GW	40'-42.5', grav	ely sand, light bro	wnish gray (10YR 6/	2), loose, slightly i	moist, trace
	Full recovery		41				d, gravel up to 3" dia		,
	unless noted								
			42						
		83.8	40	CNA					
			43	GW			owish brown (10YR 6	6/4), loose, dry, fin	e grain
			44		sand, gra	avel up to 1.5" dia	meter, trace silt		
			45						
				SP	45'-47.5', sand	, reddish brown (5	SYR 4/4), loose, sligh	tly moist, coarse g	grain
			46		sand, tra	ce gravel up to 1"	diameter		
		90.3	4-						
			47		47 EL 40 EL	a rod-l	(EVD 4/4) - "	whath (ma − ! − 4	analy 1
			48		47.5-48.5', sar	iu, readish brown	(5YR 4/4), loose, slig	jnily moist, coarse	e grain sand
		33.9	49		48.5'- 50', silty	clay, brown (7.5Y	R 5/3), stiff, moist		
				CL			vn (10YR 4/4), slightl	y moist, very stiff,	plastic
			50						
		56.0	_	ML	51'-53', clayey	silt, yellowish bro	wn (10YR 5/4), very o	dense, plastic, mo	ist
			51						
			52						
			02						
		13.2	53		53'-56.5', claye	y silt, yellowish bi	own (10YR 5/4), me	dium dense, low p	lastic, moist
			54						
		114.2							
			55						
			56						
		400.0							
		133.3	57	SW	56.5'-57.5', sar	nd, brown (7.5YR	5/4), loose, dry, med	ium to coarse gra	in sand,
						vel up to 1" diame			
			58	GW			0YR 4/3), loose, dry,	trace cobbles up	to 6"
			59		diamete	r, medium to coar	se grain sand		
			09						
			60						
		171.0							
		171.2	61						
Logged by:		S.Lauric	ella			_	Date:	04/25/2022	
Drilling Contractor		Environ	mental W	/orks In	IC.		Driller:	Justin Maples	6

R	EA Engineerin	a. Scienc	e.			Job. No. 634250383	Client: ARNG	Location: San Army Aviation St	-			
	and Technol					Drilling Metho		Boring No.				
		,,,				Sonic		AOI01-01				
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Met	hod:					
Coordinates:		35.624835				Sonic/Continuous		Sheet 4 of	10			
Surface Elevation	ו:	6,328.95 ft						Drill	ing			
Casing Elevation	:	6,328.84 ft				Water Level	-	Start	Finish			
GW level at time	-	176.31 ft				Time	-	4/25/2022	5/9/2022			
GW level at time	of sampling:	176.05 ft				Date	4/25/2022	850	1647			
Sample	Feet Driven	PID	Depth	11909	Surface Co	nditions:	Bare ground					
Type/ID	/Feet	ppm	in	Log	Sunace CO	nutions.	Bale ground					
1,900,12	Recovered	PPIII	Feet	Log								
	Full recovery	171.2	61									
	unless noted		-									
			62									
		42.5		SW	62'-63.5', sand	y gravel, yellowish	brown (10yr 5/4), m	ostly sand, loose,	dry, trace			
		72.0	63		cobbles up to 6"gravel up to 1" diameter							
			64		63.5'-65', sand, yellowish brown (10YR 5/6), medium dense, dry, trace gravel up to 1" diameter, medium to coarse sand							
		40.2	05		to 1" dia	meter, medium to	coarse sand					
			65	SM		handland to the term	h harman (40) (5 4)	an a dia dia				
			66	SIVI			sh brown (10YR 4/4)	, medium dense, i	moist,			
			00		TINE to m	edium sand, trace	coarse grain					
		32.8	67									
		02.0										
			68	SW	67.5'-70', well graded sand, dark yellowish brown (10YR 4/4), loose, dry,							
			-		medium grain sand, trace coarse grain sand							
			69				-					
			70									
		12.8				-	own (10YR 4/4), me	dium dense, fine g	grain			
		-	71		sand, tra	ace medium, trace	silt					
			70									
			72									
		1.1	73									
			13									
			74									
		60.2			74.5'-75', sand	well graded, loose	e, dry, trace coarse g	grain sand, mediu	m			
			75			nd, brown (10YR 5/		,				
				SP			ellowish brown (10Y	R 4/4), loose, dry,	fine to			
			76		coarse g	rain sand, coarsen	s downward, trace g	gravel up to 2" dia	meter			
		64.8										
			77									
			70									
			78									
			79									
			19	GW	79'-82 5' cond	v gravel well grad	ed, dark yellowish b	rown (10V₽ ///)	oose dry			
			80			ell graded gravel u		10 m (10 m 4/4), 1	5555, ui y,			
					into to w	en gradea gradei u						
		77.9	81									
01												
Logged by:		S.Lauric	ella			_	Date:	04/25/2022				
		_		. –								
Drilling Contractor	Iling Contractor: Environmental Works Inc.						Driller:	Justin Maples	6			

®	EA Engineerin	a. Scienc	ce.			Job. No. 634250383	Client: ARNG	Location: San Army Aviation So	,
	and Technol	•				Drilling Metho		Boring No.	apport i donity
		əy, mo.,	. 50			Sonic	~~.	AOI01-01	
	LOG OF S			NG		Sampling Me	thod:		
Coordinates:		35.624835				Sonic/Continuou		Sheet 5 of	10
Surface Elevation	1:	6,328.95 ft	,			sent, continuou		Drill	
Casing Elevation:		6,328.84 ft				Water Level	-	Start	Finish
GW level at time		176.31 ft				Time	_	4/25/2022	5/9/2022
GW level at time	-	176.05 ft				Date	4/25/2022	850	1647
	or ouriphing.	170.00 11				Date	4/20/2022	000	1017
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log			24.0 9.04.14		
51	Recovered		Feet	- 5					
	Full recovery	77.9	81						
	unless noted		-						
			82						
			-						
		33.5	83	GW	82.5'-85', sand	y gravel, well grad	ded, brown (10YR 5/3	3), loose, dry, fine	to well
					graded g	ravel up to 2" diar	neter		
			84		<u> </u>	•			
			85						
				SP	85'-87.5', poor	ly graded sand, lo	ose, dry, medium gra	ain sand, trace col	oble up to
			86		6" diame	eter, subangular			
		16.7							
		10.7	87	SW	87.5'-89', grave	ely sand, gray (10	YR 6/1), well graded	, loose, dry, grave	l up to 2"
					diameter	, subrounded			
			88						
		12.4							
		12.1	89						
				SP	89'-92.5', poor	ly graded sand, lo	ose, dry, medium gra	ain sand, trace col	oble up to
			90		6" diame	eter, subangular			
		3.9							
			91						
			92						
		20.4	00	SW					
			93	300	-		0YR 6/1), well grade	ed, loose, dry , gra	vel up to
			04	SP		eter, subrounded			alala sua ta
			94	UF			ose, dry, medium gra	am sano, trace col	up to,
		36.5	95		trace gra	avel up to 2" diam	eler, sudrounded		
			30	SW	95'-97 5' cand	vellowish brown	(10YR 5/4), loose, d	ry fine to coarse (sand well
			96				5" diameter, subang		Junu, WCII
			50		graueu,	ace graver up lo	o diameter, subdily	uiul	
		37.1	97						
			0,						
			98	SW	97.5'-99', arav	ely sand. light brow	wnish gray (10YR 6/2	2), loose. drv. well	graded
					, g.av	,,		,, , , , , , .	J
			99						
					99'-102.5', san	d, yellowish browi	n (10YR 5/4), loose,	dry, fine to coarse	sand, well,
			100			avel up to 2" diam			
		20.0							
		38.6	101						
Logged by:		S.Lauric	ella			_	Date:	04/25/2022	
						=			
Drilling Contractor		Environ	mental W	/orks In	C.		Driller:	Justin Maple	S

EA ®	EA Engineerin and Technol	-				Job. No. 634250383 Drilling Metho	Client: ARNG d [:]	Location: San Army Aviation Si Boring No.	,
		ogy, mo.,	1 00			Sonic	u.	AOI01-01	
	LOG OF S		K BORI	NG		Sampling Met	hod:		
Coordinates:		35.624835				Sonic/Continuous		Sheet 6 of	10
Surface Elevation	ו:	6,328.95 ft						Drill	
Casing Elevation	:	6,328.84 ft				Water Level	-	Start	Finish
GW level at time		176.31 ft				Time	-	4/25/2022	5/9/2022
GW level at time	-	176.05 ft				Date	4/25/2022	850	1647
	er eampling.	110.00 11				Date	1/20/2022	000	1011
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log	Cunaco Co		Baro groana		
.) [Recovered	P. P	Feet	9					
	Receivered		1000	SW					
	Full recovery	38.6	101	• • •					
	unless noted								
			102						
		36.2	103	SW	102.5'-105', we	ell graded sand, vel	lowish brown (10YF	R 5/4), loose, dry,	medium
							el throughout cutting		
			104		to subar				,
						0			
		47.2	105						
					105'-108', grav	ely sand, light brow	vnish gray (10YR 6/	2), loose, dry, wel	l graded
			106						
		10.0							
		10.8	107						
			108						
				GW	108'-111', sand	dy gravel, pale brow	vn (10YR 6/3), loose	e, dry, gravel up to	o 4"
			109		diameter	, subrounded, sub	angular		
			110						
		64.7							
			111						
				SW			brown (10YR 4/6),		ist,
			112		medium	to coarse grain sa	nd, trace gravel up	to 2" diameter	
		66.2	440	SM					
			113	Sivi		-	vish brown (10YR 4		
			114			-	trace coarse sand g	jrain, minor trace	ciay,
			114		low plast	icity			
			115						
			115	ML	115'-120' silt	dark vellowish brow	vn (10YR 4/6), mois	t loose trace find	sand
			116		. 10 120, 311,		(1011(+/0), 11015	., 10000, 11000 1116	
		20.7	117						
			118						
		<u></u>	-						
		81.8	119						
			120						
		22.0		GW	120'-124', sand	ly grav <mark>el, yellowish</mark>	brown (10YR 5/4),	loose, dry,	
		22.8	121		one cobb	ble up to 7" diamete	er, subrounded and	subangular	
Logged by:		S.Lauric	ella			_	Date:	04/25/2022	

Environmental Works Inc.

Driller:

EA®	EA Engineerin and Technol	-				Job. No. 634250383 Drilling Metho	Client: ARNG d:	Location: San Army Aviation Su Boring No.	-					
		,				Sonic		AOI01-01						
O	LOG OF S					Sampling Met		a						
Coordinates:		35.624835		693		Sonic/Continuous	s Core	Sheet 7 of						
Surface Elevation		6,328.95 ft						Drill	-					
Casing Elevation		6,328.84 ft				Water Level	-	Start	Finish					
GW level at time GW level at time	-	176.31 ft				Time Date	- 4/25/2022	4/25/2022 850	5/9/2022 1647					
	or sampling.	176.05 ft				Dale	4/20/2022	000	1047					
Sample	Feet Driven	PID	Depth	USCS	Surface Co	onditions:	Bare ground							
Type/ID	/Feet	ppm	in	Log										
	Recovered		Feet											
		22.8	10.1	GW			n brown (10YR 5/4),	-						
	Full recovery unless noted		121		one cob	ble up to 7" diamet	er, subrounded and	subangular						
			122											
			122											
		23.5	123											
			124											
			10-	SC	124'-125', Clayey sand, brown (10YR 4/3), medium dense, moist, fine to									
			125	GW	medium grain sand									
			126	900	125'-130', sandy gravel, poorly graded, light yellowish brown (10YR 6/4), loose, dry, fine to coarse grain sand, gravel up to 3" diameter									
			120		ury, line	to coarse grain sar	iu, graver up to 3° di	ומוווכוכו						
		19.2	127											
			128											
		7.7												
			129											
			130											
		9.5	130	SW	130'-132 5' sa	and, dark vellowish	brown (10YR 4/4), le	oose, dry mediun	n to					
			131				avel up to 1" diamet		~					
	16"													
			132											
		10.8	105											
		╏───┤	133				brown (10YR 4/4), le	oose, dry, mediun	n to fine					
			134		grain, tra	ace gravel up to 3"	uameter							
			104											
			135											
		21.2		CL	135'-139', clay	r, brown (7.5YR 5/4), soft, slightly moist	, low						
		21.2	136		plasticity	, trace silt, fine to r	nedium grain sand t	hroughout						
			407											
		71.1	137											
		71.1	138											
			100											
			139											
				SW	139'-142.5', sa	and, strong brown (7.5YR 5/6), loose, d	ry, medium to coa	irse grain					
			140		sand, tra	ace gravel up to 1.5	" diameter							
		2.8												
			141											
Logged by:		S.Lauric	ella			_	Date:	04/25/2022						
Drilling Contractor	.	Environr	nental M	/orks In	nc		Driller:	Justin Maple	2					

R	EA Engineerin	a, Scienc	e,			Job. No. 634250383	Client: ARNG	Location: San Army Aviation Su				
	and Technol	-				Drilling Metho		Boring No.	,			
		- 97,,	0			Sonic		AOI01-01				
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Me	thod:					
Coordinates:			5, -106.0876			Sonic/Continuou		Sheet 8 of	10			
Surface Elevation	1:	6,328.95 ft						Drilli				
Casing Elevation:		6,328.84 ft				Water Level		Start	Finish			
GW level at time		176.31 ft				Time	+ -	4/25/2022	5/9/2022			
GW level at time	•	176.05 ft				Date	4/25/2022	850	1647			
	o. oumping.	170.00 10				2010			10-11			
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground					
Type/ID	/Feet	ppm	in	Log		nationo.	Date ground					
.,,	Recovered	PP'''	Feet	-~9	 							
i		i i		SW	139'-142.5' sa	nd. strong brown	(7.5YR 5/6), loose, d	rv. medium to coa	rse grain			
	Full recovery	2.8	141	2		ice gravel up to 1.		,,				
	unless noted				,	<u> </u>						
			142		ļ							
		6.8			 							
		0.0	143	SW	142.5'-145' sa	nd. reddish vellow	/ (5YR 6/6), loose, dr	v. medium to coa	se grain			
		t i	· · · ·				diameter, fines dow	•	-			
			144		54.14, 110							
		t i			ţ							
			145									
		9.7			145'-147.5', sa	nd, reddish brown	(7.5YR 5/6), loose,	dry, medium to co	arse grain,			
			146				eter, fines downward	-	-			
			1									
			147									
			1 1		1							
			148	SW	147.5'-150', sa	147.5'-150', sand, strong brown (7.5YR 5/6), slightly dense, dry, medium to						
		11.1	1 1			-	up to 2" diameter, su	-				
		11.1	149									
			1									
			150									
		13.1	1		150'-152.5', sa	nd, strong brown	(7.5YR 5/6), slightly of	dense, dry, mediu	m to coarse			
			151		sand, fin	es downward, trac	ce gravel up to 2" dia	meter, subrounde	d			
			1 1									
			152									
		4.9	1 1									
			153			-	(7.5YR 5/6), slightly o		m to			
		l I			coarse s	and, trace gravel u	up to 2" diameter, su	brounded				
		[]	154		Į							
		l I	1		Į							
			155	C\A/								
			450	SW			(10YR 5/6), loose, d	-	-			
			156		sand, co	arsens into gravel	downward, gravel u	p to 1.5" diameter				
		241.5	457		ļ							
			157	ML								
			150	IVIL			ish gray (10YR 6/2),					
		{	158				ace gravel up to 2" d	nameter, subround	iea,			
		5.5	150		subangu	iar						
		╉────┤	159		Į							
			160		 							
		╉───┤	100	SW	160'-161 5'	nd light vollowisk		JOSE dry				
		19.7	161	300			brown (10YR 6/4), lo cutting, trace gravel	-	subanqular			
		13.1	101				, aloc gravel					
Logged by:		S.Lauric	ella			-	Date:	4/25/2022-4/2	26/2022			
Drilling Contractor	••	Environ	mental W	lorke In	c		Driller:	Justin Maples	2			
Draining Contractor	•		nentai W	UIV2 III	0.			Justin Maples				

R	EA Engineerir	ig, Sciend	ce,			Job. No. Client: Location: Santa Fe, NM 634250383 ARNG Army Aviation Support Facility				
	and Technol	logy, Inc.,	PBC			Drilling Metho Sonic	od:	Boring No. AOI01-01		
	LOG OF S			ING		Sampling Met	thod:			
Coordinates:		35.624835				Sonic/Continuous		Sheet 9 of	10	
Surface Elevation	n:	6,328.95 f	,					Drill		
Casing Elevation		6,328.84 f				Water Level	_	Start	Finish	
GW level at time			L			Time	-	4/25/2022	5/9/2022	
GW level at time	•	176.31 ft 176.05 ft			·	_	- 4/25/2022	4/23/2022 850	1647	
Gw level at time	or sampling.	176.05 II			·	Date	4/23/2022	850	1047	
Sample	Feet Driven	PID	Depth		Surface Co	nditional	Boro ground			
Type/ID	/Feet		-		Surface Co	nullions.	Bare ground			
турель		ppm	in Foot	Log						
	Recovered		Feet	0144						
		19.7	4.04	SW			brown (10YR 6/4), le		aubangular	
	Full recovery unless noted		161		line to co	barse infoughout o	cutting, trace gravel	up to 1 diameter	, subangular	
	uniess noted		400	CM	101 51 1051 00	ndu oilt light brown	nich arou (10VD C/2)	looon dry finn		
			162	SM			nish gray (10YR 6/2)			
		4.5					ard, trace gravel up	to 3" diameter, si	Jbrounded	
			163		subangu	lar				
			164							
			165							
				SW	165'-166', sand	d, reddish yellow (5	5YR 6/6), loose, dry,	medium to coars	e grain	
			166			ce fine grain				
		46.4		SC	166'-167.5', cla	ayey sand, reddish	brown (5YR 4/6), de	ense, stiff,		
	16				medium	to coarse grain sa	nd, trace silt, well gr	aded		
			168	SW	167.5'-175', sa	nd, reddish yellow	(7.5YR 6/6), loose,	dry, fine to coarse	e grain,	
		51.6			trace silt,	well graded, trace	e gravel up to 2" diar	meter, subangula	r	
			169							
			170							
		59.5								
			171							
			172							
		80.4								
			173							
			<i>i</i> = <i>i</i>							
			174							
			175							
				SC		-	prown (5YR 4/6), dei	-		
			176	0.5			medium to coarse g		-	
		31.8		SP			rown (10YR 6/4), loc		arse throughou	
			177		cutting, ti	race gravel up to 1	" diameter, subangu	ular		
			178							
		14.8								
			179	0						
				SW	-		ellow (7.5YR 6/6), lo	-		
			180				ace silt, gravel up to			
Discrete / AOI01-01-		51.2		SW			4), loose, dry, mediu	um to coarse, trac	e fine	
181			181		grain, tra	ace gravel up to 1"	diameter			
Logged by:		S.Lauric	ella			-	Date:	04/26/2022		

Environmental Works Inc.

Driller:

EA®	EA Engineerin and Technol	-				Job. No. ⁶³⁴²⁵⁰³⁸³ Drilling Metho	Client: ARNG d:	Location: San Army Aviation Su Boring No.	
	and recrifion	ugy, inc.,	PDU			Sonic	u	AOI01-01	
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Met	hod:		
Coordinates:		35.624835	, -106.087	693		Sonic/Continuous	Core	Sheet 10 c	
Surface Elevation	ו:	6,328.95 ft						Drill	-
Casing Elevation		6,328.84 ft				Water Level	-	Start	Finish
GW level at time	•	176.31 ft				Time	-	4/25/2022	5/9/2022
GW level at time	of sampling:	176.05 ft				Date	4/25/2022	850	1647
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log			Bare ground		
3 1 ···	Recovered	F F	Feet	3					
		54.0		SW	180'-181', sand	d, brown (7.5YR 4/4	4), loose, dry, mediu	im to coarse, trac	e fine
	Full recovery	51.2	181		grain, tra	ace gravel up to 1"	diameter		
	unless noted			SW	181'-182', grav	ley sand, reddish y	ellow (7.5YR 6/6), le	oose, dry, fine to a	coarse
			182		-	-	ce silt, gravel up to		
		1.9		SW	182'-186', sand	l, yellowish brown	(10YR 5/6), loose, w	vet, fine to coarse	grain
			183				to 4" diameter, subi	round, subangula	r going
			104		downwai	d			
			184						
		2.7	185						
			100						
			186						
				SC	186'-189', clay	ey sand, dark yello	wish brown (10YR 3	8/6), wet, stiff, fine	e to
		1.4	187		coarse g	rain sand, coarsen	s downward, trace g	gravel up to 2.5" d	iameter,
					plastic				
			188						
		11.5							
			189	014/					
		10.2	100	SW			nd, brown (10YR 6/6		
			190			с	out, gravel up to 1"-4 ngular to angular, tra		increases in
			191		Size you	g downward, suna		ace sit	
			101						
			192						
			193						
			194						
			105						
			195						
			196						
			100						
			197						
			198		TD' = 192'				
					2" PVC SCH 8	0 0.010" screen: 1	70' - 190'		
			199			0 riser: 0 - 170'			
			200			0 sump: 190'- 192			
			200		10/20 silica sa		2' 169'		
			201		grout: <1' - 162	chips hole plug: 16 2'	2 - 100		
			-01						
Logged by:		S.Lauric	ella			-	Date:	04/26/2022	
Drilling Contractor		Environr	mental W	/orks In	IC.		Driller:	Justin Maple	S

R R	EA Engineerin	na. Scienc	e.			Job. No. 634250383	Client: ARNG	Location: San Army Aviation St	
	and Technol	-				Drilling Meth			
	and rechnol	iogy, mc.	FDC				ou.	Boring No. AOI01-02	
			ים אי			Sonic Sompling Ma	thod.	AUI01-02	
Coordinates:	LOG OF S					Sampling Me Sonic/Continuou		Shoot 1 of	7
			′, -106.088	001		Sonic/Continuou	is core	Sheet 1 of	
Surface Elevation		6,325.13 f						Drill	Ŭ
Casing Elevation:		6,324.96 f	t			Water Level	-	Start	Finish
GW level at time	0	110.80 ft				Time	-	4/27/2022	5/9/2022
GW level at time	ot sampling:	110.72 ft				Date	4/27/2022	1145	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log			-		
	Recovered		Feet	Ĭ					
				SP	0-5', sand, dar	k brown (10YR 3/	3), loose, dry, fine gr	ain sand, trace coa	arse,
Composite / AOI01-02	Full recovery		1				eter, poorly graded		
SB-0-2	unless noted	25.2							
			2						
			3						
		31.6							
		1	4						
			5						
		16.6		SM	5'-7.5', silty sa	nd, dark yellowish	brown (10YR 4/6), le	oose, dry, fine grai	n sand,
		[6		trace gra	avel up to 1" diam	eter, subangular		
	17"								
			7						
		54.9							
			8		7.5'-10', silty s	and, dark yellowis	h brown (10YR 4/6),	medium dense, dr	y, fine grain
					sand, tra	ice gravel up to 1	" diameter, subangul	ar	
			9						
		<u> </u>	10						
		30.0		SC			rish brown (10YR4/6)	, stiff, dense, plast	tic, trace fine
		<u> </u>	11		grain sa	nd			
			40						
		I	12						
		18.2	40						
			13	SP	401.451	deals college 2017	(40)(D 1/0)		
0		Í	14	07			wn (10YR4/6), poorly	y graded, loose, fir	ie to
Composite / AOI01-02 13-15			14		medium	grain			
10-10			16						
		1	15	SC	15' 17 5' alar		wich brown (10VD 4)	(6) otiff damag	otio trace fir-
		16.7	16	50			owish brown (10YR4/	o, sun, dense, pla	ISUC, LIACE TINE
	12"	 	10		grain sa	iu			
	12		17		17.5'-19' 0000	vollowish brown	(10YR 5/4), loose, d	ny fina ta aparas a	rain
		I				•	race gravel up to 1.5	· · ·	
		21.3	18	SW		lar, well graded	ace graver up to 1.5	Gianneter, Subrou	nucu,
			10	SW	-	-	wish brown (10YR 6/	(4) loose dry fine	to gravel
		Í	19		-		neter, well graded	.,, iooso, ary, iiile	.o gravor
					grain, gr				
		Í	20						
		7.2	21						
Logged by:		S. Lauri	cella				Date:	04/27/2022	
		J. Lauii				-	Daig.	07/21/2022	
Drilling Contractor	:	Environ	mental V	Vorks Ir	IC.	-	Driller:	Justin Maple	S

EA®	EA Engineerin and Technol	-				Job. No. Client: Location: Santa Fe, NM 634250383 ARNG Army Aviation Support Factor Drilling Method: Boring No.			
						_{Sonic} Sampling Me	thad	AOI01-02	
Coordinates:	LOG OF S	35.624167	-	-		Sonic/Continuous		Sheet 2 of	7
Surface Elevation	ו:	6,325.13 ft						Drill	
Casing Elevation		6,324.96 ft				Water Level	-	Start	Finish
GW level at time		110.80 ft				Time	-	4/27/2022	5/9/2022
GW level at time	of sampling:	110.72 ft				Date	4/27/2022	1145	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log		nonions.	Dare ground		
	Recovered		Feet	- 3					
				SW					
	Full recovery		21						
	unless noted		22						
		54.7	22						
		54.7	23						
			24						
			25	GW	25' 20' aandu	aroual poorly arou		10VD 4/6	10000
		15.2	26	011			ded, dark yellowish b nd, gravel up to 1" o		loose,
	17"				di	to occure grained	na, grator ap to 1 a		
			27						
		29.6							
			28						
			29						
			29						
			30						
		8.4		SW	30'-31.5', grav	ely sand, well grac	led, light brown (7.5)	YR 6/4), loose, dry	, silt to
			31		gravel	up to 1.5" diamete	r, well graded		
			20	GC					
			32	90		diameter, subrour	(7.5YR 4/4), soft, m	ioist, plastic, trace	gravei
		36.2	33	SW			aded, light brown (7.	.5YR 6/4). loose. d	rv. silt to
						up to 1.5" diamete		,,, -	
			34						
	40"		05						
	13"		35						
		12.6	36	GC	35.5'-36' clave	ev gravel, brown (7	7.5YR 4/4), soft, moi	st. plastic. trace or	avel
				GW		diameter, subrour		, F	
			37		36'-42', gravely	y sand, well grade	d, light yellowish bro	wn (10YR 5/4), loc	ose, dry, silt to
		43.3	~ ~		gravel u	o to 4" diameter, s	ubrounded, subangu	ular	
			38						
			39						
		05.0	- 55						
	11.4"	25.6	40						
			41						
Logged by:		S.Lauric	ella			_	Date:	04/27/2022	
Drilling Contractor		Environr	mental V	Vorks In	С.	_	Driller:	Justin Maple	S

 @					Job. No.	Client:	Location: Sant					
	EA Engineerin	-				634250383	ARNG	Army Aviation Su	upport Facility			
	and Technol	ogy, Inc.,	PBC			Drilling Meth	od:	Boring No.				
						Sonic		AOI01-02				
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Me	ethod:					
Coordinates:		35.624167				Sonic/Continuou		Sheet 3 of 7	,			
Surface Elevation):	6,325.13 ft						Drilli				
Casing Elevation:		6,324.96 ft				Water Level	-	Start	Finish			
GW level at time						Time	-	4/27/2022	5/9/2022			
	0	110.80 ft				-						
GW level at time	or sampling:	110.72 ft				Date	4/27/2022	1145	1650			
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground					
Type/ID	/Feet	ppm	in	Log			j i i					
51	Recovered	F F	Feet	3								
				SW	36'-42' gravely	sand well grade	d, light yellowish brov	wp (10VR 5/4) loo	se dry silt to			
	F		41	011			subrounded, subangu		30, ury, sin to,			
	Full recovery unless noted		41		graverup		subrounded, subangu					
	0		40									
		00.0	42	CL	101 10 51 11	1. 1						
		36.9	40		-		R 4/4), stiff, moist, pla		-			
			43	GW			h brown (10YR 5/4), I		n to			
					coarse g	coarse grain sand, gravel up to 5" diameter, poorly graded						
			44									
			45									
			46									
		28.2			46'-48.5', sand	y gravel, yellowisl	n brown (10YR 5/4), I	oose, dry, fine to c	coarse grain			
			47		sand, gr	avel up to 2" dian	neter, subrounded, ro	unded,				
						•	, ,	,				
			48									
			_									
		25.6	49	SC	48.5'-49' clave	v sand brown (1)	OYR 5/3), stiff, moist,	plastic fine grain	to			
				SW	medium			plastic, fille grain	10			
			50			•	ded strong brown (7	EVP E/E) looso d				
			50		-	, gravely sand, well graded, strong brown (7.5YR 5/6), loose, dry, edium to coarse grain, gravel up to 2" diameter, subrounded,						
		5.7	51		medium	to coarse grain, g	raver up to 2 diamet	er, subroundea,				
			51									
			50									
-			52									
		42.4										
			53									
			54	SW			(10YR 5/6), loose, dry		se grain			
					sand, tra	ace gravel up tp 2	" diameter, rounded,	subrounded				
			55	SW	54.5'-56', grave	ely sand, well grad	ded, strong brown (7.	5YR 5/6), loose, d	lry,			
					medium	to coarse grain, g	ravel up to 2" diamet	er, subrounded,				
			56									
	26"	34.5		GW	56'-59', sandy	gravel, dark brow	n (7.5YR 3/4), loose,	dry, medium to co	barse			
		04.0	57		grain sa	and, gravel up to	2" diameter, subroun	ded, subangular, v	well graded			
			58									
		70.2										
			59									
				SM	59'-61', siltv sa	nd. dark vellowist	n brown (10YR 4/2), r	nedium dense. tra	се			
			60			rain sand, fine gra						
			00		coarse y	.an oana, nie gra						
			61									
			01									
Logged by:		S.Lauric	ella			-	Date:	04/27/2022				
Drilling Contractor: Environmental Works Inc.						_	Driller:	Justin Maples	S			

EA®	EA Engineerin and Technol	0.	-			Job. No. Client: Location: Santa Fe, N 634250383 ARNG Army Aviation Support F Drilling Method: Boring No.			
						Sonic Someling M	athad	AOI01-02	
Coordinates:	LOG OF S	35.624167				Sampling Me Sonic/Continuou		Sheet 4 of	7
Surface Elevation	n:	6,325.13 ft						Drill	
Casing Elevation		6,324.96 ft				Water Level	-	Start	Finish
GW level at time		110.80 ft				Time	-	4/27/2022	5/9/2022
GW level at time	•	110.72 ft				Date	4/27/2022	1145	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	aditiona	Dava anawad		
Type/ID	/Feet	ppm	in	Log	Surface Co	nunions.	Bare ground		
Type/ID	Recovered	ppm	Feet	LUg					
	100010100		1 001						
	Full recovery	14.7	61						
	unless noted			ML	61'-64', sandy:	silt, brown (10YR	4/3), medium dense	, dry, fine to mediu	ım grain,
			62		trace gra	vel up to 1" diam	eter	-	-
			63						
		32.5							
		32.5	64						
				CL	64'-66', sand c	lay, brown (10YR	5/3), soft, moist, low	v plasticity, trace m	edium and
			65		coarse g	rain sand			
			66						
		6.9		SW			10YR 5/4), loose, mo		
			67		-	-	p to 2" diameter, rou		
					downwar	d into fine grain s	sand, trace clay throu	ghout, soft, low pla	asticity
			68						
		8.0	60						
			69	CL	001 701 and 1				
			70	02			R 4/3), medium stiff,	moist, fine to coars	se
			70		yrain sai	nd, trace gravel u	p to T diameter		
			71						
		16.1	72						
				GW	72'-73', sandy	gravel, dark yello	wish brown (10YR 4/	4), loose, dry, fine	to gravel
			73		grain, gr	avel up to 2" dia	meter, subrounded, s	ubangular	-
		8.8		CL	73'-74', sandy	clay, brown (10Y	R 4/3), medium stiff,	moist, fine to coars	se
		0.0	74		grain sar	nd, trace gravel u	p to 1" diameter		
				GW	74'-76', sandy	gravel, dark yello	wish brown (10YR 4/	4), loose, dry, fine	to gravel
			75		grain, gr	avel up to 2" dia	meter, subrounded, s	ubangular	
			70						
			76	SW	701 70 71				
		15.1	77	300			(10YR 5/4), loose, d	ry to moist, fine to	coarse
					grain sa	nd, trace gravel t	up to 2" diameter		
			78						
			10						
		18.9	79	GW	78.5'-81'. sand	v gravel, vellowis	h brown (10YR 5/4),	loose, drv. mediun	n to
						, ,	3" diameter, subang		
			80				,		
			81						
Logged by:		S.Lauric	ella				Date:	04/27/2022	
Drilling Contractor	r:	Environr	mental W	<u>/orks</u> In	IC.	_	Driller:	Justin Maple	s

E-A ®	EA Engineerir	ig, Scienc	ce,			Job. No. 634250383	Client: ARNG	Location: San Army Aviation S	,
	and Technol	ogy, Inc.	, PBC			Drilling Metho Sonic	od:	Boring No. AOI01-02	
	LOG OF S	OIL/ROO		ING		Sampling Me	thod:		
Coordinates:			7, -106.088			Sonic/Continuous		Sheet 5 of	7
Surface Elevati	on:	6,325.13 f	t					Drill	ing
Casing Elevatio	on:	6,324.96 f	t			Water Level	-	Start	Finish
GW level at tim		110.80 ft	-			Time	-	4/27/2022	5/9/2022
GW level at tim	0	110.72 ft				Date	4/27/2022	1145	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet	_					
				GW	78.5'-81', sand	y gravel, yellowish	brown (10YR 5/4),	loose, dry, mediur	n to
	Full recovery	2.0	81		coarse g	rain, gravel up to 3	3" diameter, subang	ular, angular	
	unless noted			SW	81'-83.5', grav	ely sand, light gray	(10YR 7/2), loose,	very fine to coarse	e grain
			82		sand, tra	ice silt, gravel up t	o 3" diameter, subro	ounded, subangula	r, poorly
			-		graded				
			83		g				
		5.3	84	GW	83 5'-85 5' sai	ndv. aravel vellowi	sh brown (10YR 5/4)) loose dry medi	um to
			04				3" diameter, subang		
			85		coarse g	italii, gravei up to t	o diameter, subarig	ulai, angulai	
			00		85 5'-86' cand	v silt dark vollowig	sh brown (10YR 4/4)	medium dense u	moist
			86	ML		n sand, trace coars		, mediam dense, i	110131,
		4.6	00	SW			,	t modium donoo	wall
		4.6	07	011			wn (10YR 3/6), mois		
			87			· · · ·	in throughout, trace	gravel up to 1.5° c	llameter,
			00		subrour	ded, subangular			
			88				(10)(5,0(0))		
		40.1	00				vn (10YR 3/6), mois		
			89			-	ded, fine to coarse g	grain throughout, ti	race gravel
			00		up to 4"	diameter, subangu	lar to angular		
			90						
	_		91						
		17.6	00						
			92						
						,	vn (10YR 3/6), mois		
			93	CW/		· · · ·	in throughout, trace	gravel up to 1.5" c	liameter,
		10.4		GW		ded, subangular			
	-		94				rown (10YR 5/6), lo		
			05		up to 4"	alameter, subroun	ded, angular, fine to	coarse grain sand	a throughout
	-		95						
	-		96						
		29.5	07				brown (10YR 5/6),		
	-		97		3" diam	eter, rounded, sub	angular, fine to coar	se grain sand thro	ughout
			00						
	4	 	98						
		23.0		~					
	-	 	99	CL			brown (10YR 5/6), r	moist, dense, fine	to coarse
					grain sa				
	_		100	SW		-	(10YR 5/6), loose,	-	
					grain sa	nd, trace silt, trace	gravel up to 3" subr	rounded, rounded,	well graded
	1		101						
₋ogged by:		S.Laurio	cella			_	Date:	04/27/2022	
		East		lader 1	-		Della	lunder Ad 1	_
Drilling Contract	OL:	Environ	mental V	vorks Ir	IC.	_	Driller:	Justin Maple	S

LOG OF SOL/FACK HORING Starting Method: Sheet 6 of 7 Surface Elevation: 5.5213 nt Surface Elevation: 5.5213 nt Surface Elevation: 5.524167, 106028621 Water Level . Starting Flewation: 5.524167, 106028621 Water Level . Starting Flewation: 5.524 88 tt Finish Finish Casing Elevation: 6.524 88 tt 110.20 nt 110.20 nt Starting Flewation: Staring Flewation: Starting Flewation: <th>EA®</th> <th>EA Engineerin and Technol</th> <th>-</th> <th></th> <th></th> <th></th> <th>Job. No. 634250383 Drilling Meth Sonic</th> <th>Client: ARNG od:</th> <th colspan="3">Location: Santa Fe, NM Army Aviation Support Facility Boring No. AOI01-02</th>	EA®	EA Engineerin and Technol	-				Job. No. 634250383 Drilling Meth Sonic	Client: ARNG od:	Location: Santa Fe, NM Army Aviation Support Facility Boring No. AOI01-02		
Coordinates: 35.024107 Sheet 6 of 7 Surface Elevation: 5.32430 ft 5.32430 ft Surface Elevation: Surface Elevation: 5.32430 ft Surface Elevation: <		LOG OF S	SOIL/ROC	K BORI	NG			ethod:	AUIUT-02		
Casing Elevation: GW level at time of drilling: Type/ID Base on time Start Finish time Start Finish time Sample Type/ID Feet Driven Recovered PID Ppm Depth in Log USCS Log Surface Conditions: Bare ground Finish time East Surface Conditions: Bare ground Finish Log Full recovered PID Recovered PID Ppm Depth in Log USCS Surface Conditions: Bare ground Surface Conditions: Bare ground East Surface Conditions: <td< td=""><td>Coordinates:</td><td></td><td>35.624167</td><td>, -106.088</td><td>661</td><td></td><td>Sonic/Continuou</td><td>is Core</td><td>Sheet 6 of</td><td>7</td></td<>	Coordinates:		35.624167	, -106.088	661		Sonic/Continuou	is Core	Sheet 6 of	7	
GW level at time of drilling: Inson Image: Image: <thimage:< th=""> Image: <thimage:< th=""></thimage:<></thimage:<>	Surface Elevation	1:	6,325.13 ft	:					Drilli	ing	
GW level at time of sampling 1072 th Date 4427/2022 1145 1650 Sample Feet ppn Feet	Casing Elevation:		6,324.96 ft				Water Level	-	Start	Finish	
Sample Type/ID Feet Driven /Feet PID ppm Depth in Feet USCS Urface Conditions: Bare ground Full recovery urless noted 93 101 587<	GW level at time	of drilling:	110.80 ft				Time	-	4/27/2022	5/9/2022	
Type/ID /Feet Recovered ppm in Feet Log Full recovery unless noted 101 9.3 102 Image: Solution of the so	GW level at time	of sampling:	110.72 ft				Date	4/27/2022	1145	1650	
Type/ID /Feet Recovered ppm in Feet Log Full recovery unless noted 101 9.3 102 Image: Solution of the so	Sampla	Fact Driven	DID	Donth	LICCC	Curtana Ca					
Recovered N Feet N Puil recovery urless noted 101 9.3 102 9.3 102 9.3 102 9.3 98.5-103, said, yelowish brown (10/R 5/6), loose, dy, medium to coarse grain arad, trace fine alt, trace gravel up to 3* subrounded, rounded, well graded Image: State of the sta						Surface Co	nations:	Bare ground			
Full recovery unless noted 101 SW 9.3 25.133 sand, yalowish brown (10YR 56), loose, dy, medium to coarse grain araot, trace fire sit, trace gravel up to 3" subrounded, rounded, well grainds Image: Site of Si	турель		ррп		LUg						
Full recovery unless noted 101 9.3 102 102 Image:		Recovered		1 661	SW	00 5'-103' con	d vellowish brow	n (10VP 5/6) loose /	dry medium to co:	areo	
unless noted 9.3 102 unless noted 9.3 102 103 53.8 104 103 53.8 104 104 105 103-106; sandy gravel, brownish yellow (10YR 66), loose, dry, line to coarse grain gravel up to 2*-3* diameter, subrounded, subangular, gravel reduces 104 3.8 106 105 107 107 106 107 gravel up to 2*-3* diameter, subrounded, subangular, gravel 106 107 107 107 108 108-107; sandy gravel, yellowish brown (10YR 4/6), stilf, moist, plastic to low 108 109 109 109 110 109 101 110 108-115; clay, dark yellowish brown (10YR 4/6), stilf, moist, plastic to low 101 1110 112 102 1114 114 103 115 115 103 111 115 103 111 115 103 116 117 104 1117 116 105				101	0.11			1 1			
Image: Section of the sectio			0.3	101		-				.00,	
Image: State of the s			5.5	102							
Single Single GW 103-106; sandy gravel, brownish yellow (10YR 6/b), loose, dry, fine to coarse grain gravel, gravel up to 2".5" dameter, subrounded, subangular, gravel reduces Image: Single Sin				102							
Single Single GW 103-106; sandy gravel, brownish yellow (10YR 6/b), loose, dry, fine to coarse grain gravel, gravel up to 2".5" dameter, subrounded, subangular, gravel reduces Image: Single Sin				103							
Image: state stat					GW	103'-106'. sand	dy gravel, brownis	sh yellow (10YR 6/6).	loose, dry, fine to	coarse	
Image: Second			53.8	104							
3.8 106 3.8 107 36.1 108 36.1 108 100 100 101 108 102 100 103 108 104 108 105 108 106 109 107 100 108 109 109 100 101 100 102 110 110 110 111 112 111 112 111 112 113 112 113 114 113 115 113 115 113 115 113 115 111 115 111 115 111 115 111 115 111 115 111 115 1111 116 1111 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- ,</td> <td></td> <td></td>								- ,			
Image: Constraint of the state of				105							
Image: Constraint of the state of			2.0								
Image: state			3.0	106							
36.1 108 36.1 109 109 109 44.4 111 44.4 111 3.6 112 3.6 113 3.6 113 3.6 113 112 114 113 115 110 115 111 115 111 115 112 116 113 115 110.7 116 117.7 116 117.7 116 117.7 116 117.7 116 117.7 116 117.7 116 117.7 116 117.7 116 118 115-116', sitt, yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 117.7 110.7 116 117 116', 117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 117', 12', clay, dark yellowish brow						106'-109', sand	dy gravel, yellowis	sh brown (10YR 5/6),	loose, dry, very fir	ne to	
Image: Constraint of the second sec				107		gravel, w	vell graded, grave	I fines downward, up	to 3"-1" diameter,	subrounded	
Image: Constraint of the second sec			36.1								
Image: Construction of the second s			00.1	108							
Image: Construction of the second s											
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 110 10 10 10 10 110 10 111 10 111 111 10 111 10 111 10 10 111 10 10 111 10 10 111 10 111 <t< td=""><td></td><td></td><td></td><td>109</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				109							
44.4 111 iameter subrounded, trace sand becomes less sand to trace sit going downward 3.6 112 3.6 113 Composite / AOI01-02 114 113-115 115 10.7 116 11.7 115-116', sit, yellowish brown (10YR 4/6), medium dense, slightly moist, trace medium to coarse grain sand, no gravel 11.7 117 118 117 118 118 120 118 121 120 1.6 121					CL						
44.4 111 going downward going downward 112 112 3.6 113 113-115 114 114 113-115 114 115 113-115 115 115 113-115 115 115 113-115 115 115 113-115 116 115 113-115 117 116 113-115 117 116 113-116 117 116 113-116 117 116 113-116 117 116 113-116 117 116 113-116 118 117 118 118 117-122; clay, dark yellowish brown (10YR 4/6), wery stiff, moist, plastic, trace coarse grain sand 117-122; clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 117-122; clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, 116 118 1120 116 1121 Logged by: S.Lauricella Date: 04/27/2022				110					-	-	
Image: Second state of the second s			44.4					ce sand becomes les	s sand to trace silt		
3.6 113 Composite / AO101-02 114 113-115 115 10.7 115 10.7 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 117 118 117 117 118 118 118 117 118 118 118 117 118 118 118 117 118 118 1120 119 120 116 121 Logged by: S.Lauricella Logged by: S.Lauricella				111		going do	wnward				
3.6 113 Composite / AO101-02 114 113-115 115 10.7 115 10.7 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 117 118 117 117 118 118 118 117 118 118 118 117 118 118 118 117 118 118 1120 119 120 116 121 Logged by: S.Lauricella Logged by: S.Lauricella				110							
Composite / AO101-02 113 114 113-115 115 114 113-115 115 115 113-115 115 115 113-115 115 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-115 116 115 113-116 116 115 1115 116 117 1115 118 117 1115 118 117 1115 119 117 1116 121 117 1116 121 117 1115 121 117 1115 121 117 1115 121 116 1115 121				112							
Composite / AOI01-02 113-115 Inference Inferenc Inference Inferen			3.6	113							
113-115 Image: marked state stat				115							
113-115 Image: marked state stat	Composite / AOI01-02			114							
10.7 10.7 ML 115-116', silt, yellowish brown (10YR 4/6), medium dense, slightly moist, trace race medium to coarse grain sand, no gravel 110 116 116 116'-117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 110 117 116'-117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 111 118 116'-117', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 117'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-112', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-112', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 1120 110'-122' 110'-122' 1120 110'-121' 110'-121'-122' 110'-121'-122' 111 1120 110'-112'-122'-120'-120'-120'-120'-120'-											
10.7 10.7 ML 115-116', silt, yellowish brown (10YR 4/6), medium dense, slightly moist, trace race medium to coarse grain sand, no gravel 110 116 116 116'-117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 110 117 116'-117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace coarse grain sand 111 118 116'-117', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 117'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-112', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-112', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 118 110'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, trace coarse grain sand 111 1120 110'-122' 110'-122' 1120 110'-121' 110'-121'-122' 110'-121'-122' 111 1120 110'-112'-122'-120'-120'-120'-120'-120'-				115							
Image: 10.7 116 trace medium to coarse grain sand, no gravel Image: 10.7 116 trace medium to coarse grain sand, no gravel Image: 10.7 117 117 Image: 10.7 117 117 Image: 10.7 117 117 Image: 10.7 117 117 Image: 10.7 118 116'-117', clay, dark yellowish brown (10YR 4/6), soft, moist, plastic, trace Image: 10.7 118 118' 117'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, Image: 10.7 119 110' 117'-122', clay, dark yellowish brown (10YR 4/6), very stiff, moist, plastic, Image: 10.7 119 110' 110' 110' Image: 10.7 120 110' 110' 110' Image: 10.7 116' 121' 110' 110' Image: 10.7 116' 121' 110' 110' Image: 10.7 116' 121' 110' 110'			10.7		ML	115-116', silt, y	ellowish brown (*	10YR 4/6), medium d	ense, slightly mois	t,	
Image: Construction of the co			10.7	116							
Image: Straig of the straig					CL	116'-117', clay	, dark yellowish b	rown (10YR 4/6), soft	t, moist, plastic, tra	ace	
Image:				117		coarse g	rain sand				
22.5 119 120 1.6 121 Date: 04/27/2022						117'-122', clay	, dark yellowish b	rown (10YR 4/6), ver	y stiff, moist, plasti	ic,	
Image:				118		trace coa	arse grain sand				
Image:			22.5								
1.6 121 Logged by: S.Lauricella Date: 04/27/2022				119							
1.6 121 Logged by: S.Lauricella Date: 04/27/2022				400							
121 Date: 04/27/2022				120							
Logged by: S.Lauricella Date: 04/27/2022			1.6	101							
				121							
Drilling Contractor: Environmental Works Inc. Driller: Justin Maples	Logged by:		S.Lauric	ella			_	Date:	04/27/2022		
	Drilling Contractor		Environ	nental V	Vorks In	С.		Driller:	Justin Maples	S	

ES®	EA Engineerin and Technol	-			Job. No. 634250383 Drilling Metho Sonic	Client: ARNG d:	Location: San Army Aviation So Boring No. AOI01-02		
	LOG OF S	SOIL/ROC	K BORI	NG		Sonic Sampling Met	thod:	AUIU1-02	
Coordinates:		35.624167				Sonic/Continuous		Sheet 7 of	
Surface Elevation	n:	6,325.13 ft	1					Drill	ing
Casing Elevation		6,324.96 ft	1			Water Level	-	Start	Finish
GW level at time	-	110.80 ft				Time	-	4/27/2022	5/9/2022
GW level at time	of sampling:	110.72 ft				Date	4/27/2022	1145	1650
Sample	Feet Driven	PID	Depth	2021	Surface Co	nditions:	Bare ground		
Type/ID	/Feet	ppm	in	Log	Sunace CO	nullions.	bare ground		
1 9 0 1 2	Recovered	ppm	Feet	Log					
		1.6		CL	117'-122', clay	dark yellowish bro	own (10YR 4/6), ver	y stiff, moist, plast	ic,
	Full recovery		121		trace coa	arse grain sand			
	unless noted				*upper boring	from 122'-126' wa	s wet*		
			122						
							e brown (10YR 7/3),		ne to
			123		coarse grain,	race silt, one cobb	le up to 6" diameter	r, subrounded	
			104		*100 400	under the burner of the			
			124	GW	"122-126" slo	ughed in by next d	ay up to 122**		
			125						
			120						
			126						
			127						
			128						
			129						
			100						
			130		-				
			131						
			151						
			132						
			133						
			134						
			40-						
			135						
			136						
			130						
			137		TD' = 119'				
						0 0.010" screen: 10	07' - 117'		
			138			0 riser: 0 - 107'			
						0 sump: 117'- 119	·		
			139		slough: 122' - ′	126'			
						oallets: 119' - 122'			
			140		10/20 silica sa				
			1.4.4			chips hole plug: 10	0' - 105"		
			141		grout: <1' - 100	J			
Logged by:		S.Lauric	ella			-	Date:	04/28/2022	
Drilling Contractor: Environmental Works Inc.			с.	_	Driller:	Justin Maple	S		

		<u>.</u>				Job. No.	Client:	Location: San	
	EA Engineerin					634250383 Drilling Moth	ARNG	Army Aviation St	upport Facility
	and Technol	ogy, Inc.,	PBC			Drilling Mether Direct Push - Ge		Boring No. AOI01-03	
	LOG OF S			NG		Sampling Me		AOI01-03	
Coordinates:		35.623614				PVC Sleeve		Sheet 1 of	1
Surface Elevation	:	NA	,					Dril	
Casing Elevation:	-	NA				Water Level		Start	Finish
GW level at time	of drilling:	NA				Time	-		
GW level at time		NA				Date	-	5/4/2022	5/4/2022
	_							1445	1545
Sample	Feet Driven	PID	Depth	USCS	Surface Co	onditions:			
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
				ML	0-6.5', sandy	silt, pink (5YR 7/3)	, loose, dry, fine	e sand	
Composite / AOI01-03 SB-0-2			1						
38-0-2		0.3	0						
			2						
	60"		3						
			Ŭ						
		0.3	4						
			5						
		0.4							
			6						
	32"		_	C) A (
Composite / AOI01-03 SB-6-8			7	SW			(5YR 7/3), loos	se, dry, fint to coarse sa	nd, trace fine
3D-0-0		0.3	8		grained				
			0						
			9						
		0.4							
	45"	0.1	10						
	43								
			11						
		0.2	40						
			12						
			13						
			10						
Composite / AOI01-03	32"	0.2	14						
SB-13-15									
			15						
			16						
			17						
			17						
			18						
			.0						
			19						
			20						
			21		TD' = 15'				
Logged by:		D. Wert	h			_	Date:	05/04/2020	
Drilling Contractor		JR Drilli	na				Driller:	Rob Helton	

	••••••••••••••••••••••••••••••••••••••		-				·		
						Job. No.	Client:	Location: Sar	
	EA Engineering	-				634250383	ARNG	Army Aviation Su	upport Facility
	and Technol	ogy, Inc.,	PBC			Drilling Metho	od:	Boring No.	
						Sonic		AOI01-04	
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Met	thod:	_	
Coordinates:		35.623216	<u>, -</u> 106.088	671		Sonic/Continuous		Sheet 1 of	6
Surface Elevation	:	6,323.35 ft						Drilli	ing
Casing Elevation:		6,323.20 ft				Water Level	-	Start	Finish
GW level at time	of drilling:	110.57 ft				Time	-	5/3/2022	5/9/2022
GW level at time	•	109.88 ft				Date	5/3/2022	1220	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground, 1	" gravel	
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet	<u> </u>					
					0-2', slough				
Composite / AOI01-04	Full recovery		1	1 i					
SB-0-2	unless noted	9.6	۱ — ۱	¶ i					
		0.0	2	 i					
		1.3	1 1	ML	-	-	(1YR 5/6), loose, dry		
			3	¶ i			grain sand, coarsens	s downward into tr	ace gravel
			۱ ا	¶ ,	up to 1"	diameter, subroun	ded, subangular		
		 	4	¶ ,	L				
		4.3	ا _ ا	1 i			3), loose, dry, minor t		
		 	5	¶ i	sand, tra	ace coarse grain sa	and, trace gravel up	to 1" diameter, su	bangular
				¶ ,	┞────				
		1	6	¶ ,	6' 0 F' '	vilt brown (40) (5 -	(2) 10000	r trace of -la	n fine to f
		0.3	7	1 i			5/3), loose, dry, mino		
		┨───┤		¶ ,	iess tra	ue or coarse grain	sand, trace gravel u	ו טו א alameter,	, subiound
			8	1 i	┣───				
		1 1	0	1 i	┣───				
		5.5	9	1 i	8.5'-9.5'. sand	y silt, brown (7 5YF	R 4/4), loose, very fir	ne to fine arain sar	nd, drv
				1 i	, cand		,,,,,,,,,		,
			10	SW	9.5'-13', sand.	brown (7.5YR 4/4)), well graded, fine to	o coarse grain san	d, trace
			<u>ا</u>	1 i			ounded, subrounded	-	
			11	1 i					
		9.5	1	¶ ,					
		0.0	12	1 i					
				1 i	ļ				
		 i	13	1 i	ļ				
				1 i		-	brown (7.5YR 4/6),		ne to
Composite / AOI01-04		 	14	1 i	medium	grain, trace grave	I, trace coarse grain	sand, trace silt	
SB-13-15		7.7		1 i	 				
		┨────┝	15	SM	451401				
			16	3171		.	race gravel up to 1.5	alameter,	
		┨─────────	16	SW	Ĵ	rown (7.5YR 4/6),	loose, dry 4), well graded, fine	to cooree ar-in	nd
		2.4	17	5.0			4), well graded, fine rse, one cobble up to		
		1 1		1 i		slightly moist		Jo Giarrielet, SUDI	
			18	1 i	10058 10	Sugnay molal			
		1		1 i	 				
			19	1 i	18.5'-23.5'. sa	nd, brown (7.5YR	4/4), well graded, fin	e to coarse arain s	sand,
			-	1 i			vard to minor, one co		
		5.2	20	¶ ,	subround		,		
			1	¶ ,					
			21						
Logged by:		S. Laurio	ella				Date:	05/03/2022	
				·			Dr:!!!	handlin and the	
Drilling Contractor:	:	Environn	nental N	vorks In	С.	_	Driller:	Justin Maples	3

						Job. No.	Client:	Location: Sar	nta Fe, NM
	EA Engineerin	g, Scienc	e,			634250383	ARNG	Army Aviation Su	upport Facility
	and Technol	ogy, Inc.,	PBC			Drilling Metho	d:	Boring No.	
						Sonic		AOI01-04	
	LOG OF S	OIL/ROC	K BORI	NG		Sampling Met	hod:		
Coordinates:		35.623216	-	-		Sonic/Continuous		Sheet 2 of	6
Surface Elevation		6,323.35 ft						Drill	
						Mater Level			5
Casing Elevation:		6,323.20 ft				Water Level	-	Start	Finish
GW level at time	0	110.57 ft				Time	-	5/3/2022	5/9/2022
GW level at time	of sampling:	109.88 ft				Date	5/3/2022	1220	1650
		ī							
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground, 1	" gravel	
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
		0.8		SW					
	Full recovery	0.0	21						
	unless noted								
			22						
			23						
			-						
		3.4	24		23.5'-26' sand	. brown (7.5YR 4/4), well graded, fine	to coarse arain sa	and.
			- ·				rounded, fines dow	5	
			25			ce minor silt,	Tourided, filles dow	inward into very in	lie
			20		Sanu, ira	ce minor sitt,			
			26						
			20						
		6.9	07		26'-27.5', no re	covery			
	4.0"		27						
	12"			N 41					
			28	ML			oose, dry, trace sar	d medium to coar	rse, one
				0.44		o to 2.5" diameter,			
			29	SW			vn (10YR 6/3), loose		
		5.8			grain, we	ell graded, trace co	bbles up to 3"-4" dia	ameter, trace silt,	subrounded,
			30		subangu	lar			
			31						
				SW	31'-35', gravely	/ sand, well graded	l, loose, dry, very fir	e to medium grai	n, coarse
			32		grain is r	ninor, one cobble i	s 3" minor, trace silt		
		6.9							
		0.9	33						
			34						
			35						
				GW	35'-36', aravel	/ sand, pale brown	(10YR 6/3), loose,	dry, very fine to co	oarse
		2.9	36				bbles up to 3"-4" dia		
				ML	0)	0	ose, dry, trace coars	, ,	,
			37		-	" diameter, subang		<u>.</u>	J ···-·
			.		up 10 1.0		, 		
			38	SW	37 5'-38' cand	vellowish brown (10YR 5/6), loose, d	ry trace of mediu	m dense
				SW			of clay, non plastic		uunot,
		1.8	39				own (10YR 5/6), loc	se to modium de	nse dry coorce
			59			-			-
			40			-	to medium grain, gr		
			40		upward	, trace copples up	to 4"-5" diameter, su	ibangular, angula	ii downward
			41						
Logged by:		S. Laurio	cella			-	Date:	05/03/2022	
		_							
Drilling Contractor	:	Environr	nental N	<u>/orks I</u> n	С.	_	Driller:	Justin Maples	S

						Job. No.	Client:	Location: Sa	nta Fe_NM
	EA Engineerin	a. Scienc	ce.			634250383	ARNG	Army Aviation S	
	and Technol	-				Drilling Meth		Boring No.	
	and recimul	ogy, mc.,	FDC				00.		
	1 0 0 0 7 0					Sonic	the state	AOI01-04	
	LOG OF S					Sampling Me			•
Coordinates:		35.623216	6, -106.088	671		Sonic/Continuor	us Core	Sheet 3 of	
Surface Elevation	1:	6,323.35 f	it					Drill	ing
Casing Elevation:		6,323.20 f	it			Water Level	-	Start	Finish
GW level at time	of drilling:	110.57 ft				Time	-	5/3/2022	5/9/2022
GW level at time	of sampling:	109.88 ft				Date	5/3/2022	1220	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:	Bare ground, 1	l" aravel	
Type/ID	/Feet	ppm	in	Log			J J J J J J J J J J	9	
.) [Recovered	PP	Feet	209					
	Recovered		1 000						
	F H H H H	3.6	11						
	Full recovery unless noted		41		41' 41 E' clove	ov grovel dork ve	llowish brown (10YR	1/6) modium dor	
	uniess noted		40	GC SW	-				
			42	500		noist, low plastich	y, gravel is 1.5"-4" di	lameter, trace med	ium to coarse
					grain				
			43				/4), medium dense to	-	
		2.4			grain sa	nd, trace clayey s	ilt, stiff, trace gravel	up to 1.5" diamete	r,
			44		dimensi	on increases dow	nward		
			45						
			46						
		45.0			46'-47.5', sano	d, reddish yellow (7.5YR 6/6), loose, di	ry, fine to coarse g	rain sand,
		15.2	47		well grad	ded, trace gravel	up to 2", trace silt		
			48	SM	47.5'-48.5'. silt	tv sand. verv fine	to medium grain, we	ll graded, vellowis	n brown
							ice gravel up to 1" dia		
			49	SW			n (10YR 5/6), loose, c	-	-
			10				up to 3" diameter, su		
		29.4	50			_			guiar, trace sin,
			50		10056, V		silty sand throughout		
			51						
			51	SM				500/ 1	
			50	OW		-	wn (10YR5/6), 50%		
			52				ain sand, trace coars		
		3.7	50		diamete	r, one cobble 3.5	" diameter, subangul	ar, trace clay thro	ugnout
			53						
			- 1						
			54						
			55						
		2.9							
		2.0	56						
				ML	56'-61', gravel	y silt, light gray (1	0YR 7/2), loose, dry,	slightly moist bott	om 4",
			57		well gra	ided, trace very fi	ne to medium sand, g	gravel up to 1"-2"	diameter,
					subrour	nded, subangular,	trace coarse grain s	and, trace silty cla	y,
			58		stiff to r	nedium stiff, non j	olastic		
		<u></u>	Ī						
		21.8	59						
			60						
			61						
Logged by:		S.Laurio	cella			_	Date:	05/03/2022	

Drilling Contractor:

Environmental Works Inc.

Driller:

Job. No. Client: Location: Santa Fe, NM EA Engineering, Science, 634250383 ARNG Army Aviation Support Facility Drilling Method: and Technology, Inc., PBC Boring No. AOI01-04 Sonic LOG OF SOIL/ROCK BORING Sampling Method: Coordinates: Sonic/Continuous Core Sheet 4 of 6 35.623216, -106.088671 Surface Elevation: Drilling 6,323.35 ft Casing Elevation: 6,323.20 ft Water Level -Start Finish GW level at time of drilling: 5/3/2022 5/9/2022 110.57 ft Time GW level at time of sampling: 109.88 ft Date 5/3/2022 1220 1650 Sample USCS Surface Conditions: Feet Driven PID Depth Bare ground, 1" gravel Type/ID /Feet ppm in Log Recovered Feet ML 14.4 61 Full recovery unless noted 61'-63.5', clayey silt, dark yellowish brown (10YR 4/6), stiff, moist, low plasticity, minor coarse sand and gravel, gravel up to 1/2" 62 diameter, subrounded, subangular 1.8 63 SW 64 63.5'-64.5', sand, brown (7.5YR 5/4), loose, slightly moist, well graded, fine to coarse grain sand, trace gravel up to 1" diameter

		65	ML	64.5'-65.5', clayey silt, dark yellowish brown (10YR 4/6), stiff, plastic, medium dense
	29.9			gravel traces up to 2" diameter, moist, low plasticity, minor coarse sand and
	20.0	66	SW	gravel, gravel up to 1/2", subrounded, subangular
			SC	65.5'-66', sand, brown (7.5YR 5/4), loose, slightly moist, well graded, fine to
		67		coarse grain sand, trace gravel up to 1" diameter
	8.4			66'-68.5', clayey sand, dark yellowish brown (10YR 4/6), stiff, medium dense,
	0.4	68		moist, trace stiff, very fine to fine sand, minor trace coarse grain, low plasticity,
				trace silt
		69	CL	68.5'-71.5', sandy clay, dark yellowish brown (10YR 4/6), stiff to medium stiff
	2.7			moist, fine to medium sand grain, trace coarse, minor trace gravel up to 1"
	2.1	70		diameter, subrounded, rounded, trace silt
		71		
	2.4			
	2.4	72	SW	71.5'-73.5', sand, yellowish brown (10YR 5/6), loose to medium dense, moist,
				fine to coarse grain sand, trace silty clay, non plastic, well graded
		73		
	0.3			
	0.0	74	ML	73.5'-75.5', silty clay, dark yellowish brown (10YR 4/6), soft, moist to wet, low
				plastic to non plasticity, minor coarse grain sand and very fine sand
		75		
		76	SW	75.5'-76', sand, yellowish brown (10YR 5/6), loose to medium dense, moist,
	10 E		CL	fine to coarse grain sand, trace silty clay, non plastic, well graded
	13.5	77		76'-78.5', sandy clay, dark yellowish brown (10YR 4/6), medium dense, moist
				fine to medium sand grain, trace coarse, minor trace gravel up to 1"
		78		diameter, subrounded, rounded, trace silt
	11.4			
	11.4	79	GW	78.5'-81', sandy gravel, well graded, loose, slightly moist, trace silty clay,
				medium dense, slightly moist, meium to coarse grain sand, trace fine grain,
		80		gravel up to 3" diameter, dark yellowish brown (10YR 4/6)
		81		
Logged by:	S.Lauric	ella		Date: 05/03/2022

Drilling Contractor:

Environmental Works Inc.

							_	_	
						Job. No.	Client:	Location: Sa	nta Fe, NM
	EA Engineerin	g, Scienc	e,			634250383	ARNG	Army Aviation S	upport Facility
EΔ	and Technol	ogy, Inc.,	PBC			Drilling Meth	od:	Boring No.	
		0,				Sonic		AOI01-04	
	LOG OF S			NG		Sampling Me	ethod:		
Coordinates:	200 0. 0		6, -106.088	-		Sonic/Continuo		Sheet 5 of 6	3
Surface Elevatio				071		Some/Continuo			
		6,323.35 f						Dril	-
Casing Elevation		6,323.20 f	t			Water Level	-	Start	Finish
GW level at time	•	110.57 ft				Time	-	5/3/2022	5/9/2022
GW level at time	of sampling:	109.88 ft				Date	5/3/2022	1220	1650
Sample	Feet Driven	PID	Depth	USCS	Surface Co	onditions:	Bare ground,	1 ["] gravel	
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet	Ŭ					
				GW					
		57.4	81	0,11					
	Full recovery unless noted	-	01	SW	81'-86' grave	ly sand brownish	yellow (10YR 6/6), v	well graded fine to	coarse
	uniess noted		00	500				0	
			82		-	-	slightly moist, minor	-	
							oist, stiff, two cobble	s up to 3"-4" diame	eter,
			83		subang	gular, angular			
		7.7							
			84						
			85						
			86						
					86'-88', grave	ly sand, brownish	yellow (10YR 6/6), v	well graded, fine to	coarse grain,
		21.5	87			•	r trace of very fine s	-	-
			-				p to 3"-4" diameter,	-	
			88			,	p		
			00	GW	88'-91' sandy	aravel vellowish	brown (10YR 5/6), I	oose dry to slightly	moist
		75.5	89	0.11			, 2-3 cobbles 3"-4.5"		y moist,
			09						a a d
			00		-		, minor silt, fines dov		
			90		than gr	avel, medium den	ise to dense, sandy	silt downward, well	graded
		83.4							
			91						
					91'-96', sandy	/ gravel, yellowish	brown (10YR 5/6), I	oose, slightly mois	t, fine to
			92		mediur	n well graded, trac	ce coarse grain sand	l, gravel up to 2" di	ameter,
					subang	gular, angular, wel	l graded		
			93						
		0.6							
		0.0	94						
			95						
			96						
					96'-100' sano	dv. gravel vellowis	h brown (10YR 5/6),	loose slightly moi	st
		3.8	97				ed, trace coarse gra		
			0.		-	5	meter, subangular,		
			98				meter, subangular,	angular, wen grade	u .
	-		30						
		1.7	00						
		I	99		l				
	_		100		ļ				
				SW			ellowish brown (10YF		tly moist,
	<u> </u>		101		mediur	n to coarse grain,	trace gravel up to 1'	diameter	
Logged by:		S.Laurio	cella				Date:	5/3/2022 - 5/	4/22

Drilling Contractor:

Environmental Works Inc.

Driller:

Coordinates: Surface Elevation Casing Elevation: GW level at time GW level at time	of drilling:	ogy, Inc.,	PBC K BORI , -106.088			Job. No. 634250383 Drilling Metho Sonic Sampling Met Sonic/Continuous Water Level Time Date	hod:	Location: San Army Aviation S Boring No. AOI01-04 Sheet 6 of 6 Drill Start 5/3/2022 1220	upport Facility
	or sampling.	109.00 11				Date	0/0/2022	1220	1000
Sample Type/ID	Feet Driven /Feet Recovered	PID ppm	Depth in Feet	USCS Log	Surface Co	nditions:	Bare ground, 1	" gravel	
	Full recovery unless noted	55.7	101	SW					
	uniess noted		102		<u> </u>				
			103		trace gr	avel up to 1" diame	ellowish brown (10Y eter, minor silty clay,		htly moist, minor
		3.9	104	CL	103.5'-105.5',		tly moist owish brown (10YR - r, minor coarse grain		, moist,
			105				ellowish brown (10Y		htly moist,
			106	GW		one cobble 4" diam	eter, subrounded ish brown (10YR 5/4) loose moist fi	ne to
		6.0	107		medium		coarse sand, gravel		
Discrete / AOI01-04-			108						
SB-109			109 110						
			111	CL	110.5'-113.5', :	sandy clay, yellowi	sh brown (10YR 5/4),stiff to medium s	stiff, moist, trace
		32.8	112				layey sand, fine to c rounded, subrounde		, minor silt, mino
			113						
			114		grain sa		ellowish (10YR3/4), s to fine grain , minor		
		6.5	115	CL	114.5'-116', sil	ty clay, dark brown	n (10YR 3/3), soft, m	oist, low plasticity	r, minor
			116				n placae actinitata		
		2.5	117						
			118						
			119			0 0.010" screen: 1	05'-115'		
			120		2" PVC SCH 8 10/20 silica sa	nd: 103'-115'			
			121		3/8" hole plug grout: <1 - 100	bentonite chips: 10)'	00'- 103'		
Logged by:		S.Lauric	ella			-	Date:	05/04/2022	

Environmental Works Inc.

Driller:

Justin Maples

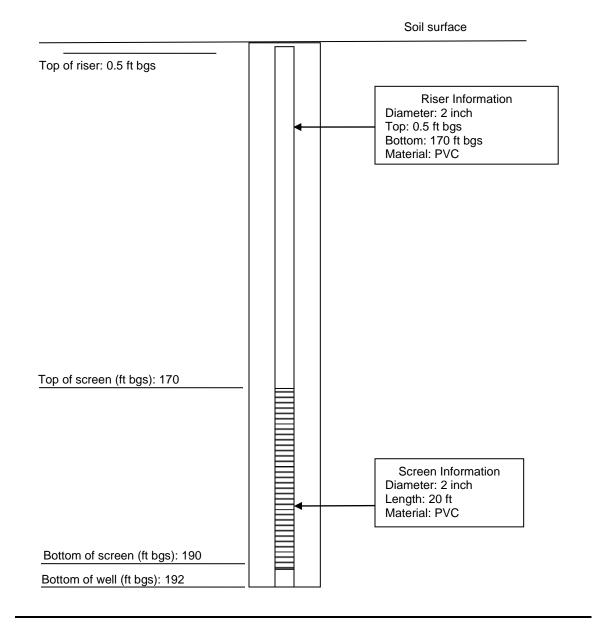
Drilling Contractor:

EX ®	EA Engineerin					Job. No. 634250383	Client: ARNG	Location: San Army Aviation Se	
	and Technol	ogy, Inc.,	PBC			Drilling Metho Direct push Geop		Boring No. AOI01-05	
	LOG OF S		K BORI	NG		Sampling Met			
Coordinates:			6, -106.087			PVC Sleeve		Sheet 1 of	1
Surface Elevation	:	NA						Drill	ing
Casing Elevation:		NA				Water Level		Start	Finish
GW level at time		NA				Time	-	5/4/0000	F/4/0000
GW level at time	of sampling:	NA				Date	5/4/2022	5/4/2022 0900	5/4/2022 1020
Sample	Feet Driven	PID	Depth	USCS	Surface Co	nditions:		0000	1020
Type/ID	/Feet	ppm	in	Log					
	Recovered		Feet						
				ML			R 5/6), loose, dry, f	ine sand, trace fine	e gravel,
Composite / AOI01-05 SB-0-2		-	1		could no	ot advance hand au	iger past 4'		
00 0 2		0.2	2						
	48"		-						
			3						
		0.4							
			4		L				
			5						
			5						
		0.2	6						
	45"								
Composite / AOI01-05 SB-6-8			7						
38-0-0		0.3	8						
			0	SW	8'-15', sand, w	vell graded, reddish	brown (5YR 5/3), I	oose, dry, fine to	
			9			sand, trace silt, trac		, ,,	
		0.6							
	48"	-	10						
			11						
		0.3	12						
			13						
Composite / AOI01-05	32"	0.5	14						
SB-13-15			1-7						
			15						
			16						
			17						
		1							
			18						
			19						
			20						
		-	20						
			21		TD' = 15				
Logged by:		D. Wert	h			_	Date:	05/04/2022	
Drilling Contractor	:	JR Drilli	na				Driller:	Rob Helton	

EX ®	EA Engineerin	-				Job. No. 634250383 Drilling Mothe	Client: ARNG	Location: San Army Aviation St	
	and Technol	ogy, Inc.,	PRC			Drilling Metho Hand Auger	u.	Boring No. AOI01-06	
	LOG OF S			NG		Sampling Met	hod:		
Coordinates:	200 01 3	35.623467				Hand Auger (Gra		Sheet 1 of	1
Surface Elevation	:	NA	,				*	Drilli	
Casing Elevation:		NA				Water Level		Start	Finish
GW level at time		NA				Time	-		
GW level at time		NA				Date	-	2/7/2022	2/7/2022
	_	1							
Sample	Feet Driven	PID	Depth		Surface Co	nditions:	Snow, unpaved	ł	
Type/ID	/Feet	ppm	in Feet	Log					
	Recovered		reet	ML	0'-2'' silt brow	n (10) YR 5/3) Ioos	e, dry, little sand and	d fine gravel top f	ew inches
Composite / AOI01-06	- /-		1		5 2. Sin, DIOWI		e, ery, nue sand an	- into graver top I	
SB-0-2	2/2		· ·						
			2						
			3						
			4						
			4						
			5						
			6						
			_						
			7						
			8						
			, j						
			9						
			10						
			11						
			12						
			13						
			14						
			14						
			15						
			16						
			47						
			17						
			18						
			19						
	ļ		20						
			21		TD' = 2'				
			21		10 = 2				
Logged by:		D. Werth	h			-	Date:	02/07/2022	
Drilling Contractor	:	EA				_	Driller:	D. Werth	

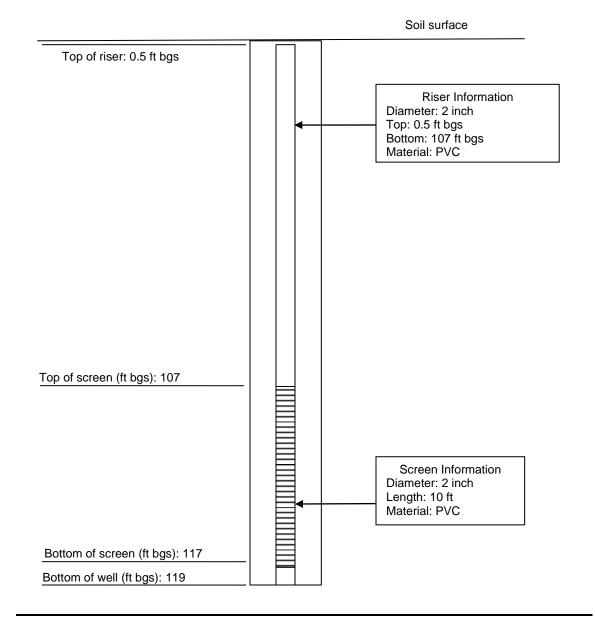
		.					Job. No.	Client:	Location: San	
	EA Engineering						634250383	ARNG	Army Aviation St	upport Facility
	and Technolo	ogy, Inc.,	PBC				Drilling Metho		Boring No.	
							Direct Push Geo		AOI01-06B	
	LOG OF S						Sampling Me	thod:		
Coordinates:		35.623467	7, -106.087	064			PVC Sleeve		Sheet 1 of	
Surface Elevation		NA							Drilli	-
Casing Elevation:		NA					Water Level		Start	Finish
GW level at time		NA					Time	-		
GW level at time	of sampling:	NA					Date	5/4/2022	5/4/2022	5/4/2022
									1030	1200
Sample	Feet Driven	PID	Depth		USCS	Surface Co	nditions:			
Type/ID	/Feet	ppm	in		Log					
	Recovered		Feet							
					SM	0-6', silty sand	s, reddish brown (5YR 5/4), loose, dry	r, fine sand	
Composite / AOI01-			1							
06B-SB-0-2		0.4								
	48"	0.4	2							
			3							
		0.5								
		0.0	4							
			5							
		0.5								
		0.0	6							
	36"				SW	6-9', sand, wel	l graded, reddish l	brown (5YR 5/3), loc	ose, dry, fine to coa	arse sand,
Composite / AOI01-			7			trace gra	avel, trace silt			
06B-SB-6-8		0.2								
		0.2	8							
			9							
		0.3			SM	9'-10.5', silty sa	and, reddish brow	n (5YR 4/3), loose, o	dry to moist, fine sa	and, trace
	48"		10			gravel				
					0.14					
			11		SW		l, well graded, rede	dish brown (5YR 5/3	loose, dry, fine t	o coarse sand,
		0.3	10			gravel				
			12							
			10							
			13							
	30"									
Composite / AOI01- 06B-SB-13-15			14	\square						
00-00-10-10			45							
			15	$ \rightarrow $						
			16							
			16	$ \rightarrow $						
			47							
			17							
			10	$ \rightarrow $						
			18	$ \dashv $						
			19							
			19							
			20	$ \dashv $						
			20	$ \rightarrow $						
			21			TD' = 15'				
			21			ID = 15				
Logged by:		D. Wertl	า				_	Date:	05/04/2022	
								Duille	Data 11 19	
Drilling Contractor	:	JR Drillir	ng				-	Driller:	Rob Helton	

		a Solono	2			Job. No.	Client:	Location: Sant			
	EA Engineering and Technolo					634250383 Drilling Metho	ARNG	Army Aviation Su Boring No.	apport racility		
	anu rechnol	ogy, inc.,	FDU			Drilling Metho Hand Auger	<i>.</i>	AOI01-07			
	LOG OF S		K BOD	NG		Hand Auger Sampling Met	thod:				
Coordinates:	UF 3	35.624337				Hand Auger (Gra		Sheet 1 of	1		
Surface Elevation:		NA	_ 5.000		— I			Drillin			
Casing Elevation:		NA			— I	Water Level		Start	Finish		
GW level at time of		NA				Time	-				
GW level at time of		NA				Date	-	2/8/2022	2/8/2022		
Sample	Feet Driven	PID	Depth				ed away decorat	tive gravel from	n location;		
Type/ID	/Feet	ppm	in	Log	log starts ur	nder landscapi	ng fabric				
ļĮ	Recovered		Feet			V (40 V D					
Company's state		l i		ML	∪'-2': silt, browr	n (10 YR 5/3), loos	se, ary				
Composite / AOI01-07 SB-0-2	2/2	┢──┤	1	ļ l	 						
~ 2		l i	2	ų i	∤ ────						
	. <u></u>	┟──┧		ų i	۱						
			3	ų i							
۱۱		ll		ļ l	l						
ļ ļ		┢──┧	4	1 1	<u> </u>						
			5	1 1	¶						
	. <u></u>			¶	<u> </u>						
ļ			6	1 1							
			7		<u> </u>						
				1 1							
	·	╏──┤	8		 						
ļ I		İ	9		ļ						
			10		<u> </u>						
			11								
	,		12								
<u> </u>	. <u></u>	┟──┧		¶	1						
 		İ	13								
			14		<u> </u>						
			15								
			16								
	. <u></u>	┢──┧	0	¶	t						
ļ I			17	1 1	1						
	' I		18		l						
	. <u></u>	┟──┧	19	1 1	ł						
			20	1 1							
				1 1							
			21		TD' = 2'						
Logged by:		D. Werth	<u>۱</u>				Date:	02/08/2022			
Drilling Contractor:		EA				τ.	Driller:	D. Werth			

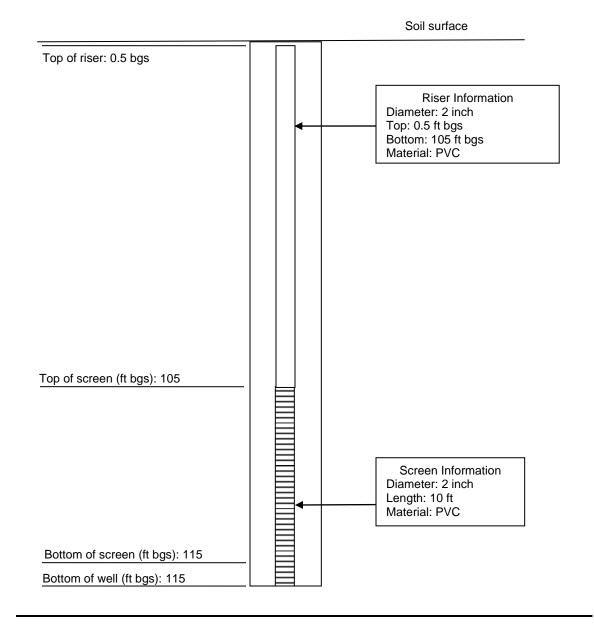

					-	-					
		-				Job. No.	Client:	Location: Sant			
	EA Engineerin				l	634250383 ARNG Army Aviation Support F					
	and Technol	ogy, Inc.,	PBC		l	Drilling Metho	d:	Boring No.			
			14 -		l	Hand Auger		AOI01-08			
0- "	LOG OF S					Sampling Met			,		
Coordinates:		35.624297	, -106.088	539	I	Hand Auger (Gra	D)	Sheet 1 of			
Surface Elevation		NA						Drilli			
Casing Elevation:		NA				Water Level		Start	Finish		
GW level at time of		NA				Time	-	0/0/5	0/0/5		
GW level at time of	or sampling:	NA			I	Date	-	2/8/2022	2/8/2022		
0			<u> </u>	1105	Q	ر ماندا - م					
Sample	Feet Driven	PID	Depth				ed away decorat	uve gravel from	n location;		
Type/ID	/Feet	ppm	in Foot	Log	iog starts ur	nder landscapir	IN INDIA				
	Recovered	╅────┙	Feet	L			م را <i>س</i> .				
Comparis	1			ML	u -2': sílt, browr	n (10 YR 5/3), loos	e, ary				
Composite / AOI01-08 SB-0-2	2/2	 	1	1 1	 						
<u>-0-7</u>	1		2	1 1	ţ						
 	 	╉───┧	2	1 1	┞────						
y k	1		3	1 1	┞────						
	†	╉──┕		1 1	ţ						
	1		4	1 1	├ ───						
ł	†	1 1	╡	1 1	<u>ا</u>						
	1		5	1 1							
	1			1 1					_		
	1		6	1 1							
	1	r i		1 1							
			7	1 1							
	1		1 <u> </u>	1 1							
	I		8	1 1							
	1		1	1 1							
	٩	┎╴┙	9	1 1	└──						
			ן ין	1 1							
	ļ		10	1 1	ļ						
	1		44	1 1	 						
 	ļ	╉───┢	11	1 1	 						
	1		10	1 1	┞────						
	 	╉───┧	12	1 1	┞────						
	1		13	1 1	┞────						
<u> </u>	1	1		1 1	└──						
	1		14	1 1							
	1		t i	1 1					_		
	1		15	1 1							
	1			1 1							
			16	1 1							
	1			1 1							
	I	L l	17	1 1							
	1		1 7	1 1	<u> </u>						
	۱	I	18	1 1	<u> </u>						
	1		۱ <u>.</u> ۱	1 1	ļ						
	ļ	╉───┕	19	1 1	ļ						
	1			1 1	↓						
	ļ	╉───┢	20	1 1	 						
	1		24	1 1	├ ───						
			21	۹ا	L						
Logged by:		D. Werth	<u>1</u>				Date:	02/08/2022			
Drilling Contractor:	•	EA					Driller:	D. Werth			
	-	_/ `						u			

Coordinates: Surface Elevation: GW level at time GW level at time	of drilling:	ogy, Inc.,	PBC K BORI			Job. No. 634250383 Drilling Metho Sonic Sampling Me Sonic/Continuou Water Level Time Date	thod:	Location: San Army Aviation St Boring No. AOI01-09 Sheet 1 of Drill Start 5/5/2022 1520	ipport Facility
Sample Type/ID	Feet Driven /Feet Recovered	PID ppm	Depth in Feet	USCS Log	Surface Co	nditions:	Bare ground		
Composite / AOI01-09-SB-0-2			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 		* Refer to A0	DI01-01 Boring log	for lithology*		
Discrete / AOI01-09-			111						
SB-111-112 Logged by:		NA	112				Date:	05/07/2022	

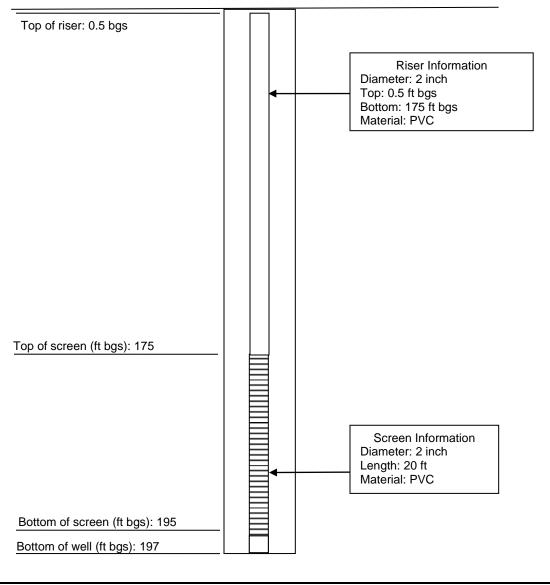
Environmental Works Inc.


Driller:

[®] EA Engineering, Science, and Technology, Inc., PBC	Monitoring Well/Soil Boring ID No.:						
rectinicity, inc., i bo	AOI01-01						
Project Title/ Project No.: Site Investigation for Per- and Polyfluoroalkyl Substances, Santa Fe Army Aviation Support Facility (AASF) (634250383)	Date/Time Installed: 04/25/2022 at 0850 Time Finished: 05/9/2022 at 1647						
Location: East of former AASF	Depth to Water: 176.31 ft bgs						
Site Geologist: Sindy Lauricella	Drilling Method: Sonic						


Note: All features not to scale

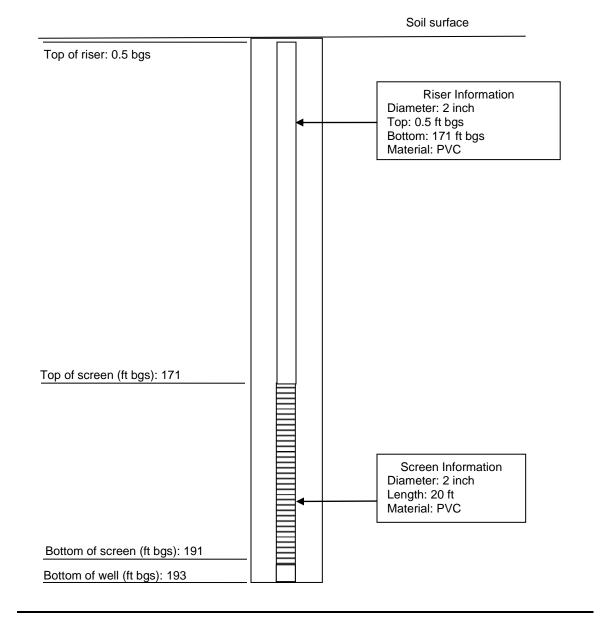
EA Engineering, Science, and Technology, Inc., PBC	Monitoring Well/Soil Boring ID No.:						
Technology, Inc., PBC	AOI01-02						
Project Title/ Project No.: Site Investigation for	Date/Time Installed: 04/27/2022 at						
Per- and Polyfluoroalkyl Substances, Santa Fe Army	1145						
Aviation Support Facility (AASF) (634250383)	Time Finished: 05/9/2022 at 1650						
Location: Southwest of former AASF	Depth to Water: 110.80 ft bgs						
Site Geologist: Sindy Lauricella	Drilling Method: Sonic						


Note: All features not to scale

[®] EA Engineering, Science, and Technology, Inc., PBC	Monitoring Well/Soil Boring ID No.:					
	AOI01-04					
Project Title/ Project No.: Site Investigation for Per- and Polyfluoroalkyl Substances, Santa Fe Army Aviation Support Facility (634250383)	Date/Time Installed: 05/3/2022 at 1220 Time Finished: 05/9/2022 at 1650					
Location: Southwest facility boundary	Depth to Water: 110.57 ft bgs					
Site Geologist: Sindy Lauricella	Drilling Method: Sonic					

Note: All features not to scale

[®] EA Engineering, Science, and	Monitoring Well/Soil Boring ID No.:					
Technology, Inc., PBC	SFAASF-03					
Project Title/ Project No.: Site Investigation for Per- and Polyfluoroalkyl Substances, Santa Fe Army Aviation Support Facility (AASF) (634250383)	Date/Time Installed: 05/7/2022 at 1400 Time Finished: 05/11/2022 at 1130					
Location: Eastern facility boundary, east of current AASF	Depth to Water: 184.95 ft bgs					
Site Geologist: Sindy Lauricella	Drilling Method: Sonic					



Note: All features not to scale

ags - Above Ground Surface bgs - Below Ground Surface ft – Feet PVC - Polyvinyl Chloride

Soil surface

[®] EA Engineering, Science, and	Monitoring Well/Soil Boring ID No.:					
Technology, Inc., PBC	SFAASF-04					
Project Title/ Project No.: Site Investigation for Per- and Polyfluoroalkyl Substances, Santa Fe Army Aviation Support Facility (634250383)	Date/Time Installed: 04/28/2022 at 1645 Time Finished: 05/9/2022 at 1000					
Location: Eastern facility boundary, east of tarmac	Depth to Water: 181.00 ft bgs					
Site Geologist: Sindy Lauricella	Drilling Method: Sonic					

Note: All features not to scale

This page intentionally left blank

Appendix F

Analytical Results

This page intentionally left blank

	Location ID)1-01			AOI	-			AOI0				AOI				PW	-		
	Sample Name		AOI01-	01-GW			AOI01-	02-GW			OI01-02-				AOI01-	04-GW			SFAASI	F-PW-01		
	Parent Sample ID									AO	I01-02-G		2022									
	Sample Date		5/20/	2022			5/20/	2022			5/20/	2022			5/20/	2022			10/14	/2021		1
Analyte ¹	Screening Level ¹	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	
PFAS by LC/MS/MS compliant with QSM Version 5.	3 Table B-15 (ng/L)																-					ļ
4:2 Fluorotelomer sulfonate		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	⊥
6:2 Fluorotelomer sulfonate		<	3.5	4.4	U	<	3.4	4.2	U	<	3.4	4.2	U	35	3.6	4.4		<	3.5	4.4	U	
8:2 Fluorotelomer sulfonate		<	1.7	2.6	U	<	1.7	2.5	U	<	1.7	2.5	U	<	1.8	2.7	U	<	1.8	2.6	U	
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.87	2.6	U	<	0.85	2.5	U	<	0.85	2.5	U	<	0.89	2.7	U	<	0.88	2.6	U	
N-methyl perfluorooctanesulfonamidoacetic acid		<	1	1.7	U	<	1	1.7	U	<	1	1.7	U	<	1.1	1.8	U	<	1.1	1.8	U	
Perfluorobutanesulfonic acid (PFBS)	601	<	0.87	1.7	U	120	0.85	1.7		130	0.85	1.7		30	0.89	1.8		0.62	0.88	1.8	J	
Perfluorobutanoic acid		<	3.5	4.4	U	40	3.4	4.2		40	3.4	4.2		130	3.6	4.4		<	3.5	4.4	U	
Perfluorodecanesulfonic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	
Perfluorodecanoic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	
Perfluorododecanoic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	
Perfluoroheptanesulfonic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	
Perfluoroheptanoic acid		<	0.87	1.7	U	15	0.85	1.7		14	0.85	1.7		200	8.9	18		0.49	0.88	1.8	J	Τ
Perfluorohexanesulfonic acid (PFHxS)	39	<	0.87	1.7	U	72	0.85	1.7		74	0.85	1.7		230	0.89	1.8		<	0.88	1.8	U	Τ
Perfluorohexanoic acid		<	0.87	1.7	U	130	0.85	1.7		120	0.85	1.7		330	8.9	18		<	0.88	1.8	U	Т
Perfluorononanesulfonic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	T
Perfluorononanoic acid (PFNA)	6	<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	T
Perfluorooctanesulfonamide		0.48	0.87	1.7	J	0.98	0.85	1.7	J	<	0.85	1.7	U	<	0.89	1.8	U	1.8	0.88	1.8		Т
Perfluorooctanesulfonic acid (PFOS)	4	<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	1.8	1.8	U	0.48	0.88	1.8	J	Τ
Perfluorooctanoic acid (PFOA)	6	<	0.87	1.7	U	2.5	0.85	1.7		2.3	0.85	1.7	J+	38	0.89	1.8		0.56	0.88	1.8	J	Τ
Perfluoropentanesulfonic acid		<	0.87	1.7	U	60	0.85	1.7		61	0.85	1.7		25	0.89	1.8		<	0.88	1.8	U	Τ
Perfluoropentanoic acid		<	0.87	1.7	U	87	0.85	1.7		90	0.85	1.7		300	0.89	1.8		<	0.88	1.8	U	
Perfluorotetradecanoic acid		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	UJ	<	0.88	1.8	U	Τ
AOI = Area of Interest.		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	Т
mm = Millimeter(s).		<	0.87	1.7	U	<	0.85	1.7	U	<	0.85	1.7	U	<	0.89	1.8	U	<	0.88	1.8	U	
μ m = Micrometer(s).						•				•				•				•				-
ft = Foot (feet).																						
LOD = Limit of Detection.																						
LOQ = Limit of Quantitation.																						
Qual = Qualifier.																						
% = Percent passing.																						
J+ = Estimated concentration, biased high.																						
Values exceeding the Screening Level are shaded gray.																						
LOD = Limit of Detection.																						
LOQ = Limit of Quantitation.																						
ng/L = Nanogram(s) per liter.																						
Qual = Qualifier.																						
< = Analyte not detected above the LOD.																						
= No screening level available.																						

Site Inspection Report Santa Fe Army Aviation Support Facility, New Mexico

		SEAA	SF-03			SFAA	SF-04				
			F-03-GW			SFAASE					
		5171101	05 011			51711151	01.011				
		5/19/	2022		5/19/2022						
ıl	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	3.4	4.3	U	<	3.3	4.1	U			
	<	1.7	2.6	U	<	1.6	2.5	U			
	<	0.86	2.6	U	<	0.82	2.5	U			
	<	1	1.7	U	<	0.98	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	3.4	4.3	U	<	3.3	4.1	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	0.84	0.86	1.7	J	0.6	0.82	1.6	J			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	1.7	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			
	<	0.86	1.7	U	<	0.82	1.6	U			

	Location ID	1	AOI	01-01			AOI	01-02			AOI	01-02			AOI)1-03	
	Sample Name			01-SB-0-2				2-SB-0-2		А		-SB-0-2-	D		AOI01-0		
	Parent Sample ID	-	10101 0	10002			110101 0	2 5 2 0 2				2-SB-0-2			110101 0	00002	
	Sample Date		2/8/	2022			2/8/	2022			2/8/	-	-		2/7/2	2022	
	Depth (ft bgs)			-2				-2				-2			0		
Analyte ¹	Screening Level ¹	Result		LOO	Qual	Result	LOD	-	Qual	Result	, j	Ē	Qual	Result	Ţ	-	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15	(µg/kg)	Rebuit	LOD	LUQ	Quai	Itesuit	LOD	104	Quai	Result	LOD	ЪОŲ	Quai	Result	LOD	LUQ	Quai
4:2 Fluorotelomer sulfonate		<	1.6	2	U	<	1.7	2.2	U	<	1.9	2.3	U	<	1.8	2.2	U
6:2 Fluorotelomer sulfonate		<	1.6	2	Ū	<	1.7	2.2	U	<	1.9	2.3	U	<	1.8	2.2	U
8:2 Fluorotelomer sulfonate		<	1.6	3.1	U	<	1.7	3.3	U	<	1.9	3.5	U	<	1.8	3.4	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.41	2	UJ	<	0.43	2.2	U	<	0.46	2.3	UJ	<	0.45	2.2	U
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.41	2	UJ	<	0.43	2.2	UJ	<	0.46	2.3	UJ	<	0.45	2.2	U
Perfluorobutanesulfonic acid (PFBS)	1900	<	1.6	2	U	<	1.7	2.2	U	<	1.9	2.3	U	<	1.8	2.2	U
Perfluorobutanoic acid		<	1.6	2	U	<	1.7	2.2	U	<	1.9	2.3	U	<	1.8	2.2	U
Perfluorodecanesulfonic acid		<	0.41	0.61	U	0.33	0.43	0.65	J	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorodecanoic acid		<	0.41	0.61	U	0.34	0.43	0.65	J	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorododecanoic acid		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluoroheptanesulfonic acid		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluoroheptanoic acid		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorohexanesulfonic acid (PFHxS)	130	0.41	0.41	0.61	J	0.5	0.43	0.65	J	0.96	0.46	0.7		1.4	0.45	0.67	
Perfluorohexanoic acid		0.25	0.41	0.61	J	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorononanesulfonic acid		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorononanoic acid (PFNA)	19	<	0.41	0.61	U	0.32	0.43	0.65	J	0.51	0.46	0.7	J	<	0.45	0.67	U
Perfluorooctanesulfonamide		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
Perfluorooctanesulfonic acid (PFOS)	13	3.1	0.41	0.61		61	0.43	0.65		86	0.46	0.7		6.5	0.45	0.67	
Perfluorooctanoic acid (PFOA)	19	0.64	0.41	0.61		0.26	0.43	0.65	J	0.53	0.46	0.7	J	0.39	0.45	0.67	J
Perfluoropentanesulfonic acid		<	0.41	3.1	U	<	0.43	3.3	U	<	0.46	3.5	U	<	0.45	3.4	U
Perfluoropentanoic acid		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
AOI = Area of Interest.		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
mm = Millimeter(s).		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
$\mu m = Micrometer(s).$		<	0.41	0.61	U	<	0.43	0.65	U	<	0.46	0.7	U	<	0.45	0.67	U
ft = Foot (feet).			-													-	
LOD = Limit of Detection.																	
LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
J+ = Estimated concentration, biased high.																	
UJ = The analyte was not detected at a level greater than or equal to the	adjusted Limit of Detection (LOD).																
Associated numerical value is approximate.																	
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.																	
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.																
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

	Location ID	1	AOI	01-04			AOI)1-05			AOI	01-06		1	AOI0	-06B	
	Sample Name			4-SB-0-2			AOI01-0)6-SB-0-2	!		AOI01-06		2
	Parent Sample ID						110101 0	00002							10101 00	0000	-
	Sample Date		2/7/2	2022			2/7/2	2022			2/7/	2022			5/4/2	2022	
	Depth (ft bgs)			-2			0-					-2			0-		
Analyte ¹	Screening Level ¹	Result	LOD	LOO	Oual	Result	LOD	LOQ	Oual	Result	LOD	LOQ	Oual	Result	LOD	LOQ	Oual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15	(µg/kg)		_				_				_				_		
4:2 Fluorotelomer sulfonate		<	1.7	2.1	U	<	1.7	2.2	U	<	1.7	2.1	U	<	1.8	2.2	U
6:2 Fluorotelomer sulfonate		<	1.7	2.1	U	<	1.7	2.2	U	<	1.7	2.1	U	<	1.8	2.2	U
8:2 Fluorotelomer sulfonate		<	1.7	3.2	U	<	1.7	3.3	U	<	1.7	3.1	U	<	1.8	3.3	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.42	2.1	UJ	<	0.43	2.2	U	<	0.42	2.1	U	<	0.44	2.2	U
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.42	2.1	UJ	<	0.43	2.2	U	<	0.42	2.1	U	<	0.44	2.2	U
Perfluorobutanesulfonic acid (PFBS)	1900	<	1.7	2.1	U	<	1.7	2.2	U	<	1.7	2.1	U	<	1.8	2.2	U
Perfluorobutanoic acid		<	1.7	2.1	U	<	1.7	2.2	U	<	1.7	2.1	U	<	1.8	2.2	U
Perfluorodecanesulfonic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorodecanoic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorododecanoic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluoroheptanesulfonic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluoroheptanoic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorohexanesulfonic acid (PFHxS)	130	0.64	0.42	0.63		<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorohexanoic acid		0.32	0.42	0.63	J	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorononanesulfonic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorononanoic acid (PFNA)	19	<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorooctanesulfonamide		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorooctanesulfonic acid (PFOS)	13	3.6	0.42	0.63		<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluorooctanoic acid (PFOA)	19	0.36	0.42	0.63	J	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
Perfluoropentanesulfonic acid		<	0.42	3.2	U	<	0.43	3.3	U	<	0.42	3.1	U	<	0.44	3.3	U
Perfluoropentanoic acid		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
AOI = Area of Interest.		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
mm = Millimeter(s).		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
$\mu m = Micrometer(s).$		<	0.42	0.63	U	<	0.43	0.65	U	<	0.42	0.63	U	<	0.44	0.66	U
ft = Foot (feet).					-				-								
LOD = Limit of Detection.																	
LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
J+ = Estimated concentration, biased high.																	
UJ = The analyte was not detected at a level greater than or equal to the	adjusted Limit of Detection (LOD).																
Associated numerical value is approximate.																	
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.	-																
LOD = Limit of Detection.	μg/kg = Microgram(s) per kilogram.																
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

	Location ID		AOI	01-07			AOI	01-08			AOI	01-09			SFAA	SF-01	
	Sample Name			7-SB-0-2			AOI01-0					09-SB-0-2	2	5	SFAASF-		2
	Parent Sample ID																
	Sample Date	-	2/8/2	2022			2/8/2	2022			5/9/	2022			2/8/2	2022	
	Depth (ft bgs)			-2			0-	-2			0	-2			0.	-2	
Analyte ¹	Screening Level ¹	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	L00	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15	(µg/kg)																
4:2 Fluorotelomer sulfonate		<	1.8	2.2	U	<	1.9	2.4	U	<	1.5	1.9	U	<	1.8	2.2	U
6:2 Fluorotelomer sulfonate		<	1.8	2.2	U	<	1.9	2.4	U	<	1.5	1.9	U	<	1.8	2.2	U
8:2 Fluorotelomer sulfonate		<	1.8	3.3	U	<	1.9	3.5	U	<	1.5	2.8	U	<	1.8	3.3	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.44	2.2	UJ	<	0.47	2.4	UJ	0.55	0.38	1.9	J+	7.6	0.44	2.2	
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.44	2.2	UJ	<	0.47	2.4	UJ	<	0.38	1.9	U	0.93	0.44	2.2	J+
Perfluorobutanesulfonic acid (PFBS)	1900	<	1.8	2.2	U	<	1.9	2.4	U	<	1.5	1.9	U	<	1.8	2.2	U
Perfluorobutanoic acid		<	1.8	2.2	U	<	1.9	2.4	U	<	1.5	1.9	U	<	1.8	2.2	U
Perfluorodecanesulfonic acid		0.72	0.44	0.66		<	0.47	0.71	U	0.37	0.38	0.57	J	11	0.44	0.67	1
Perfluorodecanoic acid		2.1	0.44	0.66		<	0.47	0.71	U	1.4	0.38	0.57		4.8	0.44	0.67	
Perfluorododecanoic acid		<	0.44	0.66	U	<	0.47	0.71	U	0.54	0.38	0.57	J	2	0.44	0.67	
Perfluoroheptanesulfonic acid		2	0.44	0.66		<	0.47	0.71	U	<	0.38	0.57	U	0.45	0.44	0.67	J
Perfluoroheptanoic acid		0.43	0.44	0.66	J	<	0.47	0.71	U	<	0.38	0.57	U	7.8	0.44	0.67	1
Perfluorohexanesulfonic acid (PFHxS)	130	8.3	0.44	0.66		<	0.47	0.71	J	<	0.38	0.57	U	2.7	0.44	0.67	
Perfluorohexanoic acid		0.73	0.44	0.66		<	0.47	0.71	U	<	0.38	0.57	U	1.2	0.44	0.67	
Perfluorononanesulfonic acid		1.4	0.44	0.66		<	0.47	0.71	U	<	0.38	0.57	U	<	0.44	0.67	U
Perfluorononanoic acid (PFNA)	19	3.8	0.44	0.66		<	0.47	0.71	U	0.4	0.38	0.57	J	1.8	0.44	0.67	
Perfluorooctanesulfonamide		1.2	0.44	0.66		<	0.47	0.71	U	<	0.38	0.57	U	1.3	0.44	0.67	
Perfluorooctanesulfonic acid (PFOS)	13	920	4.4	6.6		21	0.47	0.71		7.5	0.38	0.57		42	0.44	0.67	
Perfluorooctanoic acid (PFOA)	19	1.2	0.44	0.66		0.47	0.47	0.71	J	0.68	0.38	0.57		19	0.44	0.67	
Perfluoropentanesulfonic acid		0.3	0.44	3.3	J	<	0.47	3.5	U	<	0.38	2.8	U	0.45	0.44	3.3	J
Perfluoropentanoic acid		0.48	0.44	0.66	J	<	0.47	0.71	U	<	0.38	0.57	U	0.52	0.44	0.67	J
AOI = Area of Interest.		<	0.44	0.66	U	<	0.47	0.71	U	<	0.38	0.57	U	0.6	0.44	0.67	J
mm = Millimeter(s).		<	0.44	0.66	U	<	0.47	0.71	U	<	0.38	0.57	U	0.27	0.44	0.67	J
$\mu m = Micrometer(s).$		0.56	0.44	0.66	J	<	0.47	0.71	U	0.27	0.38	0.57	J	0.81	0.44	0.67	
ft = Foot (feet).					-											-	-
LOD = Limit of Detection.																	
LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
J+ = Estimated concentration, biased high.																	
UJ = The analyte was not detected at a level greater than or equal to the	e adjusted Limit of Detection (LOD).																
Associated numerical value is approximate.																	
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.																	
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.																
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

	Location ID	1	SFAA	SE 02			SFAA	SE 02		1	SFAAS	E 03 DA	
	Sample Name	-		02-SB-0-	2	SE	FAASF-02		D	SE		-PA-SB-	0_2
	Parent Sample ID		TAASI-	JZ-3D-0-	2		FAASF-0			517	AASI-03	-1 A-3D-	0-2
	Sample Date		2/8/2	2022		5	2/8/2		4		2/7/	2022	
	Depth (ft bgs)		0-				0-					-2	
Analyte ¹	Screening Level ¹	Result	LOD	LOO	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Oual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15		Ktsuit	LOD	LUQ	Quai	KtSuit	LOD	LUQ	Quai	Result	LOD	LOQ	Quai
4:2 Fluorotelomer sulfonate		<	1.7	2.2	U	<	1.8	2.2	U	<	1.7	2.2	U
6:2 Fluorotelomer sulfonate		<	1.7	2.2	U	<	1.8	2.2	U	<	1.7	2.2	U
8:2 Fluorotelomer sulfonate		<	1.7	3.2	U	<	1.8	3.3	U	<	1.7	3.2	U
N-ethyl perfluorooctanesulfonamidoacetic acid		12	0.43	2.2		9.8	0.44	2.2		<	0.43	2.2	UJ
N-methyl perfluorooctanesulfonamidoacetic acid		1.4	0.43	2.2	J	1.1	0.44	2.2	J+	<	0.43	2.2	UJ
Perfluorobutanesulfonic acid (PFBS)	1900	0.58	1.7	2.2	J	0.59	1.8	2.2	J	<	1.7	2.2	U
Perfluorobutanoic acid		<	1.7	2.2	U	<	1.8	2.2	U	<	1.7	2.2	U
Perfluorodecanesulfonic acid		13	0.43	0.65	İ	9.5	0.44	0.67		<	0.43	0.65	U
Perfluorodecanoic acid		6.1	0.43	0.65		5.4	0.44	0.67		0.22	0.43	0.65	J
Perfluorododecanoic acid		2.3	0.43	0.65		2.1	0.44	0.67		<	0.43	0.65	U
Perfluoroheptanesulfonic acid		0.82	0.43	0.65		0.73	0.44	0.67		<	0.43	0.65	U
Perfluoroheptanoic acid		8.2	0.43	0.65		9.1	0.44	0.67		<	0.43	0.65	U
Perfluorohexanesulfonic acid (PFHxS)	130	4.5	0.43	0.65		4.7	0.44	0.67		<	0.43	0.65	U
Perfluorohexanoic acid		3.8	0.43	0.65		3.9	0.44	0.67		0.45	0.43	0.65	J
Perfluorononanesulfonic acid		<	0.43	0.65	U	<	0.44	0.67	U	<	0.43	0.65	U
Perfluorononanoic acid (PFNA)	19	2.9	0.43	0.65		2.9	0.44	0.67		<	0.43	0.65	U
Perfluorooctanesulfonamide		2.3	0.43	0.65		1.7	0.44	0.67		<	0.43	0.65	U
Perfluorooctanesulfonic acid (PFOS)	13	60	0.43	0.65		49	0.44	0.67		0.48	0.43	0.65	J
Perfluorooctanoic acid (PFOA)	19	30	0.43	0.65		33	0.44	0.67		0.53	0.43	0.65	J
Perfluoropentanesulfonic acid		0.64	0.43	3.2	J	0.74	0.44	3.3	J	<	0.43	3.2	U
Perfluoropentanoic acid		1.9	0.43	0.65		1.9	0.44	0.67		0.29	0.43	0.65	J
AOI = Area of Interest.		0.68	0.43	0.65		0.6	0.44	0.67	J	<	0.43	0.65	U
mm = Millimeter(s).		0.26	0.43	0.65	J	0.22	0.44	0.67	J	<	0.43	0.65	U
μ m = Micrometer(s).		1.1	0.43	0.65		0.87	0.44	0.67		<	0.43	0.65	U
ft = Foot (feet).											•		•
LOD = Limit of Detection.													
LOQ = Limit of Quantitation.													
Qual = Qualifier.													
% = Percent passing.													
J+ = Estimated concentration, biased high.													
UJ = The analyte was not detected at a level greater than or equal to the	adjusted Limit of Detection (LOD).												
Associated numerical value is approximate.													
Values exceeding the Screening Level are shaded gray.													
ft bgs = Feet below ground surface.													
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.												
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.												
Qual = Qualifier.	= No screening criteria available.												

	Location ID	r	SFAA	SE-03			SFAA	SE-04			SEAA	SF-05	
	Sample Name	-		03-SB-0-	2	5	FAASF-		2	9		05-SB-0-2	2
	Parent Sample ID		I AASI -	05-50-0-	2	5	I AASI -	J-5D-0-	2	5	I AASI -	JJ-5D-0-	<u> </u>
	Sample Date		5/7/2	2022			2/7/2	022			2/7/	2022	
	Depth (ft bgs)		0-				0-					-2	
Analyte ¹	Screening Level ¹	Result	LOD	LOO	Oual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Oual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15		Kesuit	LOD	LUQ	Quai	Kesuit	LOD	LUQ	Quai	Kesuit	LOD	LUQ	Quai
4:2 Fluorotelomer sulfonate		<	1.7	2.2	U	<	1.7	2.1	U	<	1.7	2.1	U
6:2 Fluorotelomer sulfonate		<	1.7	2.2	Ū	<	1.7	2.1	Ū	<	1.7	2.1	Ū
8:2 Fluorotelomer sulfonate		<	1.7	3.2	U	<	1.7	3.2	U	<	1.7	3.1	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.43	2.2	UJ	<	0.43	2.1	UJ	0.48	0.42	2.1	J+
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.43	2.2	UJ	<	0.43	2.1	UJ	<	0.42	2.1	UJ
Perfluorobutanesulfonic acid (PFBS)	1900	<	1.7	2.2	U	<	1.7	2.1	U	<	1.7	2.1	U
Perfluorobutanoic acid		<	1.7	2.2	U	<	1.7	2.1	U	<	1.7	2.1	U
Perfluorodecanesulfonic acid		<	0.43	0.65	U	0.37	0.43	0.64	J	0.28	0.42	0.63	J
Perfluorodecanoic acid		<	0.43	0.65	U	0.47	0.43	0.64	J	0.27	0.42	0.63	J
Perfluorododecanoic acid		<	0.43	0.65	U	0.22	0.43	0.64	I	<	0.42	0.63	U
Perfluoroheptanesulfonic acid		<	0.43	0.65	Ū	<	0.43	0.64	U	<	0.42	0.63	U
Perfluoroheptanoic acid		<	0.43	0.65	U	0.47	0.43	0.64	J	0.33	0.42	0.63	J
Perfluorohexanesulfonic acid (PFHxS)	130	<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
Perfluorohexanoic acid		<	0.43	0.65	U	0.48	0.43	0.64	J	0.43	0.42	0.63	J
Perfluorononanesulfonic acid		<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
Perfluorononanoic acid (PFNA)	19	<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
Perfluorooctanesulfonamide		<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
Perfluorooctanesulfonic acid (PFOS)	13	<	0.43	0.65	U	0.94	0.43	0.64		0.93	0.42	0.63	1
Perfluorooctanoic acid (PFOA)	19	<	0.43	0.65	U	0.6	0.43	0.64	J	0.96	0.42	0.63	1
Perfluoropentanesulfonic acid		<	0.43	3.2	U	<	0.43	3.2	U	<	0.42	3.1	U
Perfluoropentanoic acid		<	0.43	0.65	U	0.23	0.43	0.64	J	0.24	0.42	0.63	J
AOI = Area of Interest.		<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
mm = Millimeter(s).		<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
$\mu m = Micrometer(s).$		<	0.43	0.65	U	<	0.43	0.64	U	<	0.42	0.63	U
ft = Foot (feet).	•			•		•	•		•	•	•	•	
LOD = Limit of Detection.													
LOQ = Limit of Quantitation.													
Qual = Qualifier.													
% = Percent passing.													
J+ = Estimated concentration, biased high.													
UJ = The analyte was not detected at a level greater than or equal to the	adjusted Limit of Detection (LOD).												
Associated numerical value is approximate.	-												
Values exceeding the Screening Level are shaded gray.													
ft bgs = Feet below ground surface.													
LOD = Limit of Detection.	μg/kg = Microgram(s) per kilogram.												
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.												
Qual = Qualifier.	= No screening criteria available.												

	Location ID	1	101	01-01				01-02			101	01-03			101	01-03	
	Location ID Sample Name			01-01 I-SB-13-1	5		AOI0 AOI01-02		5			01-03 3-SB-13-1	5			01-03 03-SB-6-8	
	Sample Name Parent Sample ID		10101-01	1-50-15-1	5	F	40101-02	-50-15-1	3	F	10101-03	5-5D-13-1	3		AOI01-0	13-30-0-0	1
	Sample Date		4/25	/2022			4/27/	2022			5/4/	2022			5/4/	2022	
	Depth (ft bgs)			3-15				-15				-15				-8	
Analyte	Screening Level ^{1,2}	Result	LOD	LOQ	Oual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOO	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Tab	le B-15 (µg/kg)																
4:2 Fluorotelomer sulfonate		<	1.7	2.1	U	<	1.7	2.2	U	<	1.6	2	U	<	1.6	2	U
6:2 Fluorotelomer sulfonate		<	1.7	2.1	U	<	1.7	2.2	U	<	1.6	2	U	<	1.6	2	U
8:2 Fluorotelomer sulfonate		<	1.7	3.1	U	<	1.7	3.3	U	<	1.6	3	U	<	1.6	3.1	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.41	2.1	U	<	0.43	2.2	U	<	0.4	2	U	<	0.41	2	U
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.41	2.1	U	<	0.43	2.2	U	<	0.4	2	U	<	0.41	2	U
Perfluorobutanesulfonic acid (PFBS)	25000	<	1.7	2.1	U	<	1.7	2.2	U	<	1.6	2	U	<	1.6	2	U
Perfluorobutanoic acid		<	1.7	2.1	U	<	1.7	2.2	U	<	1.6	2	U	<	1.6	2	U
Perfluorodecanesulfonic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorodecanoic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorododecanoic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluoroheptanesulfonic acid		<	0.41	0.62	U	0.48	0.43	0.65	J	<	0.4	0.59	U	<	0.41	0.61	U
Perfluoroheptanoic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorohexanesulfonic acid (PFHxS)	1600	<	0.41	0.62	U	3	0.43	0.65		0.27	0.4	0.59	J	0.23	0.41	0.61	J
Perfluorohexanoic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorononanesulfonic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorononanoic acid (PFNA)	250	<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorooctanesulfonamide		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
Perfluorooctanesulfonic acid (PFOS)	160	<	0.41	0.62	U	1.2	0.43	0.65		5.9	0.4	0.59		0.66	0.41	0.61	1
Perfluorooctanoic acid (PFOA)	250	<	0.41	0.62	U	0.59	0.43	0.65	J	<	0.4	0.59	U	<	0.41	0.61	U
Perfluoropentanesulfonic acid		<	0.41	3.1	U	<	0.43	3.3	U	<	0.4	3	U	<	0.41	3.1	U
Perfluoropentanoic acid		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
AOI = Area of Interest.		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
mm = Millimeter(s).		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
$\mu m = Micrometer(s).$		<	0.41	0.62	U	<	0.43	0.65	U	<	0.4	0.59	U	<	0.41	0.61	U
ft = Foot (feet). LOD = Limit of Detection.		•			•	*		•		•			•	*			
LOD = Limit of Detection. LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
UJ = The analyte was not detected at a level greater than or equ	al to the adjusted Limit of Detection (LOD).																
Associated numerical value is approximate.																	
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.																	
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.																
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

	Location ID		AOI	01-04			AOI	01-05			AO	01-05			AOI)1-06B	
	Sample Name	A	OI01-04	4-SB-13-1	5	A	AOI01-05	-SB-13-1	5		AOI01-	05-SB-6-8	8	A	OI01-06	B-SB-13-	-15
	Parent Sample ID																
	Sample Date			2022			5/4/	2022			5/4/	/2022			-	2022	
	Depth (ft bgs)		13	-15			13	-15			(5-8			13	3-15	
Analyte	Screening Level ^{1,2}	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua
PFAS by LC/MS/MS compliant with QSM Version 5.3 Tak	ble B-15 (µg/kg)				-				-								
4:2 Fluorotelomer sulfonate		<	1.8	2.3	U	<	1.8	2.2	U	<	1.7	2.2	U	<	1.5	1.9	U
6:2 Fluorotelomer sulfonate		<	1.8	2.3	U	<	1.8	2.2	U	<	1.7	2.2	U	<	1.5	1.9	U
8:2 Fluorotelomer sulfonate		<	1.8	3.4	U	<	1.8	3.4	U	<	1.7	3.2	U	<	1.5	2.9	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.45	2.3	U	<	0.45	2.2	U	<	0.43	2.2	U	<	0.39	1.9	U
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.45	2.3	U	<	0.45	2.2	U	<	0.43	2.2	U	<	0.39	1.9	U
Perfluorobutanesulfonic acid (PFBS)	25000	<	1.8	2.3	U	<	1.8	2.2	U	<	1.7	2.2	U	<	1.5	1.9	U
Perfluorobutanoic acid		<	1.8	2.3	U	<	1.8	2.2	U	<	1.7	2.2	U	<	1.5	1.9	U
Perfluorodecanesulfonic acid		0.29	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorodecanoic acid		0.3	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorododecanoic acid		0.34	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluoroheptanesulfonic acid		0.33	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluoroheptanoic acid		0.4	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorohexanesulfonic acid (PFHxS)	1600	1.2	0.45	0.68		<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorohexanoic acid		0.63	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorononanesulfonic acid		0.28	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorononanoic acid (PFNA)	250	0.37	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorooctanesulfonamide		0.35	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorooctanesulfonic acid (PFOS)	160	3.2	0.45	0.68		<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluorooctanoic acid (PFOA)	250	0.52	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
Perfluoropentanesulfonic acid		0.34	0.45	3.4	J	<	0.45	3.4	U	<	0.43	3.2	U	<	0.39	2.9	U
Perfluoropentanoic acid		0.33	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
AOI = Area of Interest.		0.33	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
mm = Millimeter(s).		0.3	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
μ m = Micrometer(s).		0.31	0.45	0.68	J	<	0.45	0.67	U	<	0.43	0.65	U	<	0.39	0.58	U
ft = Foot (feet).						-				-							
LOD = Limit of Detection.																	
LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
UJ = The analyte was not detected at a level greater than or equ	al to the adjusted Limit of Detection (LOD).																
Associated numerical value is approximate.	· - ······ ()·																
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.																	
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.																
LOQ = Limit of Detection.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

						1				-				r			
	Location ID			1-06B	-			01-09				F-03-PA		~		SF-04	
	Sample Name	A	40101-06	6B-SB-6-	8	A	40101-09	-SB-13-1	5	SFA	ASF-03	PA-SB-1	3-15	S	FAASF-0	4-SB-13-	15
	Parent Sample ID		5/4/	2022			E / E /	2022			C/1/	2022			4/20	2022	
	Sample Date			2022 -8				2022 -15				2022 -15				/2022 -15	
	Depth (ft bgs)		-		-						-	-	-		-		
Analyte	Screening Level ^{1,2}	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-1			1.5	1.0	TT		1.6	2.1	11		1.5	1.0	TT		1.6	2	
4:2 Fluorotelomer sulfonate		<	1.5	1.9	U	<	1.6	2.1	U U	<	1.5	1.8	U U	<	1.6	2	U
6:2 Fluorotelomer sulfonate 8:2 Fluorotelomer sulfonate		<	1.5	1.9 2.8	U U	<	1.6	2.1	U	<	1.5 1.5	1.8 2.8	U	<	1.6 1.6	2.9	U U
			1.5	-	U		1.6	3.1			-	-			-	-	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.38	1.9	U	<	0.41	2.1	U	<	0.37	1.8	U	<	0.39	2	-
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.38	1.9		<	0.41	2.1	U	<	0.37	1.8	U	<	0.39	2	U
Perfluorobutanesulfonic acid (PFBS)	25000	<	1.5	1.9	U U	<	1.6	2.1	U U	<	1.5	1.8	U U	<	1.6	2	U U
Perfluorobutanoic acid		<	1.5	1.9			1.6	2.1			1.5	1.8			1.6	2	
Perfluorodecanesulfonic acid		<	0.38	0.57	U U	<	0.41	0.62	U U	<	0.37	0.55	U U	<	0.39	0.59	U U
Perfluorodecanoic acid					-		-				0.37						
Perfluorododecanoic acid		<	0.38	0.57	U U	<	0.41	0.62	U U	<	0.37	0.55	U U	<	0.39	0.59	U U
Perfluoroheptanesulfonic acid Perfluoroheptanoic acid		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorohexanesulfonic acid (PFHxS)	1600	<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorohexanoic acid		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorononanesulfonic acid		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorononanic acid (PFNA)	250	<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorooctanesulfonamide		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorooctanesulfonic acid (PFOS)	160	<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluorooctanoic acid (PFOA)	250	<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
Perfluoropentanesulfonic acid		<	0.38	2.8	U	<	0.41	3.1	U	<	0.37	2.8	U	<	0.39	2.9	U
Perfluoropentanoic acid		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
AOI = Area of Interest.		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
mm = Millimeter(s).		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
$\mu m = Micrometer(s).$		<	0.38	0.57	U	<	0.41	0.62	U	<	0.37	0.55	U	<	0.39	0.59	U
ft = Foot (feet).			0.50	0.57	0		0.41	0.02	0		0.57	0.55	0	Ì	0.57	0.57	
LOD = Limit of Detection.																	
LOQ = Limit of Quantitation.																	
Qual = Qualifier.																	
% = Percent passing.																	
1 5	(LOD)																
UJ = The analyte was not detected at a level greater than or equal to the Associated numerical value is approximate.	ie aujusied Liniit of Detection (LOD).																
**																	
Values exceeding the Screening Level are shaded gray.																	
ft bgs = Feet below ground surface.																	
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.																
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.																
Qual = Qualifier.	= No screening criteria available.																

I			SEAA	SF-05			SFAA	SF-05			SEAA	SF-05	
1	Location ID Sample Name	SE		5-SB-13-	15	SEA		B-13-15	DUP	S		05-SB-6-	-8
	Parent Sample ID	51	11101 0	5 55 15	10			5-SB-13-		2	111101	00 00 0	0
	Sample Date		5/4/	2022				2022	10		5/4/	2022	
	Depth (ft bgs)		13	-15				-15			6	-8	
Analyte	Screening Level ^{1,2}	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15	(µg/kg)												
4:2 Fluorotelomer sulfonate		<	1.5	1.8	U	<	1.5	1.9	U	<	1.7	2.1	U
6:2 Fluorotelomer sulfonate		<	1.5	1.8	U	<	1.5	1.9	U	<	1.7	2.1	U
8:2 Fluorotelomer sulfonate		<	1.5	2.8	U	<	1.5	2.9	U	<	1.7	3.1	U
N-ethyl perfluorooctanesulfonamidoacetic acid		<	0.37	1.8	U	<	0.39	1.9	U	<	0.41	2.1	UJ
N-methyl perfluorooctanesulfonamidoacetic acid		<	0.37	1.8	U	<	0.39	1.9	U	<	0.41	2.1	UJ
Perfluorobutanesulfonic acid (PFBS)	25000	<	1.5	1.8	U	<	1.5	1.9	U	<	1.7	2.1	U
Perfluorobutanoic acid		<	1.5	1.8	U	<	1.5	1.9	U	<	1.7	2.1	U
Perfluorodecanesulfonic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorodecanoic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorododecanoic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluoroheptanesulfonic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluoroheptanoic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorohexanesulfonic acid (PFHxS)	1600	<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorohexanoic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorononanesulfonic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorononanoic acid (PFNA)	250	<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorooctanesulfonamide		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorooctanesulfonic acid (PFOS)	160	<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluorooctanoic acid (PFOA)	250	<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
Perfluoropentanesulfonic acid		<	0.37	2.8	U	<	0.39	2.9	U	<	0.41	3.1	U
Perfluoropentanoic acid		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
AOI = Area of Interest.		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
mm = Millimeter(s).		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
$\mu m = Micrometer(s).$		<	0.37	0.55	U	<	0.39	0.58	U	<	0.41	0.62	U
ft = Foot (feet). LOD = Limit of Detection.													
LOQ = Limit of Quantitation.													
Qual = Qualifier.													
% = Percent passing.													
UJ = The analyte was not detected at a level greater than or equal to the Associated numerical value is approximate.	adjusted Limit of Detection (LOD).												
Values exceeding the Screening Level are shaded gray.													
ft bgs = Feet below ground surface.													
LOD = Limit of Detection.	$\mu g/kg = Microgram(s)$ per kilogram.												
LOQ = Limit of Quantitation.	< = Analyte not detected above the LOD.												
Qual = Qualifier.	= No screening criteria available.												

Location	Б	AOI	01-01			AOI	01-02			AOI)1-02			AOI)1-04		1	AOI	01-04			AOI	01-09			SFAAS	F-03-PA			SFAA	SF-04	
Sample Na		OI01-01-		82	A		SB-113-1	15	AOI	01-02-SB		5-DUP	А	OI01-04-		10	AOI		-109-110-	DUP	A	DI01-09-		112	SEA	ASF-03-I			SF		-SB-180-1	81
Parent Sample		0101 01	00 101 1	02		0101 02	00 110 1			OI01-02-5						10			SB-109-11			0101 07	00 111		511		1100 10		51	1101 01	00 100 1	
Sample D		4/26/	/2022			4/28	/2022			4/28/				5/4/2	2022				2022	-		5/6/	2022			5/2	/2022			4/30/	2022	
Depth (ft b			-182				-115			113				109					-110				-112				3-184			180		
Analyte ¹	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Resul	t LOD	LOQ	Qual	Result	LOD	LOQ	Qual
PFAS by LC/MS/MS compliant with QSM Version 5.3 Table B-15 (µg/	kg)																															
4:2 Fluorotelomer sulfonate	<	1.6	2	U	<	1.7	2.2	U	<	1.8	2.3	U	<	1.7	2.1	U	<	1.6	1.9	U	<	2.1	2.6	U	<	1.6	2	U	<	1.6	2	U
6:2 Fluorotelomer sulfonate	<	1.6	2	U	<	1.7	2.2	U	<	1.8	2.3	U	<	1.7	2.1	U	<	1.6	1.9	U	<	2.1	2.6	U	<	1.6	2	U	<	1.6	2	U
8:2 Fluorotelomer sulfonate	<	1.6	3	U	<	1.7	3.2	U	<	1.8	3.5	U	<	1.7	3.1	U	<	1.6	2.9	U	<	2.1	3.9	U	<	1.6	3	U	<	1.6	3	U
N-ethyl perfluorooctanesulfonamidoacetic acid	<	0.4	2	U	<	0.43	2.2	U	<	0.46	2.3	U	0.28	0.41	2.1	J	<	0.39	1.9	U	<	0.52	2.6	UJ	<	0.4	2	U	<	0.4	2	U
N-methyl perfluorooctanesulfonamidoacetic acid	<	0.4	2	U	<	0.43	2.2	U	<	0.46	2.3	U	<	0.41	2.1	UJ	<	0.39	1.9	U	<	0.52	2.6	UJ	<	0.4	2	U	<	0.4	2	U
Perfluorobutanesulfonic acid (PFBS)	<	1.6	2	U	<	1.7	2.2	U	<	1.8	2.3	U	<	1.7	2.1	U	<	1.6	1.9	U	<	2.1	2.6	U	<	1.6	2	U	<	1.6	2	U
Perfluorobutanoic acid	<	1.6	2	U	<	1.7	2.2	U	<	1.8	2.3	U	<	1.7	2.1	U	<	1.6	1.9	U	<	2.1	2.6	U	<	1.6	2	U	<	1.6	2	U
Perfluorodecanesulfonic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.3	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorodecanoic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.3	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorododecanoic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.32	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluoroheptanesulfonic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.34	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluoroheptanoic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.44	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorohexanesulfonic acid (PFHxS)	<	0.4	0.6	U	0.32	0.43	0.65	J	<	0.46	0.69	U	1.1	0.41	0.62	J	<	0.39	0.58	UJ	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorohexanoic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.7	0.41	0.62		<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorononanesulfonic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.28	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorononanoic acid (PFNA)	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.32	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorooctanesulfonamide (PFOSA)	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.34	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorooctanesulfonic acid (PFOS)	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	2.2	0.41	0.62	J+	<	0.39	0.58	UJ	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluorooctanoic acid (PFOA)	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.48	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
Perfluoropentanesulfonic acid	<	0.4	3	U	<	0.43	3.2	U	<	0.46	3.5	U	0.38	0.41	3.1	J	<	0.39	2.9	U	<	0.52	3.9	U	<	0.4	3	U	<	0.4	3	U
Perfluoropentanoic acid	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.37	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
AOI = Area of Interest.	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.33	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
mm = Millimeter(s).	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.31	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
$\mu m = Micrometer(s).$	<	0.4	0.6	U	<	0.43	0.65	U	<	0.46	0.69	U	0.3	0.41	0.62	J	<	0.39	0.58	U	<	0.52	0.78	U	<	0.4	0.6	U	<	0.4	0.6	U
ft = Foot (feet).		•	•			•	••			•		•		•				•	••			•	•	•		•	•				• • •	
LOD = Limit of Detection.																																ļ
LOQ = Limit of Quantitation.																																ļ
Qual = Qualifier.																																ļ
% = Percent passing.																																ļ
ft bgs = Feet below ground surface.																																ļ
LOD = Limit of Detection.																																ļ
LOQ = Limit of Quantitation.																																
Qual = Qualifier.																																
$\mu g/kg = Microgram(s)$ per kilogram.																																ļ
< = Analyte not detected above the LOD.																																ļ

		1.01	21.01		1	1.01	1.02	
Location ID		AOI		26			01-02	20
Sample Name		5101-01-	SB-135-1	36	A	DI01-02-	SB-119-1	20
Parent Sample ID		1/2.5				1/20		
Sample Date			2022				2022	
Depth (bgs ft)			-136			-	-120	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Grain Size (D422) (%)	100				100			
Sieve, 50000 microns (50mm)	100	1	1		100	1	1	
Sieve, 37500 microns (37.5 mm)	100	1	1		100	1	1	
Sieve, 25000 microns (25mm)	100	1	1		100	1	1	
Sieve, 19000 microns (19mm)	100	1	1		100	1	1	
Sieve, 9510 microns (9.51mm)	100	1	1		100	1	1	
No. 4 sieve (4.75 mm)	100	1	1		98.4	1	1	
No. 10 sieve (2.00mm)	95.4	1	1		96.3	1	1	
No. 20 sieve(0.85mm)	91	1	1		90.6	1	1	
No. 40 sieve (0.425 mm)	84.8	1	1		82	1	1	
No. 60 sieve (0.25 mm)	79.9	1	1		75.1	1	1	
No. 80 sieve (0.177 mm)	76.9	1	1		61.6	1	1	
No. 100 sieve (0.15 mm)	75.3	1	1		59.2	1	1	
No. 200 sieve (0.075 mm)	69.5	1	1		48.1	1	1	
36.1um (Hydrometer)	23.4	1	1		17.1	1	1	
22.9um (Hydrometer)	20.6	1	1		12.7	1	1	
13.4um (Hydrometer)	16.4	1	1		9.8	1	1	
9.8um (Hydrometer)	15	1	1		9.8	1	1	
6.7um (Hydrometer)	12.2	1	1		6.9	1	1	
3.3um (Hydrometer)	9.4	1	1		6.9	1	1	
1.4um (Hydrometer)	9.4	1	1		6.9	1	1	
Notes:								
AOI = Area of Interest.								
mm = Millimeter(s).								
$\mu m = Micrometer(s).$								
ft = Foot (feet).								
LOD = Limit of Detection.								
LOQ = Limit of Quantitation.								
Qual = Qualifier.								
% = Percent passing.								

Location ID		AOI0	01-03			AOI	01-03			SFAAS	F-03-PA	
Sample Name	A	OI01-03	3-SB-0-2	2	A	OI01-03	-SB-0-2-	D	SF	AASF-03	3-PA-SB-	0-2
Parent Sample ID						AOI01-0	3-SB-0-2	1				
Sample Date		2/7/2	2022			2/7/2	2022			2/7/	2022	
Depth (bgs ft)		0-	-2			0	-2			0	-2	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH (SW9045D) (SU)	8.9	0.01	0.01		8.8	0.01	0.01		8.7	0.01	0.01	
Temperature (SW9045D) (deg C)	19.9	0.01	0.01		19.9	0.01	0.01		20.7	0.01	0.01	
Total Organic Carbon (SW9060) (mg/kg)	2400	240	360		3300	220	330		4600	230	350	
Notes:												
SU= Standard unit.												
°C = Degrees Celsius.												
mg/kg= Milligram(s) per kilogram.												
ft = Foot (feet).												
bgs = Below ground surface.												
LOD = Limit of Detection.												
LOQ = Limit of Quantitation.												
Qual = Qualifier.												

This page intentionally left blank

Appendix G

Laboratory Reports

Due to file size, laboratory reports are provided electronically (CD) or can be requested.

This page intentionally left blank